ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/LinkedTransferQueue.java
Revision: 1.72
Committed: Mon Apr 5 15:50:51 2010 UTC (14 years, 1 month ago) by dl
Branch: MAIN
Changes since 1.71: +5 -1 lines
Log Message:
streamline isEmpty

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/licenses/publicdomain
5 */
6
7 package jsr166y;
8
9 import java.util.concurrent.*;
10
11 import java.util.AbstractQueue;
12 import java.util.Collection;
13 import java.util.ConcurrentModificationException;
14 import java.util.Iterator;
15 import java.util.NoSuchElementException;
16 import java.util.Queue;
17 import java.util.concurrent.locks.LockSupport;
18 /**
19 * An unbounded {@link TransferQueue} based on linked nodes.
20 * This queue orders elements FIFO (first-in-first-out) with respect
21 * to any given producer. The <em>head</em> of the queue is that
22 * element that has been on the queue the longest time for some
23 * producer. The <em>tail</em> of the queue is that element that has
24 * been on the queue the shortest time for some producer.
25 *
26 * <p>Beware that, unlike in most collections, the {@code size}
27 * method is <em>NOT</em> a constant-time operation. Because of the
28 * asynchronous nature of these queues, determining the current number
29 * of elements requires a traversal of the elements.
30 *
31 * <p>This class and its iterator implement all of the
32 * <em>optional</em> methods of the {@link Collection} and {@link
33 * Iterator} interfaces.
34 *
35 * <p>Memory consistency effects: As with other concurrent
36 * collections, actions in a thread prior to placing an object into a
37 * {@code LinkedTransferQueue}
38 * <a href="package-summary.html#MemoryVisibility"><i>happen-before</i></a>
39 * actions subsequent to the access or removal of that element from
40 * the {@code LinkedTransferQueue} in another thread.
41 *
42 * <p>This class is a member of the
43 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
44 * Java Collections Framework</a>.
45 *
46 * @since 1.7
47 * @author Doug Lea
48 * @param <E> the type of elements held in this collection
49 */
50 public class LinkedTransferQueue<E> extends AbstractQueue<E>
51 implements TransferQueue<E>, java.io.Serializable {
52 private static final long serialVersionUID = -3223113410248163686L;
53
54 /*
55 * *** Overview of Dual Queues with Slack ***
56 *
57 * Dual Queues, introduced by Scherer and Scott
58 * (http://www.cs.rice.edu/~wns1/papers/2004-DISC-DDS.pdf) are
59 * (linked) queues in which nodes may represent either data or
60 * requests. When a thread tries to enqueue a data node, but
61 * encounters a request node, it instead "matches" and removes it;
62 * and vice versa for enqueuing requests. Blocking Dual Queues
63 * arrange that threads enqueuing unmatched requests block until
64 * other threads provide the match. Dual Synchronous Queues (see
65 * Scherer, Lea, & Scott
66 * http://www.cs.rochester.edu/u/scott/papers/2009_Scherer_CACM_SSQ.pdf)
67 * additionally arrange that threads enqueuing unmatched data also
68 * block. Dual Transfer Queues support all of these modes, as
69 * dictated by callers.
70 *
71 * A FIFO dual queue may be implemented using a variation of the
72 * Michael & Scott (M&S) lock-free queue algorithm
73 * (http://www.cs.rochester.edu/u/scott/papers/1996_PODC_queues.pdf).
74 * It maintains two pointer fields, "head", pointing to a
75 * (matched) node that in turn points to the first actual
76 * (unmatched) queue node (or null if empty); and "tail" that
77 * points to the last node on the queue (or again null if
78 * empty). For example, here is a possible queue with four data
79 * elements:
80 *
81 * head tail
82 * | |
83 * v v
84 * M -> U -> U -> U -> U
85 *
86 * The M&S queue algorithm is known to be prone to scalability and
87 * overhead limitations when maintaining (via CAS) these head and
88 * tail pointers. This has led to the development of
89 * contention-reducing variants such as elimination arrays (see
90 * Moir et al http://portal.acm.org/citation.cfm?id=1074013) and
91 * optimistic back pointers (see Ladan-Mozes & Shavit
92 * http://people.csail.mit.edu/edya/publications/OptimisticFIFOQueue-journal.pdf).
93 * However, the nature of dual queues enables a simpler tactic for
94 * improving M&S-style implementations when dual-ness is needed.
95 *
96 * In a dual queue, each node must atomically maintain its match
97 * status. While there are other possible variants, we implement
98 * this here as: for a data-mode node, matching entails CASing an
99 * "item" field from a non-null data value to null upon match, and
100 * vice-versa for request nodes, CASing from null to a data
101 * value. (Note that the linearization properties of this style of
102 * queue are easy to verify -- elements are made available by
103 * linking, and unavailable by matching.) Compared to plain M&S
104 * queues, this property of dual queues requires one additional
105 * successful atomic operation per enq/deq pair. But it also
106 * enables lower cost variants of queue maintenance mechanics. (A
107 * variation of this idea applies even for non-dual queues that
108 * support deletion of interior elements, such as
109 * j.u.c.ConcurrentLinkedQueue.)
110 *
111 * Once a node is matched, its match status can never again
112 * change. We may thus arrange that the linked list of them
113 * contain a prefix of zero or more matched nodes, followed by a
114 * suffix of zero or more unmatched nodes. (Note that we allow
115 * both the prefix and suffix to be zero length, which in turn
116 * means that we do not use a dummy header.) If we were not
117 * concerned with either time or space efficiency, we could
118 * correctly perform enqueue and dequeue operations by traversing
119 * from a pointer to the initial node; CASing the item of the
120 * first unmatched node on match and CASing the next field of the
121 * trailing node on appends. (Plus some special-casing when
122 * initially empty). While this would be a terrible idea in
123 * itself, it does have the benefit of not requiring ANY atomic
124 * updates on head/tail fields.
