ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/LinkedTransferQueue.java
Revision: 1.75
Committed: Wed Sep 1 21:55:34 2010 UTC (13 years, 8 months ago) by jsr166
Branch: MAIN
Changes since 1.74: +12 -12 lines
Log Message:
very small doc improvement

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/licenses/publicdomain
5 */
6
7 package jsr166y;
8
9 import java.util.concurrent.*;
10
11 import java.util.AbstractQueue;
12 import java.util.Collection;
13 import java.util.ConcurrentModificationException;
14 import java.util.Iterator;
15 import java.util.NoSuchElementException;
16 import java.util.Queue;
17 import java.util.concurrent.locks.LockSupport;
18
19 /**
20 * An unbounded {@link TransferQueue} based on linked nodes.
21 * This queue orders elements FIFO (first-in-first-out) with respect
22 * to any given producer. The <em>head</em> of the queue is that
23 * element that has been on the queue the longest time for some
24 * producer. The <em>tail</em> of the queue is that element that has
25 * been on the queue the shortest time for some producer.
26 *
27 * <p>Beware that, unlike in most collections, the {@code size}
28 * method is <em>NOT</em> a constant-time operation. Because of the
29 * asynchronous nature of these queues, determining the current number
30 * of elements requires a traversal of the elements.
31 *
32 * <p>This class and its iterator implement all of the
33 * <em>optional</em> methods of the {@link Collection} and {@link
34 * Iterator} interfaces.
35 *
36 * <p>Memory consistency effects: As with other concurrent
37 * collections, actions in a thread prior to placing an object into a
38 * {@code LinkedTransferQueue}
39 * <a href="package-summary.html#MemoryVisibility"><i>happen-before</i></a>
40 * actions subsequent to the access or removal of that element from
41 * the {@code LinkedTransferQueue} in another thread.
42 *
43 * <p>This class is a member of the
44 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
45 * Java Collections Framework</a>.
46 *
47 * @since 1.7
48 * @author Doug Lea
49 * @param <E> the type of elements held in this collection
50 */
51 public class LinkedTransferQueue<E> extends AbstractQueue<E>
52 implements TransferQueue<E>, java.io.Serializable {
53 private static final long serialVersionUID = -3223113410248163686L;
54
55 /*
56 * *** Overview of Dual Queues with Slack ***
57 *
58 * Dual Queues, introduced by Scherer and Scott
59 * (http://www.cs.rice.edu/~wns1/papers/2004-DISC-DDS.pdf) are
60 * (linked) queues in which nodes may represent either data or
61 * requests. When a thread tries to enqueue a data node, but
62 * encounters a request node, it instead "matches" and removes it;
63 * and vice versa for enqueuing requests. Blocking Dual Queues
64 * arrange that threads enqueuing unmatched requests block until
65 * other threads provide the match. Dual Synchronous Queues (see
66 * Scherer, Lea, & Scott
67 * http://www.cs.rochester.edu/u/scott/papers/2009_Scherer_CACM_SSQ.pdf)
68 * additionally arrange that threads enqueuing unmatched data also
69 * block. Dual Transfer Queues support all of these modes, as
70 * dictated by callers.
71 *
72 * A FIFO dual queue may be implemented using a variation of the
73 * Michael & Scott (M&S) lock-free queue algorithm
74 * (http://www.cs.rochester.edu/u/scott/papers/1996_PODC_queues.pdf).
75 * It maintains two pointer fields, "head", pointing to a
76 * (matched) node that in turn points to the first actual
77 * (unmatched) queue node (or null if empty); and "tail" that
78 * points to the last node on the queue (or again null if
79 * empty). For example, here is a possible queue with four data
80 * elements:
81 *
82 * head tail
83 * | |
84 * v v
85 * M -> U -> U -> U -> U
86 *
87 * The M&S queue algorithm is known to be prone to scalability and
88 * overhead limitations when maintaining (via CAS) these head and
89 * tail pointers. This has led to the development of
90 * contention-reducing variants such as elimination arrays (see
91 * Moir et al http://portal.acm.org/citation.cfm?id=1074013) and
92 * optimistic back pointers (see Ladan-Mozes & Shavit
93 * http://people.csail.mit.edu/edya/publications/OptimisticFIFOQueue-journal.pdf).
94 * However, the nature of dual queues enables a simpler tactic for
95 * improving M&S-style implementations when dual-ness is needed.
96 *
97 * In a dual queue, each node must atomically maintain its match
98 * status. While there are other possible variants, we implement
99 * this here as: for a data-mode node, matching entails CASing an
100 * "item" field from a non-null data value to null upon match, and
101 * vice-versa for request nodes, CASing from null to a data
102 * value. (Note that the linearization properties of this style of
103 * queue are easy to verify -- elements are made available by
104 * linking, and unavailable by matching.) Compared to plain M&S
105 * queues, this property of dual queues requires one additional
106 * successful atomic operation per enq/deq pair. But it also
107 * enables lower cost variants of queue maintenance mechanics. (A
108 * variation of this idea applies even for non-dual queues that
109 * support deletion of interior elements, such as
110 * j.u.c.ConcurrentLinkedQueue.)
111 *
112 * Once a node is matched, its match status can never again
113 * change. We may thus arrange that the linked list of them
114 * contain a prefix of zero or more matched nodes, followed by a
115 * suffix of zero or more unmatched nodes. (Note that we allow
116 * both the prefix and suffix to be zero length, which in turn
117 * means that we do not use a dummy header.) If we were not
118 * concerned with either time or space efficiency, we could
119 * correctly perform enqueue and dequeue operations by traversing
120 * from a pointer to the initial node; CASing the item of the
121 * first unmatched node on match and CASing the next field of the
122 * trailing node on appends. (Plus some special-casing when
123 * initially empty). While this would be a terrible idea in
124 * itself, it does have the benefit of not requiring ANY atomic
125 * updates on head/tail fields.