125 *
126 * We introduce here an approach that lies between the extremes of
127 * never versus always updating queue (head and tail) pointers.
128 * This offers a tradeoff between sometimes requiring extra
129 * traversal steps to locate the first and/or last unmatched
130 * nodes, versus the reduced overhead and contention of fewer
131 * updates to queue pointers. For example, a possible snapshot of
132 * a queue is:
133 *
134 * head tail
135 * | |
136 * v v
137 * M -> M -> U -> U -> U -> U
138 *
139 * The best value for this "slack" (the targeted maximum distance
140 * between the value of "head" and the first unmatched node, and
141 * similarly for "tail") is an empirical matter. We have found
142 * that using very small constants in the range of 1-3 work best
143 * over a range of platforms. Larger values introduce increasing
144 * costs of cache misses and risks of long traversal chains, while
145 * smaller values increase CAS contention and overhead.
146 *
147 * Dual queues with slack differ from plain M&S dual queues by
148 * virtue of only sometimes updating head or tail pointers when
149 * matching, appending, or even traversing nodes; in order to
150 * maintain a targeted slack. The idea of "sometimes" may be
151 * operationalized in several ways. The simplest is to use a
152 * per-operation counter incremented on each traversal step, and
153 * to try (via CAS) to update the associated queue pointer
154 * whenever the count exceeds a threshold. Another, that requires
155 * more overhead, is to use random number generators to update
156 * with a given probability per traversal step.
157 *
158 * In any strategy along these lines, because CASes updating
159 * fields may fail, the actual slack may exceed targeted
160 * slack. However, they may be retried at any time to maintain
161 * targets. Even when using very small slack values, this
162 * approach works well for dual queues because it allows all
163 * operations up to the point of matching or appending an item
164 * (hence potentially allowing progress by another thread) to be
165 * read-only, thus not introducing any further contention. As
166 * described below, we implement this by performing slack
167 * maintenance retries only after these points.
168 *
169 * As an accompaniment to such techniques, traversal overhead can
170 * be further reduced without increasing contention of head
171 * pointer updates: Threads may sometimes shortcut the "next" link
172 * path from the current "head" node to be closer to the currently
173 * known first unmatched node, and similarly for tail. Again, this
174 * may be triggered with using thresholds or randomization.
175 *
176 * These ideas must be further extended to avoid unbounded amounts
177 * of costly-to-reclaim garbage caused by the sequential "next"
178 * links of nodes starting at old forgotten head nodes: As first
179 * described in detail by Boehm
180 * (http://portal.acm.org/citation.cfm?doid=503272.503282) if a GC
181 * delays noticing that any arbitrarily old node has become
182 * garbage, all newer dead nodes will also be unreclaimed.
183 * (Similar issues arise in non-GC environments.) To cope with
184 * this in our implementation, upon CASing to advance the head
185 * pointer, we set the "next" link of the previous head to point
186 * only to itself; thus limiting the length of connected dead lists.
187 * (We also take similar care to wipe out possibly garbage
188 * retaining values held in other Node fields.) However, doing so
189 * adds some further complexity to traversal: If any "next"
190 * pointer links to itself, it indicates that the current thread
191 * has lagged behind a head-update, and so the traversal must
192 * continue from the "head". Traversals trying to find the
193 * current tail starting from "tail" may also encounter
194 * self-links, in which case they also continue at "head".
195 *
196 * It is tempting in slack-based scheme to not even use CAS for
197 * updates (similarly to Ladan-Mozes & Shavit). However, this
198 * cannot be done for head updates under the above link-forgetting
199 * mechanics because an update may leave head at a detached node.
200 * And while direct writes are possible for tail updates, they
201 * increase the risk of long retraversals, and hence long garbage
202 * chains, which can be much more costly than is worthwhile
203 * considering that the cost difference of performing a CAS vs
204 * write is smaller when they are not triggered on each operation
205 * (especially considering that writes and CASes equally require
206 * additional GC bookkeeping ("write barriers") that are sometimes
207 * more costly than the writes themselves because of contention).
208 *
209 * *** Overview of implementation ***
210 *
211 * We use a threshold-based approach to updates, with a slack
212 * threshold of two -- that is, we update head/tail when the
213 * current pointer appears to be two or more steps away from the
214 * first/last node. The slack value is hard-wired: a path greater
215 * than one is naturally implemented by checking equality of
216 * traversal pointers except when the list has only one element,
217 * in which case we keep slack threshold at one. Avoiding tracking
218 * explicit counts across method calls slightly simplifies an
219 * already-messy implementation. Using randomization would
220 * probably work better if there were a low-quality dirt-cheap
221 * per-thread one available, but even ThreadLocalRandom is too
222 * heavy for these purposes.
223 *
224 * With such a small slack threshold value, it is not worthwhile
225 * to augment this with path short-circuiting (i.e., unsplicing
226 * interior nodes) except in the case of cancellation/removal (see
227 * below).
228 *
229 * We allow both the head and tail fields to be null before any
230 * nodes are enqueued; initializing upon first append. This
231 * simplifies some other logic, as well as providing more
232 * efficient explicit control paths instead of letting JVMs insert
233 * implicit NullPointerExceptions when they are null. While not
234 * currently fully implemented, we also leave open the possibility
235 * of re-nulling these fields when empty (which is complicated to
236 * arrange, for little benefit.)
237 *
238 * All enqueue/dequeue operations are handled by the single method
239 * "xfer" with parameters indicating whether to act as some form
240 * of offer, put, poll, take, or transfer (each possibly with
241 * timeout). The relative complexity of using one monolithic
242 * method outweighs the code bulk and maintenance problems of
243 * using separate methods for each case.
244 *
245 * Operation consists of up to three phases. The first is
246 * implemented within method xfer, the second in tryAppend, and
247 * the third in method awaitMatch.
248 *
249 * 1. Try to match an existing node
250 *
251 * Starting at head, skip already-matched nodes until finding
252 * an unmatched node of opposite mode, if one exists, in which
253 * case matching it and returning, also if necessary updating
254 * head to one past the matched node (or the node itself if the
255 * list has no other unmatched nodes). If the CAS misses, then
256 * a loop retries advancing head by two steps until either
257 * success or the slack is at most two. By requiring that each
258 * attempt advances head by two (if applicable), we ensure that
259 * the slack does not grow without bound. Traversals also check
260 * if the initial head is now off-list, in which case they
261 * start at the new head.
262 *
263 * If no candidates are found and the call was untimed
264 * poll/offer, (argument "how" is NOW) return.
265 *
266 * 2. Try to append a new node (method tryAppend)
267 *
268 * Starting at current tail pointer, find the actual last node
269 * and try to append a new node (or if head was null, establish
270 * the first node). Nodes can be appended only if their
271 * predecessors are either already matched or are of the same
272 * mode. If we detect otherwise, then a new node with opposite
273 * mode must have been appended during traversal, so we must
274 * restart at phase 1. The traversal and update steps are
275 * otherwise similar to phase 1: Retrying upon CAS misses and
276 * checking for staleness. In particular, if a self-link is
277 * encountered, then we can safely jump to a node on the list
278 * by continuing the traversal at current head.
279 *
280 * On successful append, if the call was ASYNC, return.
281 *
282 * 3. Await match or cancellation (method awaitMatch)
283 *
284 * Wait for another thread to match node; instead cancelling if
285 * the current thread was interrupted or the wait timed out. On
286 * multiprocessors, we use front-of-queue spinning: If a node
287 * appears to be the first unmatched node in the queue, it
288 * spins a bit before blocking. In either case, before blocking
289 * it tries to unsplice any nodes between the current "head"
290 * and the first unmatched node.
291 *
292 * Front-of-queue spinning vastly improves performance of
293 * heavily contended queues. And so long as it is relatively
294 * brief and "quiet", spinning does not much impact performance
295 * of less-contended queues. During spins threads check their
296 * interrupt status and generate a thread-local random number
297 * to decide to occasionally perform a Thread.yield. While
298 * yield has underdefined specs, we assume that might it help,
299 * and will not hurt in limiting impact of spinning on busy
300 * systems. We also use smaller (1/2) spins for nodes that are
301 * not known to be front but whose predecessors have not
302 * blocked -- these "chained" spins avoid artifacts of
303 * front-of-queue rules which otherwise lead to alternating
304 * nodes spinning vs blocking. Further, front threads that
305 * represent phase changes (from data to request node or vice
306 * versa) compared to their predecessors receive additional
307 * chained spins, reflecting longer paths typically required to
308 * unblock threads during phase changes.
309 *
310 *
311 * ** Unlinking removed interior nodes **
312 *
313 * In addition to minimizing garbage retention via self-linking
314 * described above, we also unlink removed interior nodes. These
315 * may arise due to timed out or interrupted waits, or calls to
316 * remove(x) or Iterator.remove. Normally, given a node that was
317 * at one time known to be the predecessor of some node s that is
318 * to be removed, we can unsplice s by CASing the next field of
319 * its predecessor if it still points to s (otherwise s must
320 * already have been removed or is now offlist). But there are two
321 * situations in which we cannot guarantee to make node s
322 * unreachable in this way: (1) If s is the trailing node of list
323 * (i.e., with null next), then it is pinned as the target node
324 * for appends, so can only be removed later when other nodes are
325 * appended. (2) We cannot necessarily unlink s given a
326 * predecessor node that is matched (including the case of being
327 * cancelled): the predecessor may already be unspliced, in which
328 * case some previous reachable node may still point to s.
329 * (For further explanation see Herlihy & Shavit "The Art of
330 * Multiprocessor Programming" chapter 9). Although, in both
331 * cases, we can rule out the need for further action if either s
332 * or its predecessor are (or can be made to be) at, or fall off
333 * from, the head of list.
334 *
335 * Without taking these into account, it would be possible for an
336 * unbounded number of supposedly removed nodes to remain
337 * reachable. Situations leading to such buildup are uncommon but
338 * can occur in practice; for example when a series of short timed
339 * calls to poll repeatedly time out but never otherwise fall off
340 * the list because of an untimed call to take at the front of the
341 * queue.
342 *
343 * When these cases arise, rather than always retraversing the
344 * entire list to find an actual predecessor to unlink (which
345 * won't help for case (1) anyway), we record a conservative
346 * estimate of possible unsplice failures (in "sweepVotes"). We
347 * trigger a full sweep when the estimate exceeds a threshold
348 * indicating the maximum number of estimated removal failures to
349 * tolerate before sweeping through, unlinking cancelled nodes
350 * that were not unlinked upon initial removal. We perform sweeps
351 * by the thread hitting threshold (rather than background threads
352 * or by spreading work to other threads) because in the main
353 * contexts in which removal occurs, the caller is already
354 * timed-out, cancelled, or performing a potentially O(n)
355 * operation (i.e., remove(x)), none of which are time-critical
356 * enough to warrant the overhead that alternatives would impose
357 * on other threads.
358 *
359 * Because the sweepVotes estimate is conservative, and because
360 * nodes become unlinked "naturally" as they fall off the head of
361 * the queue, and because we allow votes to accumulate even while
362 * sweeps are in progress, there are typically significantly fewer
363 * such nodes than estimated. Choice of a threshold value
364 * balances the likelihood of wasted effort and contention, versus
365 * providing a worst-case bound on retention of interior nodes in
366 * quiescent queues. The value defined below was chosen
367 * empirically to balance these under various timeout scenarios.
368 *
369 * Note that we cannot self-link unlinked interior nodes during
370 * sweeps. However, the associated garbage chains terminate when
371 * some successor ultimately falls off the head of the list and is
372 * self-linked.