126 *
127 * We introduce here an approach that lies between the extremes of
128 * never versus always updating queue (head and tail) pointers.
129 * This offers a tradeoff between sometimes requiring extra
130 * traversal steps to locate the first and/or last unmatched
131 * nodes, versus the reduced overhead and contention of fewer
132 * updates to queue pointers. For example, a possible snapshot of
133 * a queue is:
134 *
135 * head tail
136 * | |
137 * v v
138 * M -> M -> U -> U -> U -> U
139 *
140 * The best value for this "slack" (the targeted maximum distance
141 * between the value of "head" and the first unmatched node, and
142 * similarly for "tail") is an empirical matter. We have found
143 * that using very small constants in the range of 1-3 work best
144 * over a range of platforms. Larger values introduce increasing
145 * costs of cache misses and risks of long traversal chains, while
146 * smaller values increase CAS contention and overhead.
147 *
148 * Dual queues with slack differ from plain M&S dual queues by
149 * virtue of only sometimes updating head or tail pointers when
150 * matching, appending, or even traversing nodes; in order to
151 * maintain a targeted slack. The idea of "sometimes" may be
152 * operationalized in several ways. The simplest is to use a
153 * per-operation counter incremented on each traversal step, and
154 * to try (via CAS) to update the associated queue pointer
155 * whenever the count exceeds a threshold. Another, that requires
156 * more overhead, is to use random number generators to update
157 * with a given probability per traversal step.
158 *
159 * In any strategy along these lines, because CASes updating
160 * fields may fail, the actual slack may exceed targeted
161 * slack. However, they may be retried at any time to maintain
162 * targets. Even when using very small slack values, this
163 * approach works well for dual queues because it allows all
164 * operations up to the point of matching or appending an item
165 * (hence potentially allowing progress by another thread) to be
166 * read-only, thus not introducing any further contention. As
167 * described below, we implement this by performing slack
168 * maintenance retries only after these points.
169 *
170 * As an accompaniment to such techniques, traversal overhead can
171 * be further reduced without increasing contention of head
172 * pointer updates: Threads may sometimes shortcut the "next" link
173 * path from the current "head" node to be closer to the currently
174 * known first unmatched node, and similarly for tail. Again, this
175 * may be triggered with using thresholds or randomization.
176 *
177 * These ideas must be further extended to avoid unbounded amounts
178 * of costly-to-reclaim garbage caused by the sequential "next"
179 * links of nodes starting at old forgotten head nodes: As first
180 * described in detail by Boehm
181 * (http://portal.acm.org/citation.cfm?doid=503272.503282) if a GC
182 * delays noticing that any arbitrarily old node has become
183 * garbage, all newer dead nodes will also be unreclaimed.
184 * (Similar issues arise in non-GC environments.) To cope with
185 * this in our implementation, upon CASing to advance the head
186 * pointer, we set the "next" link of the previous head to point
187 * only to itself; thus limiting the length of connected dead lists.
188 * (We also take similar care to wipe out possibly garbage
189 * retaining values held in other Node fields.) However, doing so
190 * adds some further complexity to traversal: If any "next"
191 * pointer links to itself, it indicates that the current thread
192 * has lagged behind a head-update, and so the traversal must
193 * continue from the "head". Traversals trying to find the
194 * current tail starting from "tail" may also encounter
195 * self-links, in which case they also continue at "head".
196 *
197 * It is tempting in slack-based scheme to not even use CAS for
198 * updates (similarly to Ladan-Mozes & Shavit). However, this
199 * cannot be done for head updates under the above link-forgetting
200 * mechanics because an update may leave head at a detached node.
201 * And while direct writes are possible for tail updates, they
202 * increase the risk of long retraversals, and hence long garbage
203 * chains, which can be much more costly than is worthwhile
204 * considering that the cost difference of performing a CAS vs
205 * write is smaller when they are not triggered on each operation
206 * (especially considering that writes and CASes equally require
207 * additional GC bookkeeping ("write barriers") that are sometimes
208 * more costly than the writes themselves because of contention).
209 *
210 * *** Overview of implementation ***
211 *
212 * We use a threshold-based approach to updates, with a slack
213 * threshold of two -- that is, we update head/tail when the
214 * current pointer appears to be two or more steps away from the
215 * first/last node. The slack value is hard-wired: a path greater
216 * than one is naturally implemented by checking equality of
217 * traversal pointers except when the list has only one element,
218 * in which case we keep slack threshold at one. Avoiding tracking
219 * explicit counts across method calls slightly simplifies an
220 * already-messy implementation. Using randomization would
221 * probably work better if there were a low-quality dirt-cheap
222 * per-thread one available, but even ThreadLocalRandom is too
223 * heavy for these purposes.
224 *
225 * With such a small slack threshold value, it is not worthwhile
226 * to augment this with path short-circuiting (i.e., unsplicing
227 * interior nodes) except in the case of cancellation/removal (see
228 * below).
229 *
230 * We allow both the head and tail fields to be null before any
231 * nodes are enqueued; initializing upon first append. This
232 * simplifies some other logic, as well as providing more
233 * efficient explicit control paths instead of letting JVMs insert
234 * implicit NullPointerExceptions when they are null. While not
235 * currently fully implemented, we also leave open the possibility
236 * of re-nulling these fields when empty (which is complicated to
237 * arrange, for little benefit.)