373 */
374
375 /** True if on multiprocessor */
376 private static final boolean MP =
377 Runtime.getRuntime().availableProcessors() > 1;
378
379 /**
380 * The number of times to spin (with randomly interspersed calls
381 * to Thread.yield) on multiprocessor before blocking when a node
382 * is apparently the first waiter in the queue. See above for
383 * explanation. Must be a power of two. The value is empirically
384 * derived -- it works pretty well across a variety of processors,
385 * numbers of CPUs, and OSes.
386 */
387 private static final int FRONT_SPINS = 1 << 7;
388
389 /**
390 * The number of times to spin before blocking when a node is
391 * preceded by another node that is apparently spinning. Also
392 * serves as an increment to FRONT_SPINS on phase changes, and as
393 * base average frequency for yielding during spins. Must be a
394 * power of two.
395 */
396 private static final int CHAINED_SPINS = FRONT_SPINS >>> 1;
397
398 /**
399 * The maximum number of estimated removal failures (sweepVotes)
400 * to tolerate before sweeping through the queue unlinking
401 * cancelled nodes that were not unlinked upon initial
402 * removal. See above for explanation. The value must be at least
403 * two to avoid useless sweeps when removing trailing nodes.
404 */
405 static final int SWEEP_THRESHOLD = 32;
406
407 /**
408 * Queue nodes. Uses Object, not E, for items to allow forgetting
409 * them after use. Relies heavily on Unsafe mechanics to minimize
410 * unnecessary ordering constraints: Writes that are intrinsically
411 * ordered wrt other accesses or CASes use simple relaxed forms.
412 */
413 static final class Node {
414 final boolean isData; // false if this is a request node
415 volatile Object item; // initially non-null if isData; CASed to match
416 volatile Node next;
417 volatile Thread waiter; // null until waiting
418
419 // CAS methods for fields
420 final boolean casNext(Node cmp, Node val) {
421 return UNSAFE.compareAndSwapObject(this, nextOffset, cmp, val);
422 }
423
424 final boolean casItem(Object cmp, Object val) {
425 assert cmp == null || cmp.getClass() != Node.class;
426 return UNSAFE.compareAndSwapObject(this, itemOffset, cmp, val);
427 }
428
429 /**
430 * Creates a new node. Uses relaxed write because item can only
431 * be seen if followed by CAS.
432 */
433 Node(Object item, boolean isData) {
434 UNSAFE.putObject(this, itemOffset, item); // relaxed write
435 this.isData = isData;
436 }
437
438 /**
439 * Links node to itself to avoid garbage retention. Called
440 * only after CASing head field, so uses relaxed write.
441 */
442 final void forgetNext() {
443 UNSAFE.putObject(this, nextOffset, this);
444 }
445
446 /**
447 * Sets item to self and waiter to null, to avoid garbage
448 * retention after matching or cancelling. Uses relaxed writes
449 * bacause order is already constrained in the only calling
450 * contexts: item is forgotten only after volatile/atomic
451 * mechanics that extract items. Similarly, clearing waiter
452 * follows either CAS or return from park (if ever parked;
453 * else we don't care).
454 */
455 final void forgetContents() {
456 UNSAFE.putObject(this, itemOffset, this);
457 UNSAFE.putObject(this, waiterOffset, null);
458 }
459
460 /**
461 * Returns true if this node has been matched, including the
462 * case of artificial matches due to cancellation.
463 */
464 final boolean isMatched() {
465 Object x = item;
466 return (x == this) || ((x == null) == isData);
467 }
468
469 /**
470 * Returns true if this is an unmatched request node.
471 */
472 final boolean isUnmatchedRequest() {
473 return !isData && item == null;
474 }
475
476 /**
477 * Returns true if a node with the given mode cannot be
478 * appended to this node because this node is unmatched and
479 * has opposite data mode.
480 */
481 final boolean cannotPrecede(boolean haveData) {
482 boolean d = isData;
483 Object x;
484 return d != haveData && (x = item) != this && (x != null) == d;
485 }
486
487 /**
488 * Tries to artificially match a data node -- used by remove.
489 */
490 final boolean tryMatchData() {
491 assert isData;
492 Object x = item;
493 if (x != null && x != this && casItem(x, null)) {
494 LockSupport.unpark(waiter);
495 return true;
496 }
497 return false;
498 }
499
500 // Unsafe mechanics
501 private static final sun.misc.Unsafe UNSAFE = getUnsafe();
502 private static final long nextOffset =
503 objectFieldOffset(UNSAFE, "next", Node.class);
504 private static final long itemOffset =
505 objectFieldOffset(UNSAFE, "item", Node.class);
506 private static final long waiterOffset =
507 objectFieldOffset(UNSAFE, "waiter", Node.class);
508
509 private static final long serialVersionUID = -3375979862319811754L;
510 }
511
512 /** head of the queue; null until first enqueue */
513 transient volatile Node head;
514
515 /** tail of the queue; null until first append */
516 private transient volatile Node tail;
517
518 /** The number of apparent failures to unsplice removed nodes */
519 private transient volatile int sweepVotes;
520
521 // CAS methods for fields
522 private boolean casTail(Node cmp, Node val) {
523 return UNSAFE.compareAndSwapObject(this, tailOffset, cmp, val);
524 }
525
526 private boolean casHead(Node cmp, Node val) {
527 return UNSAFE.compareAndSwapObject(this, headOffset, cmp, val);
528 }
529
530 private boolean casSweepVotes(int cmp, int val) {
531 return UNSAFE.compareAndSwapInt(this, sweepVotesOffset, cmp, val);
532 }
533
534 /*
535 * Possible values for "how" argument in xfer method.
536 */
537 private static final int NOW = 0; // for untimed poll, tryTransfer
538 private static final int ASYNC = 1; // for offer, put, add
539 private static final int SYNC = 2; // for transfer, take
540 private static final int TIMED = 3; // for timed poll, tryTransfer
541
542 @SuppressWarnings("unchecked")
543 static <E> E cast(Object item) {
544 assert item == null || item.getClass() != Node.class;
545 return (E) item;
546 }
547
548 /**
549 * Implements all queuing methods. See above for explanation.
550 *
551 * @param e the item or null for take
552 * @param haveData true if this is a put, else a take
553 * @param how NOW, ASYNC, SYNC, or TIMED
554 * @param nanos timeout in nanosecs, used only if mode is TIMED
555 * @return an item if matched, else e
556 * @throws NullPointerException if haveData mode but e is null
557 */
558 private E xfer(E e, boolean haveData, int how, long nanos) {
559 if (haveData && (e == null))
560 throw new NullPointerException();
561 Node s = null; // the node to append, if needed
562
563 retry: for (;;) { // restart on append race
564
565 for (Node h = head, p = h; p != null;) { // find & match first node
566 boolean isData = p.isData;
567 Object item = p.item;
568 if (item != p && (item != null) == isData) { // unmatched
569 if (isData == haveData) // can't match
570 break;
571 if (p.casItem(item, e)) { // match
572 for (Node q = p; q != h;) {
573 Node n = q.next; // update by 2 unless singleton
574 if (head == h && casHead(h, n == null? q : n)) {
575 h.forgetNext();
576 break;
577 } // advance and retry
578 if ((h = head) == null ||
579 (q = h.next) == null || !q.isMatched())
580 break; // unless slack < 2
581 }
582 LockSupport.unpark(p.waiter);
583 return this.<E>cast(item);
584 }
585 }
586 Node n = p.next;
587 p = (p != n) ? n : (h = head); // Use head if p offlist
588 }
589
590 if (how != NOW) { // No matches available
591 if (s == null)
592 s = new Node(e, haveData);
593 Node pred = tryAppend(s, haveData);
594 if (pred == null)
595 continue retry; // lost race vs opposite mode
596 if (how != ASYNC)
597 return awaitMatch(s, pred, e, (how == TIMED), nanos);
598 }
599 return e; // not waiting
600 }
601 }
602
603 /**
604 * Tries to append node s as tail.
605 *
606 * @param s the node to append
607 * @param haveData true if appending in data mode
608 * @return null on failure due to losing race with append in
609 * different mode, else s's predecessor, or s itself if no
610 * predecessor
611 */
612 private Node tryAppend(Node s, boolean haveData) {
613 for (Node t = tail, p = t;;) { // move p to last node and append
614 Node n, u; // temps for reads of next & tail
615 if (p == null && (p = head) == null) {
616 if (casHead(null, s))
617 return s; // initialize
618 }
619 else if (p.cannotPrecede(haveData))
620 return null; // lost race vs opposite mode
621 else if ((n = p.next) != null) // not last; keep traversing
622 p = p != t && t != (u = tail) ? (t = u) : // stale tail
623 (p != n) ? n : null; // restart if off list
624 else if (!p.casNext(null, s))
625 p = p.next; // re-read on CAS failure
626 else {
627 if (p != t) { // update if slack now >= 2
628 while ((tail != t || !casTail(t, s)) &&
629 (t = tail) != null &&
630 (s = t.next) != null && // advance and retry
631 (s = s.next) != null && s != t);
632 }
633 return p;
634 }
635 }
636 }
637
638 /**
639 * Spins/yields/blocks until node s is matched or caller gives up.
640 *
641 * @param s the waiting node
642 * @param pred the predecessor of s, or s itself if it has no
643 * predecessor, or null if unknown (the null case does not occur
644 * in any current calls but may in possible future extensions)
645 * @param e the comparison value for checking match
646 * @param timed if true, wait only until timeout elapses
647 * @param nanos timeout in nanosecs, used only if timed is true
648 * @return matched item, or e if unmatched on interrupt or timeout
649 */
650 private E awaitMatch(Node s, Node pred, E e, boolean timed, long nanos) {
651 long lastTime = timed ? System.nanoTime() : 0L;
652 Thread w = Thread.currentThread();
653 int spins = -1; // initialized after first item and cancel checks
654 ThreadLocalRandom randomYields = null; // bound if needed
655
656 for (;;) {
657 Object item = s.item;
658 if (item != e) { // matched
659 assert item != s;
660 s.forgetContents(); // avoid garbage
661 return this.<E>cast(item);
662 }
663 if ((w.isInterrupted() || (timed && nanos <= 0)) &&
664 s.casItem(e, s)) { // cancel
665 unsplice(pred, s);
666 return e;
667 }
668
669 if (spins < 0) { // establish spins at/near front
670 if ((spins = spinsFor(pred, s.isData)) > 0)
671 randomYields = ThreadLocalRandom.current();
672 }
673 else if (spins > 0) { // spin
674 --spins;
675 if (randomYields.nextInt(CHAINED_SPINS) == 0)
676 Thread.yield(); // occasionally yield
677 }
678 else if (s.waiter == null) {
679 s.waiter = w; // request unpark then recheck
680 }
681 else if (timed) {
682 long now = System.nanoTime();
683 if ((nanos -= now - lastTime) > 0)
684 LockSupport.parkNanos(this, nanos);
685 lastTime = now;
686 }
687 else {
688 LockSupport.park(this);
689 }
690 }
691 }
692
693 /**
694 * Returns spin/yield value for a node with given predecessor and
695 * data mode. See above for explanation.
696 */
697 private static int spinsFor(Node pred, boolean haveData) {
698 if (MP && pred != null) {
699 if (pred.isData != haveData) // phase change
700 return FRONT_SPINS + CHAINED_SPINS;
701 if (pred.isMatched()) // probably at front
702 return FRONT_SPINS;
703 if (pred.waiter == null) // pred apparently spinning
704 return CHAINED_SPINS;
705 }
706 return 0;
707 }
708
709 /* -------------- Traversal methods -------------- */
710
711 /**
712 * Returns the successor of p, or the head node if p.next has been
713 * linked to self, which will only be true if traversing with a
714 * stale pointer that is now off the list.