238 *
239 * All enqueue/dequeue operations are handled by the single method
240 * "xfer" with parameters indicating whether to act as some form
241 * of offer, put, poll, take, or transfer (each possibly with
242 * timeout). The relative complexity of using one monolithic
243 * method outweighs the code bulk and maintenance problems of
244 * using separate methods for each case.
245 *
246 * Operation consists of up to three phases. The first is
247 * implemented within method xfer, the second in tryAppend, and
248 * the third in method awaitMatch.
249 *
250 * 1. Try to match an existing node
251 *
252 * Starting at head, skip already-matched nodes until finding
253 * an unmatched node of opposite mode, if one exists, in which
254 * case matching it and returning, also if necessary updating
255 * head to one past the matched node (or the node itself if the
256 * list has no other unmatched nodes). If the CAS misses, then
257 * a loop retries advancing head by two steps until either
258 * success or the slack is at most two. By requiring that each
259 * attempt advances head by two (if applicable), we ensure that
260 * the slack does not grow without bound. Traversals also check
261 * if the initial head is now off-list, in which case they
262 * start at the new head.
263 *
264 * If no candidates are found and the call was untimed
265 * poll/offer, (argument "how" is NOW) return.
266 *
267 * 2. Try to append a new node (method tryAppend)
268 *
269 * Starting at current tail pointer, find the actual last node
270 * and try to append a new node (or if head was null, establish
271 * the first node). Nodes can be appended only if their
272 * predecessors are either already matched or are of the same
273 * mode. If we detect otherwise, then a new node with opposite
274 * mode must have been appended during traversal, so we must
275 * restart at phase 1. The traversal and update steps are
276 * otherwise similar to phase 1: Retrying upon CAS misses and
277 * checking for staleness. In particular, if a self-link is
278 * encountered, then we can safely jump to a node on the list
279 * by continuing the traversal at current head.
280 *
281 * On successful append, if the call was ASYNC, return.
282 *
283 * 3. Await match or cancellation (method awaitMatch)
284 *
285 * Wait for another thread to match node; instead cancelling if
286 * the current thread was interrupted or the wait timed out. On
287 * multiprocessors, we use front-of-queue spinning: If a node
288 * appears to be the first unmatched node in the queue, it
289 * spins a bit before blocking. In either case, before blocking
290 * it tries to unsplice any nodes between the current "head"
291 * and the first unmatched node.
292 *
293 * Front-of-queue spinning vastly improves performance of
294 * heavily contended queues. And so long as it is relatively
295 * brief and "quiet", spinning does not much impact performance
296 * of less-contended queues. During spins threads check their
297 * interrupt status and generate a thread-local random number
298 * to decide to occasionally perform a Thread.yield. While
299 * yield has underdefined specs, we assume that might it help,
300 * and will not hurt in limiting impact of spinning on busy
301 * systems. We also use smaller (1/2) spins for nodes that are
302 * not known to be front but whose predecessors have not
303 * blocked -- these "chained" spins avoid artifacts of
304 * front-of-queue rules which otherwise lead to alternating
305 * nodes spinning vs blocking. Further, front threads that
306 * represent phase changes (from data to request node or vice
307 * versa) compared to their predecessors receive additional
308 * chained spins, reflecting longer paths typically required to
309 * unblock threads during phase changes.
310 *
311 *
312 * ** Unlinking removed interior nodes **
313 *
314 * In addition to minimizing garbage retention via self-linking
315 * described above, we also unlink removed interior nodes. These
316 * may arise due to timed out or interrupted waits, or calls to
317 * remove(x) or Iterator.remove. Normally, given a node that was
318 * at one time known to be the predecessor of some node s that is
319 * to be removed, we can unsplice s by CASing the next field of
320 * its predecessor if it still points to s (otherwise s must
321 * already have been removed or is now offlist). But there are two
322 * situations in which we cannot guarantee to make node s
323 * unreachable in this way: (1) If s is the trailing node of list
324 * (i.e., with null next), then it is pinned as the target node
325 * for appends, so can only be removed later after other nodes are
326 * appended. (2) We cannot necessarily unlink s given a
327 * predecessor node that is matched (including the case of being
328 * cancelled): the predecessor may already be unspliced, in which
329 * case some previous reachable node may still point to s.
330 * (For further explanation see Herlihy & Shavit "The Art of
331 * Multiprocessor Programming" chapter 9). Although, in both
332 * cases, we can rule out the need for further action if either s
333 * or its predecessor are (or can be made to be) at, or fall off
334 * from, the head of list.
335 *
336 * Without taking these into account, it would be possible for an
337 * unbounded number of supposedly removed nodes to remain
338 * reachable. Situations leading to such buildup are uncommon but
339 * can occur in practice; for example when a series of short timed
340 * calls to poll repeatedly time out but never otherwise fall off
341 * the list because of an untimed call to take at the front of the
342 * queue.
343 *
344 * When these cases arise, rather than always retraversing the
345 * entire list to find an actual predecessor to unlink (which
346 * won't help for case (1) anyway), we record a conservative
347 * estimate of possible unsplice failures (in "sweepVotes").
348 * We trigger a full sweep when the estimate exceeds a threshold
349 * ("SWEEP_THRESHOLD") indicating the maximum number of estimated
350 * removal failures to tolerate before sweeping through, unlinking
351 * cancelled nodes that were not unlinked upon initial removal.
352 * We perform sweeps by the thread hitting threshold (rather than
353 * background threads or by spreading work to other threads)
354 * because in the main contexts in which removal occurs, the
355 * caller is already timed-out, cancelled, or performing a
356 * potentially O(n) operation (e.g. remove(x)), none of which are
357 * time-critical enough to warrant the overhead that alternatives
358 * would impose on other threads.