715 */
716 final Node succ(Node p) {
717 Node next = p.next;
718 return (p == next) ? head : next;
719 }
720
721 /**
722 * Returns the first unmatched node of the given mode, or null if
723 * none. Used by methods isEmpty, hasWaitingConsumer.
724 */
725 private Node firstOfMode(boolean isData) {
726 for (Node p = head; p != null; p = succ(p)) {
727 if (!p.isMatched())
728 return (p.isData == isData) ? p : null;
729 }
730 return null;
731 }
732
733 /**
734 * Returns the item in the first unmatched node with isData; or
735 * null if none. Used by peek.
736 */
737 private E firstDataItem() {
738 for (Node p = head; p != null; p = succ(p)) {
739 Object item = p.item;
740 if (p.isData) {
741 if (item != null && item != p)
742 return this.<E>cast(item);
743 }
744 else if (item == null)
745 return null;
746 }
747 return null;
748 }
749
750 /**
751 * Traverses and counts unmatched nodes of the given mode.
752 * Used by methods size and getWaitingConsumerCount.
753 */
754 private int countOfMode(boolean data) {
755 int count = 0;
756 for (Node p = head; p != null; ) {
757 if (!p.isMatched()) {
758 if (p.isData != data)
759 return 0;
760 if (++count == Integer.MAX_VALUE) // saturated
761 break;
762 }
763 Node n = p.next;
764 if (n != p)
765 p = n;
766 else {
767 count = 0;
768 p = head;
769 }
770 }
771 return count;
772 }
773
774 final class Itr implements Iterator<E> {
775 private Node nextNode; // next node to return item for
776 private E nextItem; // the corresponding item
777 private Node lastRet; // last returned node, to support remove
778 private Node lastPred; // predecessor to unlink lastRet
779
780 /**
781 * Moves to next node after prev, or first node if prev null.
782 */
783 private void advance(Node prev) {
784 lastPred = lastRet;
785 lastRet = prev;
786 for (Node p = (prev == null) ? head : succ(prev);
787 p != null; p = succ(p)) {
788 Object item = p.item;
789 if (p.isData) {
790 if (item != null && item != p) {
791 nextItem = LinkedTransferQueue.this.<E>cast(item);
792 nextNode = p;
793 return;
794 }
795 }
796 else if (item == null)
797 break;
798 }
799 nextNode = null;
800 }
801
802 Itr() {
803 advance(null);
804 }
805
806 public final boolean hasNext() {
807 return nextNode != null;
808 }
809
810 public final E next() {
811 Node p = nextNode;
812 if (p == null) throw new NoSuchElementException();
813 E e = nextItem;
814 advance(p);
815 return e;
816 }
817
818 public final void remove() {
819 Node p = lastRet;
820 if (p == null) throw new IllegalStateException();
821 if (p.tryMatchData())
822 unsplice(lastPred, p);
823 }
824 }
825
826 /* -------------- Removal methods -------------- */
827
828 /**
829 * Unsplices (now or later) the given deleted/cancelled node with
830 * the given predecessor.
831 *
832 * @param pred a node that was at one time known to be the
833 * predecessor of s, or null or s itself if s is/was at head
834 * @param s the node to be unspliced
835 */
836 final void unsplice(Node pred, Node s) {
837 s.forgetContents(); // forget unneeded fields
838 /*
839 * See above for rationale. Briefly: if pred still points to
840 * s, try to unlink s. If s cannot be unlinked, because it is
841 * trailing node or pred might be unlinked, and neither pred
842 * nor s are head or offlist, add to sweepVotes, and if enough
843 * votes have accumulated, sweep.
844 */
845 if (pred != null && pred != s && pred.next == s) {
846 Node n = s.next;
847 if (n == null ||
848 (n != s && pred.casNext(s, n) && pred.isMatched())) {
849 for (;;) { // check if at, or could be, head
850 Node h = head;
851 if (h == pred || h == s || h == null)
852 return; // at head or list empty
853 if (!h.isMatched())
854 break;
855 Node hn = h.next;
856 if (hn == null)
857 return; // now empty
858 if (hn != h && casHead(h, hn))
859 h.forgetNext(); // advance head
860 }
861 if (pred.next != pred && s.next != s) { // recheck if offlist
862 for (;;) { // sweep now if enough votes
863 int v = sweepVotes;
864 if (v < SWEEP_THRESHOLD) {
865 if (casSweepVotes(v, v + 1))
866 break;
867 }
868 else if (casSweepVotes(v, 0)) {
869 sweep();
870 break;
871 }
872 }
873 }
874 }
875 }
876 }
877
878 /**
879 * Unlinks matched nodes encountered in a traversal from head.
880 */
881 private void sweep() {
882 for (Node p = head, s, n; p != null && (s = p.next) != null; ) {
883 if (p == s) // stale
884 p = head;
885 else if (!s.isMatched())
886 p = s;
887 else if ((n = s.next) == null) // trailing node is pinned
888 break;
889 else
890 p.casNext(s, n);
891 }
892 }
893
894 /**
895 * Main implementation of remove(Object)
896 */
897 private boolean findAndRemove(Object e) {
898 if (e != null) {
899 for (Node pred = null, p = head; p != null; ) {
900 Object item = p.item;
901 if (p.isData) {
902 if (item != null && item != p && e.equals(item) &&
903 p.tryMatchData()) {
904 unsplice(pred, p);
905 return true;
906 }
907 }
908 else if (item == null)
909 break;
910 pred = p;
911 if ((p = p.next) == pred) { // stale
912 pred = null;
913 p = head;
914 }
915 }
916 }
917 return false;
918 }
919
920
921 /**
922 * Creates an initially empty {@code LinkedTransferQueue}.