359 *
360 * Because the sweepVotes estimate is conservative, and because
361 * nodes become unlinked "naturally" as they fall off the head of
362 * the queue, and because we allow votes to accumulate even while
363 * sweeps are in progress, there are typically significantly fewer
364 * such nodes than estimated. Choice of a threshold value
365 * balances the likelihood of wasted effort and contention, versus
366 * providing a worst-case bound on retention of interior nodes in
367 * quiescent queues. The value defined below was chosen
368 * empirically to balance these under various timeout scenarios.
369 *
370 * Note that we cannot self-link unlinked interior nodes during
371 * sweeps. However, the associated garbage chains terminate when
372 * some successor ultimately falls off the head of the list and is
373 * self-linked.
374 */
375
376 /** True if on multiprocessor */
377 private static final boolean MP =
378 Runtime.getRuntime().availableProcessors() > 1;
379
380 /**
381 * The number of times to spin (with randomly interspersed calls
382 * to Thread.yield) on multiprocessor before blocking when a node
383 * is apparently the first waiter in the queue. See above for
384 * explanation. Must be a power of two. The value is empirically
385 * derived -- it works pretty well across a variety of processors,
386 * numbers of CPUs, and OSes.
387 */
388 private static final int FRONT_SPINS = 1 << 7;
389
390 /**
391 * The number of times to spin before blocking when a node is
392 * preceded by another node that is apparently spinning. Also
393 * serves as an increment to FRONT_SPINS on phase changes, and as
394 * base average frequency for yielding during spins. Must be a
395 * power of two.
396 */
397 private static final int CHAINED_SPINS = FRONT_SPINS >>> 1;
398
399 /**
400 * The maximum number of estimated removal failures (sweepVotes)
401 * to tolerate before sweeping through the queue unlinking
402 * cancelled nodes that were not unlinked upon initial
403 * removal. See above for explanation. The value must be at least
404 * two to avoid useless sweeps when removing trailing nodes.
405 */
406 static final int SWEEP_THRESHOLD = 32;
407
408 /**
409 * Queue nodes. Uses Object, not E, for items to allow forgetting
410 * them after use. Relies heavily on Unsafe mechanics to minimize
411 * unnecessary ordering constraints: Writes that are intrinsically
412 * ordered wrt other accesses or CASes use simple relaxed forms.
413 */
414 static final class Node {
415 final boolean isData; // false if this is a request node
416 volatile Object item; // initially non-null if isData; CASed to match
417 volatile Node next;
418 volatile Thread waiter; // null until waiting
419
420 // CAS methods for fields
421 final boolean casNext(Node cmp, Node val) {
422 return UNSAFE.compareAndSwapObject(this, nextOffset, cmp, val);
423 }
424
425 final boolean casItem(Object cmp, Object val) {
426 // assert cmp == null || cmp.getClass() != Node.class;
427 return UNSAFE.compareAndSwapObject(this, itemOffset, cmp, val);
428 }
429
430 /**
431 * Creates a new node. Uses relaxed write because item can only
432 * be seen if followed by CAS.
433 */
434 Node(Object item, boolean isData) {
435 UNSAFE.putObject(this, itemOffset, item); // relaxed write
436 this.isData = isData;
437 }
438
439 /**
440 * Links node to itself to avoid garbage retention. Called
441 * only after CASing head field, so uses relaxed write.
442 */
443 final void forgetNext() {
444 UNSAFE.putObject(this, nextOffset, this);
445 }
446
447 /**
448 * Sets item to self and waiter to null, to avoid garbage
449 * retention after matching or cancelling. Uses relaxed writes
450 * because order is already constrained in the only calling
451 * contexts: item is forgotten only after volatile/atomic
452 * mechanics that extract items. Similarly, clearing waiter
453 * follows either CAS or return from park (if ever parked;
454 * else we don't care).
455 */
456 final void forgetContents() {
457 UNSAFE.putObject(this, itemOffset, this);
458 UNSAFE.putObject(this, waiterOffset, null);
459 }
460
461 /**
462 * Returns true if this node has been matched, including the
463 * case of artificial matches due to cancellation.
464 */
465 final boolean isMatched() {
466 Object x = item;
467 return (x == this) || ((x == null) == isData);
468 }
469
470 /**
471 * Returns true if this is an unmatched request node.
472 */
473 final boolean isUnmatchedRequest() {
474 return !isData && item == null;
475 }
476
477 /**
478 * Returns true if a node with the given mode cannot be
479 * appended to this node because this node is unmatched and
480 * has opposite data mode.
481 */
482 final boolean cannotPrecede(boolean haveData) {
483 boolean d = isData;
484 Object x;
485 return d != haveData && (x = item) != this && (x != null) == d;
486 }
487
488 /**
489 * Tries to artificially match a data node -- used by remove.
490 */
491 final boolean tryMatchData() {
492 // assert isData;
493 Object x = item;
494 if (x != null && x != this && casItem(x, null)) {
495 LockSupport.unpark(waiter);
496 return true;
497 }
498 return false;
499 }
500
501 // Unsafe mechanics
502 private static final sun.misc.Unsafe UNSAFE = getUnsafe();
503 private static final long nextOffset =
504 objectFieldOffset(UNSAFE, "next", Node.class);
505 private static final long itemOffset =
506 objectFieldOffset(UNSAFE, "item", Node.class);
507 private static final long waiterOffset =
508 objectFieldOffset(UNSAFE, "waiter", Node.class);
509
510 private static final long serialVersionUID = -3375979862319811754L;
511 }
512
513 /** head of the queue; null until first enqueue */
514 transient volatile Node head;
515
516 /** tail of the queue; null until first append */
517 private transient volatile Node tail;
518
519 /** The number of apparent failures to unsplice removed nodes */
520 private transient volatile int sweepVotes;
521
522 // CAS methods for fields
523 private boolean casTail(Node cmp, Node val) {
524 return UNSAFE.compareAndSwapObject(this, tailOffset, cmp, val);
525 }
526
527 private boolean casHead(Node cmp, Node val) {
528 return UNSAFE.compareAndSwapObject(this, headOffset, cmp, val);
529 }
530
531 private boolean casSweepVotes(int cmp, int val) {
532 return UNSAFE.compareAndSwapInt(this, sweepVotesOffset, cmp, val);
533 }
534
535 /*
536 * Possible values for "how" argument in xfer method.
537 */
538 private static final int NOW = 0; // for untimed poll, tryTransfer
539 private static final int ASYNC = 1; // for offer, put, add
540 private static final int SYNC = 2; // for transfer, take
541 private static final int TIMED = 3; // for timed poll, tryTransfer
542
543 @SuppressWarnings("unchecked")
544 static <E> E cast(Object item) {
545 // assert item == null || item.getClass() != Node.class;
546 return (E) item;
547 }
548
549 /**
550 * Implements all queuing methods. See above for explanation.
551 *
552 * @param e the item or null for take
553 * @param haveData true if this is a put, else a take
554 * @param how NOW, ASYNC, SYNC, or TIMED
555 * @param nanos timeout in nanosecs, used only if mode is TIMED
556 * @return an item if matched, else e
557 * @throws NullPointerException if haveData mode but e is null
558 */
559 private E xfer(E e, boolean haveData, int how, long nanos) {
560 if (haveData && (e == null))
561 throw new NullPointerException();
562 Node s = null; // the node to append, if needed
563
564 retry: for (;;) { // restart on append race
565
566 for (Node h = head, p = h; p != null;) { // find & match first node
567 boolean isData = p.isData;
568 Object item = p.item;
569 if (item != p && (item != null) == isData) { // unmatched
570 if (isData == haveData) // can't match
571 break;
572 if (p.casItem(item, e)) { // match
573 for (Node q = p; q != h;) {
574 Node n = q.next; // update by 2 unless singleton
575 if (head == h && casHead(h, n == null? q : n)) {
576 h.forgetNext();
577 break;
578 } // advance and retry
579 if ((h = head) == null ||
580 (q = h.next) == null || !q.isMatched())
581 break; // unless slack < 2
582 }
583 LockSupport.unpark(p.waiter);
584 return this.<E>cast(item);
585 }
586 }
587 Node n = p.next;
588 p = (p != n) ? n : (h = head); // Use head if p offlist
589 }
590
591 if (how != NOW) { // No matches available
592 if (s == null)
593 s = new Node(e, haveData);
594 Node pred = tryAppend(s, haveData);
595 if (pred == null)
596 continue retry; // lost race vs opposite mode
597 if (how != ASYNC)
598 return awaitMatch(s, pred, e, (how == TIMED), nanos);
599 }
600 return e; // not waiting
601 }
602 }
603
604 /**
605 * Tries to append node s as tail.
606 *
607 * @param s the node to append
608 * @param haveData true if appending in data mode
609 * @return null on failure due to losing race with append in
610 * different mode, else s's predecessor, or s itself if no
611 * predecessor
612 */
613 private Node tryAppend(Node s, boolean haveData) {
614 for (Node t = tail, p = t;;) { // move p to last node and append
615 Node n, u; // temps for reads of next & tail
616 if (p == null && (p = head) == null) {
617 if (casHead(null, s))
618 return s; // initialize
619 }
620 else if (p.cannotPrecede(haveData))
621 return null; // lost race vs opposite mode
622 else if ((n = p.next) != null) // not last; keep traversing
623 p = p != t && t != (u = tail) ? (t = u) : // stale tail
624 (p != n) ? n : null; // restart if off list
625 else if (!p.casNext(null, s))
626 p = p.next; // re-read on CAS failure
627 else {
628 if (p != t) { // update if slack now >= 2
629 while ((tail != t || !casTail(t, s)) &&
630 (t = tail) != null &&
631 (s = t.next) != null && // advance and retry
632 (s = s.next) != null && s != t);
633 }
634 return p;
635 }
636 }
637 }
638
639 /**
640 * Spins/yields/blocks until node s is matched or caller gives up.
641 *
642 * @param s the waiting node
643 * @param pred the predecessor of s, or s itself if it has no
644 * predecessor, or null if unknown (the null case does not occur
645 * in any current calls but may in possible future extensions)
646 * @param e the comparison value for checking match
647 * @param timed if true, wait only until timeout elapses
648 * @param nanos timeout in nanosecs, used only if timed is true
649 * @return matched item, or e if unmatched on interrupt or timeout
650 */
651 private E awaitMatch(Node s, Node pred, E e, boolean timed, long nanos) {
652 long lastTime = timed ? System.nanoTime() : 0L;
653 Thread w = Thread.currentThread();
654 int spins = -1; // initialized after first item and cancel checks
655 ThreadLocalRandom randomYields = null; // bound if needed
656
657 for (;;) {
658 Object item = s.item;
659 if (item != e) { // matched
660 // assert item != s;
661 s.forgetContents(); // avoid garbage
662 return this.<E>cast(item);
663 }
664 if ((w.isInterrupted() || (timed && nanos <= 0)) &&
665 s.casItem(e, s)) { // cancel
666 unsplice(pred, s);
667 return e;
668 }
669
670 if (spins < 0) { // establish spins at/near front
671 if ((spins = spinsFor(pred, s.isData)) > 0)
672 randomYields = ThreadLocalRandom.current();
673 }
674 else if (spins > 0) { // spin
675 --spins;
676 if (randomYields.nextInt(CHAINED_SPINS) == 0)
677 Thread.yield(); // occasionally yield
678 }
679 else if (s.waiter == null) {
680 s.waiter = w; // request unpark then recheck
681 }
682 else if (timed) {
683 long now = System.nanoTime();
684 if ((nanos -= now - lastTime) > 0)
685 LockSupport.parkNanos(this, nanos);
686 lastTime = now;
687 }
688 else {
689 LockSupport.park(this);
690 }
691 }
692 }
693
694 /**
695 * Returns spin/yield value for a node with given predecessor and
696 * data mode. See above for explanation.