923 */
924 public LinkedTransferQueue() {
925 }
926
927 /**
928 * Creates a {@code LinkedTransferQueue}
929 * initially containing the elements of the given collection,
930 * added in traversal order of the collection's iterator.
931 *
932 * @param c the collection of elements to initially contain
933 * @throws NullPointerException if the specified collection or any
934 * of its elements are null
935 */
936 public LinkedTransferQueue(Collection<? extends E> c) {
937 this();
938 addAll(c);
939 }
940
941 /**
942 * Inserts the specified element at the tail of this queue.
943 * As the queue is unbounded, this method will never block.
944 *
945 * @throws NullPointerException if the specified element is null
946 */
947 public void put(E e) {
948 xfer(e, true, ASYNC, 0);
949 }
950
951 /**
952 * Inserts the specified element at the tail of this queue.
953 * As the queue is unbounded, this method will never block or
954 * return {@code false}.
955 *
956 * @return {@code true} (as specified by
957 * {@link BlockingQueue#offer(Object,long,TimeUnit) BlockingQueue.offer})
958 * @throws NullPointerException if the specified element is null
959 */
960 public boolean offer(E e, long timeout, TimeUnit unit) {
961 xfer(e, true, ASYNC, 0);
962 return true;
963 }
964
965 /**
966 * Inserts the specified element at the tail of this queue.
967 * As the queue is unbounded, this method will never return {@code false}.
968 *
969 * @return {@code true} (as specified by
970 * {@link BlockingQueue#offer(Object) BlockingQueue.offer})
971 * @throws NullPointerException if the specified element is null
972 */
973 public boolean offer(E e) {
974 xfer(e, true, ASYNC, 0);
975 return true;
976 }
977
978 /**
979 * Inserts the specified element at the tail of this queue.
980 * As the queue is unbounded, this method will never throw
981 * {@link IllegalStateException} or return {@code false}.
982 *
983 * @return {@code true} (as specified by {@link Collection#add})
984 * @throws NullPointerException if the specified element is null
985 */
986 public boolean add(E e) {
987 xfer(e, true, ASYNC, 0);
988 return true;
989 }
990
991 /**
992 * Transfers the element to a waiting consumer immediately, if possible.
993 *
994 * <p>More precisely, transfers the specified element immediately
995 * if there exists a consumer already waiting to receive it (in
996 * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
997 * otherwise returning {@code false} without enqueuing the element.
998 *
999 * @throws NullPointerException if the specified element is null
1000 */
1001 public boolean tryTransfer(E e) {
1002 return xfer(e, true, NOW, 0) == null;
1003 }
1004
1005 /**
1006 * Transfers the element to a consumer, waiting if necessary to do so.
1007 *
1008 * <p>More precisely, transfers the specified element immediately
1009 * if there exists a consumer already waiting to receive it (in
1010 * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
1011 * else inserts the specified element at the tail of this queue
1012 * and waits until the element is received by a consumer.
1013 *
1014 * @throws NullPointerException if the specified element is null
1015 */
1016 public void transfer(E e) throws InterruptedException {
1017 if (xfer(e, true, SYNC, 0) != null) {
1018 Thread.interrupted(); // failure possible only due to interrupt
1019 throw new InterruptedException();
1020 }
1021 }
1022
1023 /**
1024 * Transfers the element to a consumer if it is possible to do so
1025 * before the timeout elapses.
1026 *
1027 * <p>More precisely, transfers the specified element immediately
1028 * if there exists a consumer already waiting to receive it (in
1029 * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
1030 * else inserts the specified element at the tail of this queue
1031 * and waits until the element is received by a consumer,
1032 * returning {@code false} if the specified wait time elapses
1033 * before the element can be transferred.
1034 *
1035 * @throws NullPointerException if the specified element is null
1036 */
1037 public boolean tryTransfer(E e, long timeout, TimeUnit unit)
1038 throws InterruptedException {
1039 if (xfer(e, true, TIMED, unit.toNanos(timeout)) == null)
1040 return true;
1041 if (!Thread.interrupted())
1042 return false;
1043 throw new InterruptedException();
1044 }
1045
1046 public E take() throws InterruptedException {
1047 E e = xfer(null, false, SYNC, 0);
1048 if (e != null)
1049 return e;
1050 Thread.interrupted();
1051 throw new InterruptedException();
1052 }
1053
1054 public E poll(long timeout, TimeUnit unit) throws InterruptedException {
1055 E e = xfer(null, false, TIMED, unit.toNanos(timeout));
1056 if (e != null || !Thread.interrupted())
1057 return e;
1058 throw new InterruptedException();
1059 }
1060
1061 public E poll() {
1062 return xfer(null, false, NOW, 0);
1063 }
1064
1065 /**
1066 * @throws NullPointerException {@inheritDoc}
1067 * @throws IllegalArgumentException {@inheritDoc}
1068 */
1069 public int drainTo(Collection<? super E> c) {
1070 if (c == null)
1071 throw new NullPointerException();
1072 if (c == this)
1073 throw new IllegalArgumentException();
1074 int n = 0;
1075 E e;
1076 while ( (e = poll()) != null) {
1077 c.add(e);
1078 ++n;
1079 }
1080 return n;
1081 }
1082
1083 /**
1084 * @throws NullPointerException {@inheritDoc}
1085 * @throws IllegalArgumentException {@inheritDoc}
1086 */
1087 public int drainTo(Collection<? super E> c, int maxElements) {
1088 if (c == null)
1089 throw new NullPointerException();
1090 if (c == this)
1091 throw new IllegalArgumentException();
1092 int n = 0;
1093 E e;
1094 while (n < maxElements && (e = poll()) != null) {
1095 c.add(e);
1096 ++n;
1097 }
1098 return n;
1099 }
1100
1101 /**
1102 * Returns an iterator over the elements in this queue in proper
1103 * sequence, from head to tail.