697 */
698 private static int spinsFor(Node pred, boolean haveData) {
699 if (MP && pred != null) {
700 if (pred.isData != haveData) // phase change
701 return FRONT_SPINS + CHAINED_SPINS;
702 if (pred.isMatched()) // probably at front
703 return FRONT_SPINS;
704 if (pred.waiter == null) // pred apparently spinning
705 return CHAINED_SPINS;
706 }
707 return 0;
708 }
709
710 /* -------------- Traversal methods -------------- */
711
712 /**
713 * Returns the successor of p, or the head node if p.next has been
714 * linked to self, which will only be true if traversing with a
715 * stale pointer that is now off the list.
716 */
717 final Node succ(Node p) {
718 Node next = p.next;
719 return (p == next) ? head : next;
720 }
721
722 /**
723 * Returns the first unmatched node of the given mode, or null if
724 * none. Used by methods isEmpty, hasWaitingConsumer.
725 */
726 private Node firstOfMode(boolean isData) {
727 for (Node p = head; p != null; p = succ(p)) {
728 if (!p.isMatched())
729 return (p.isData == isData) ? p : null;
730 }
731 return null;
732 }
733
734 /**
735 * Returns the item in the first unmatched node with isData; or
736 * null if none. Used by peek.
737 */
738 private E firstDataItem() {
739 for (Node p = head; p != null; p = succ(p)) {
740 Object item = p.item;
741 if (p.isData) {
742 if (item != null && item != p)
743 return this.<E>cast(item);
744 }
745 else if (item == null)
746 return null;
747 }
748 return null;
749 }
750
751 /**
752 * Traverses and counts unmatched nodes of the given mode.
753 * Used by methods size and getWaitingConsumerCount.
754 */
755 private int countOfMode(boolean data) {
756 int count = 0;
757 for (Node p = head; p != null; ) {
758 if (!p.isMatched()) {
759 if (p.isData != data)
760 return 0;
761 if (++count == Integer.MAX_VALUE) // saturated
762 break;
763 }
764 Node n = p.next;
765 if (n != p)
766 p = n;
767 else {
768 count = 0;
769 p = head;
770 }
771 }
772 return count;
773 }
774
775 final class Itr implements Iterator<E> {
776 private Node nextNode; // next node to return item for
777 private E nextItem; // the corresponding item
778 private Node lastRet; // last returned node, to support remove
779 private Node lastPred; // predecessor to unlink lastRet
780
781 /**
782 * Moves to next node after prev, or first node if prev null.
783 */
784 private void advance(Node prev) {
785 lastPred = lastRet;
786 lastRet = prev;
787 for (Node p = (prev == null) ? head : succ(prev);
788 p != null; p = succ(p)) {
789 Object item = p.item;
790 if (p.isData) {
791 if (item != null && item != p) {
792 nextItem = LinkedTransferQueue.this.<E>cast(item);
793 nextNode = p;
794 return;
795 }
796 }
797 else if (item == null)
798 break;
799 }
800 nextNode = null;
801 }
802
803 Itr() {
804 advance(null);
805 }
806
807 public final boolean hasNext() {
808 return nextNode != null;
809 }
810
811 public final E next() {
812 Node p = nextNode;
813 if (p == null) throw new NoSuchElementException();
814 E e = nextItem;
815 advance(p);
816 return e;
817 }
818
819 public final void remove() {
820 Node p = lastRet;
821 if (p == null) throw new IllegalStateException();
822 if (p.tryMatchData())
823 unsplice(lastPred, p);
824 }
825 }
826
827 /* -------------- Removal methods -------------- */
828
829 /**
830 * Unsplices (now or later) the given deleted/cancelled node with
831 * the given predecessor.
832 *
833 * @param pred a node that was at one time known to be the
834 * predecessor of s, or null or s itself if s is/was at head
835 * @param s the node to be unspliced
836 */
837 final void unsplice(Node pred, Node s) {
838 s.forgetContents(); // forget unneeded fields
839 /*
840 * See above for rationale. Briefly: if pred still points to
841 * s, try to unlink s. If s cannot be unlinked, because it is
842 * trailing node or pred might be unlinked, and neither pred
843 * nor s are head or offlist, add to sweepVotes, and if enough
844 * votes have accumulated, sweep.
845 */
846 if (pred != null && pred != s && pred.next == s) {
847 Node n = s.next;
848 if (n == null ||
849 (n != s && pred.casNext(s, n) && pred.isMatched())) {
850 for (;;) { // check if at, or could be, head
851 Node h = head;
852 if (h == pred || h == s || h == null)
853 return; // at head or list empty
854 if (!h.isMatched())
855 break;
856 Node hn = h.next;
857 if (hn == null)
858 return; // now empty
859 if (hn != h && casHead(h, hn))
860 h.forgetNext(); // advance head
861 }
862 if (pred.next != pred && s.next != s) { // recheck if offlist
863 for (;;) { // sweep now if enough votes
864 int v = sweepVotes;
865 if (v < SWEEP_THRESHOLD) {
866 if (casSweepVotes(v, v + 1))
867 break;
868 }
869 else if (casSweepVotes(v, 0)) {
870 sweep();
871 break;
872 }
873 }
874 }
875 }
876 }
877 }
878
879 /**
880 * Unlinks matched nodes encountered in a traversal from head.