1104 *
1105 * <p>The returned iterator is a "weakly consistent" iterator that
1106 * will never throw
1107 * {@link ConcurrentModificationException ConcurrentModificationException},
1108 * and guarantees to traverse elements as they existed upon
1109 * construction of the iterator, and may (but is not guaranteed
1110 * to) reflect any modifications subsequent to construction.
1111 *
1112 * @return an iterator over the elements in this queue in proper sequence
1113 */
1114 public Iterator<E> iterator() {
1115 return new Itr();
1116 }
1117
1118 public E peek() {
1119 return firstDataItem();
1120 }
1121
1122 /**
1123 * Returns {@code true} if this queue contains no elements.
1124 *
1125 * @return {@code true} if this queue contains no elements
1126 */
1127 public boolean isEmpty() {
1128 for (Node p = head; p != null; p = succ(p)) {
1129 if (!p.isMatched())
1130 return !p.isData;
1131 }
1132 return true;
1133 }
1134
1135 public boolean hasWaitingConsumer() {
1136 return firstOfMode(false) != null;
1137 }
1138
1139 /**
1140 * Returns the number of elements in this queue. If this queue
1141 * contains more than {@code Integer.MAX_VALUE} elements, returns
1142 * {@code Integer.MAX_VALUE}.
1143 *
1144 * <p>Beware that, unlike in most collections, this method is
1145 * <em>NOT</em> a constant-time operation. Because of the
1146 * asynchronous nature of these queues, determining the current
1147 * number of elements requires an O(n) traversal.
1148 *
1149 * @return the number of elements in this queue
1150 */
1151 public int size() {
1152 return countOfMode(true);
1153 }
1154
1155 public int getWaitingConsumerCount() {
1156 return countOfMode(false);
1157 }
1158
1159 /**
1160 * Removes a single instance of the specified element from this queue,
1161 * if it is present. More formally, removes an element {@code e} such
1162 * that {@code o.equals(e)}, if this queue contains one or more such
1163 * elements.
1164 * Returns {@code true} if this queue contained the specified element
1165 * (or equivalently, if this queue changed as a result of the call).
1166 *
1167 * @param o element to be removed from this queue, if present
1168 * @return {@code true} if this queue changed as a result of the call
1169 */
1170 public boolean remove(Object o) {
1171 return findAndRemove(o);
1172 }
1173
1174 /**
1175 * Always returns {@code Integer.MAX_VALUE} because a
1176 * {@code LinkedTransferQueue} is not capacity constrained.
1177 *
1178 * @return {@code Integer.MAX_VALUE} (as specified by
1179 * {@link BlockingQueue#remainingCapacity()})
1180 */
1181 public int remainingCapacity() {
1182 return Integer.MAX_VALUE;
1183 }
1184
1185 /**
1186 * Saves the state to a stream (that is, serializes it).
1187 *
1188 * @serialData All of the elements (each an {@code E}) in
1189 * the proper order, followed by a null
1190 * @param s the stream
1191 */
1192 private void writeObject(java.io.ObjectOutputStream s)
1193 throws java.io.IOException {
1194 s.defaultWriteObject();
1195 for (E e : this)
1196 s.writeObject(e);
1197 // Use trailing null as sentinel
1198 s.writeObject(null);
1199 }
1200
1201 /**
1202 * Reconstitutes the Queue instance from a stream (that is,
1203 * deserializes it).
1204 *
1205 * @param s the stream
1206 */
1207 private void readObject(java.io.ObjectInputStream s)
1208 throws java.io.IOException, ClassNotFoundException {
1209 s.defaultReadObject();
1210 for (;;) {
1211 @SuppressWarnings("unchecked") E item = (E) s.readObject();
1212 if (item == null)
1213 break;
1214 else
1215 offer(item);
1216 }
1217 }
1218
1219 // Unsafe mechanics
1220
1221 private static final sun.misc.Unsafe UNSAFE = getUnsafe();
1222 private static final long headOffset =
1223 objectFieldOffset(UNSAFE, "head", LinkedTransferQueue.class);
1224 private static final long tailOffset =
1225 objectFieldOffset(UNSAFE, "tail", LinkedTransferQueue.class);
1226 private static final long sweepVotesOffset =
1227 objectFieldOffset(UNSAFE, "sweepVotes", LinkedTransferQueue.class);
1228
1229 static long objectFieldOffset(sun.misc.Unsafe UNSAFE,
1230 String field, Class<?> klazz) {
1231 try {
1232 return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
1233 } catch (NoSuchFieldException e) {
1234 // Convert Exception to corresponding Error
1235 NoSuchFieldError error = new NoSuchFieldError(field);
1236 error.initCause(e);
1237 throw error;
1238 }
1239 }
1240
1241 /**
1242 * Returns a sun.misc.Unsafe. Suitable for use in a 3rd party package.
1243 * Replace with a simple call to Unsafe.getUnsafe when integrating
1244 * into a jdk.
1245 *
1246 * @return a sun.misc.Unsafe
1247 */
1248 static sun.misc.Unsafe getUnsafe() {
1249 try {
1250 return sun.misc.Unsafe.getUnsafe();
1251 } catch (SecurityException se) {
1252 try {
1253 return java.security.AccessController.doPrivileged
1254 (new java.security
1255 .PrivilegedExceptionAction<sun.misc.Unsafe>() {
1256 public sun.misc.Unsafe run() throws Exception {
1257 java.lang.reflect.Field f = sun.misc
1258 .Unsafe.class.getDeclaredField("theUnsafe");
1259 f.setAccessible(true);
1260 return (sun.misc.Unsafe) f.get(null);
1261 }});
1262 } catch (java.security.PrivilegedActionException e) {
1263 throw new RuntimeException("Could not initialize intrinsics",
1264 e.getCause());
1265 }
1266 }
1267 }
1268
1269 }