881 */
882 private void sweep() {
883 for (Node p = head, s, n; p != null && (s = p.next) != null; ) {
884 if (p == s) // stale
885 p = head;
886 else if (!s.isMatched())
887 p = s;
888 else if ((n = s.next) == null) // trailing node is pinned
889 break;
890 else
891 p.casNext(s, n);
892 }
893 }
894
895 /**
896 * Main implementation of remove(Object)
897 */
898 private boolean findAndRemove(Object e) {
899 if (e != null) {
900 for (Node pred = null, p = head; p != null; ) {
901 Object item = p.item;
902 if (p.isData) {
903 if (item != null && item != p && e.equals(item) &&
904 p.tryMatchData()) {
905 unsplice(pred, p);
906 return true;
907 }
908 }
909 else if (item == null)
910 break;
911 pred = p;
912 if ((p = p.next) == pred) { // stale
913 pred = null;
914 p = head;
915 }
916 }
917 }
918 return false;
919 }
920
921
922 /**
923 * Creates an initially empty {@code LinkedTransferQueue}.
924 */
925 public LinkedTransferQueue() {
926 }
927
928 /**
929 * Creates a {@code LinkedTransferQueue}
930 * initially containing the elements of the given collection,
931 * added in traversal order of the collection's iterator.
932 *
933 * @param c the collection of elements to initially contain
934 * @throws NullPointerException if the specified collection or any
935 * of its elements are null
936 */
937 public LinkedTransferQueue(Collection<? extends E> c) {
938 this();
939 addAll(c);
940 }
941
942 /**
943 * Inserts the specified element at the tail of this queue.
944 * As the queue is unbounded, this method will never block.
945 *
946 * @throws NullPointerException if the specified element is null
947 */
948 public void put(E e) {
949 xfer(e, true, ASYNC, 0);
950 }
951
952 /**
953 * Inserts the specified element at the tail of this queue.
954 * As the queue is unbounded, this method will never block or
955 * return {@code false}.
956 *
957 * @return {@code true} (as specified by
958 * {@link BlockingQueue#offer(Object,long,TimeUnit) BlockingQueue.offer})
959 * @throws NullPointerException if the specified element is null
960 */
961 public boolean offer(E e, long timeout, TimeUnit unit) {
962 xfer(e, true, ASYNC, 0);
963 return true;
964 }
965
966 /**
967 * Inserts the specified element at the tail of this queue.
968 * As the queue is unbounded, this method will never return {@code false}.
969 *
970 * @return {@code true} (as specified by
971 * {@link BlockingQueue#offer(Object) BlockingQueue.offer})
972 * @throws NullPointerException if the specified element is null
973 */
974 public boolean offer(E e) {
975 xfer(e, true, ASYNC, 0);
976 return true;
977 }
978
979 /**
980 * Inserts the specified element at the tail of this queue.
981 * As the queue is unbounded, this method will never throw
982 * {@link IllegalStateException} or return {@code false}.
983 *
984 * @return {@code true} (as specified by {@link Collection#add})
985 * @throws NullPointerException if the specified element is null
986 */
987 public boolean add(E e) {
988 xfer(e, true, ASYNC, 0);
989 return true;
990 }
991
992 /**
993 * Transfers the element to a waiting consumer immediately, if possible.
994 *
995 * <p>More precisely, transfers the specified element immediately
996 * if there exists a consumer already waiting to receive it (in
997 * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
998 * otherwise returning {@code false} without enqueuing the element.
999 *
1000 * @throws NullPointerException if the specified element is null
1001 */
1002 public boolean tryTransfer(E e) {
1003 return xfer(e, true, NOW, 0) == null;
1004 }
1005
1006 /**
1007 * Transfers the element to a consumer, waiting if necessary to do so.
1008 *
1009 * <p>More precisely, transfers the specified element immediately
1010 * if there exists a consumer already waiting to receive it (in
1011 * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
1012 * else inserts the specified element at the tail of this queue
1013 * and waits until the element is received by a consumer.
1014 *
1015 * @throws NullPointerException if the specified element is null
1016 */
1017 public void transfer(E e) throws InterruptedException {
1018 if (xfer(e, true, SYNC, 0) != null) {
1019 Thread.interrupted(); // failure possible only due to interrupt
1020 throw new InterruptedException();
1021 }
1022 }
1023
1024 /**
1025 * Transfers the element to a consumer if it is possible to do so
1026 * before the timeout elapses.
1027 *
1028 * <p>More precisely, transfers the specified element immediately
1029 * if there exists a consumer already waiting to receive it (in
1030 * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
1031 * else inserts the specified element at the tail of this queue
1032 * and waits until the element is received by a consumer,
1033 * returning {@code false} if the specified wait time elapses
1034 * before the element can be transferred.
1035 *
1036 * @throws NullPointerException if the specified element is null
1037 */
1038 public boolean tryTransfer(E e, long timeout, TimeUnit unit)
1039 throws InterruptedException {
1040 if (xfer(e, true, TIMED, unit.toNanos(timeout)) == null)
1041 return true;
1042 if (!Thread.interrupted())
1043 return false;
1044 throw new InterruptedException();
1045 }
1046
1047 public E take() throws InterruptedException {
1048 E e = xfer(null, false, SYNC, 0);
1049 if (e != null)
1050 return e;
1051 Thread.interrupted();
1052 throw new InterruptedException();
1053 }
1054
1055 public E poll(long timeout, TimeUnit unit) throws InterruptedException {
1056 E e = xfer(null, false, TIMED, unit.toNanos(timeout));
1057 if (e != null || !Thread.interrupted())
1058 return e;
1059 throw new InterruptedException();
1060 }
1061
1062 public E poll() {
1063 return xfer(null, false, NOW, 0);
1064 }
1065
1066 /**
1067 * @throws NullPointerException {@inheritDoc}
1068 * @throws IllegalArgumentException {@inheritDoc}
1069 */
1070 public int drainTo(Collection<? super E> c) {
1071 if (c == null)
1072 throw new NullPointerException();
1073 if (c == this)
1074 throw new IllegalArgumentException();
1075 int n = 0;
1076 E e;
1077 while ( (e = poll()) != null) {
1078 c.add(e);
1079 ++n;
1080 }
1081 return n;
1082 }
1083
1084 /**
1085 * @throws NullPointerException {@inheritDoc}
1086 * @throws IllegalArgumentException {@inheritDoc}
1087 */
1088 public int drainTo(Collection<? super E> c, int maxElements) {
1089 if (c == null)
1090 throw new NullPointerException();
1091 if (c == this)
1092 throw new IllegalArgumentException();
1093 int n = 0;
1094 E e;
1095 while (n < maxElements && (e = poll()) != null) {
1096 c.add(e);
1097 ++n;
1098 }
1099 return n;
1100 }
1101
1102 /**
1103 * Returns an iterator over the elements in this queue in proper
1104 * sequence, from head to tail.
1105 *
1106 * <p>The returned iterator is a "weakly consistent" iterator that
1107 * will never throw
1108 * {@link ConcurrentModificationException ConcurrentModificationException},
1109 * and guarantees to traverse elements as they existed upon
1110 * construction of the iterator, and may (but is not guaranteed
1111 * to) reflect any modifications subsequent to construction.
1112 *
1113 * @return an iterator over the elements in this queue in proper sequence
1114 */
1115 public Iterator<E> iterator() {
1116 return new Itr();
1117 }
1118
1119 public E peek() {
1120 return firstDataItem();
1121 }
1122
1123 /**
1124 * Returns {@code true} if this queue contains no elements.
1125 *
1126 * @return {@code true} if this queue contains no elements
1127 */
1128 public boolean isEmpty() {
1129 for (Node p = head; p != null; p = succ(p)) {
1130 if (!p.isMatched())
1131 return !p.isData;
1132 }
1133 return true;
1134 }
1135
1136 public boolean hasWaitingConsumer() {
1137 return firstOfMode(false) != null;
1138 }
1139
1140 /**
1141 * Returns the number of elements in this queue. If this queue
1142 * contains more than {@code Integer.MAX_VALUE} elements, returns
1143 * {@code Integer.MAX_VALUE}.
1144 *
1145 * <p>Beware that, unlike in most collections, this method is
1146 * <em>NOT</em> a constant-time operation. Because of the
1147 * asynchronous nature of these queues, determining the current
1148 * number of elements requires an O(n) traversal.
1149 *
1150 * @return the number of elements in this queue
1151 */
1152 public int size() {
1153 return countOfMode(true);
1154 }
1155
1156 public int getWaitingConsumerCount() {
1157 return countOfMode(false);
1158 }
1159
1160 /**
1161 * Removes a single instance of the specified element from this queue,
1162 * if it is present. More formally, removes an element {@code e} such
1163 * that {@code o.equals(e)}, if this queue contains one or more such
1164 * elements.
1165 * Returns {@code true} if this queue contained the specified element
1166 * (or equivalently, if this queue changed as a result of the call).
1167 *
1168 * @param o element to be removed from this queue, if present
1169 * @return {@code true} if this queue changed as a result of the call
1170 */
1171 public boolean remove(Object o) {
1172 return findAndRemove(o);
1173 }
1174
1175 /**
1176 * Always returns {@code Integer.MAX_VALUE} because a
1177 * {@code LinkedTransferQueue} is not capacity constrained.
1178 *
1179 * @return {@code Integer.MAX_VALUE} (as specified by
1180 * {@link BlockingQueue#remainingCapacity()})
1181 */
1182 public int remainingCapacity() {
1183 return Integer.MAX_VALUE;
1184 }
1185
1186 /**
1187 * Saves the state to a stream (that is, serializes it).
1188 *
1189 * @serialData All of the elements (each an {@code E}) in
1190 * the proper order, followed by a null
1191 * @param s the stream
1192 */
1193 private void writeObject(java.io.ObjectOutputStream s)
1194 throws java.io.IOException {
1195 s.defaultWriteObject();
1196 for (E e : this)
1197 s.writeObject(e);
1198 // Use trailing null as sentinel
1199 s.writeObject(null);
1200 }
1201
1202 /**
1203 * Reconstitutes the Queue instance from a stream (that is,
1204 * deserializes it).
1205 *
1206 * @param s the stream
1207 */
1208 private void readObject(java.io.ObjectInputStream s)
1209 throws java.io.IOException, ClassNotFoundException {
1210 s.defaultReadObject();
1211 for (;;) {
1212 @SuppressWarnings("unchecked") E item = (E) s.readObject();
1213 if (item == null)
1214 break;
1215 else
1216 offer(item);
1217 }
1218 }
1219
1220 // Unsafe mechanics
1221
1222 private static final sun.misc.Unsafe UNSAFE = getUnsafe();
1223 private static final long headOffset =
1224 objectFieldOffset(UNSAFE, "head", LinkedTransferQueue.class);
1225 private static final long tailOffset =
1226 objectFieldOffset(UNSAFE, "tail", LinkedTransferQueue.class);
1227 private static final long sweepVotesOffset =
1228 objectFieldOffset(UNSAFE, "sweepVotes", LinkedTransferQueue.class);
1229
1230 static long objectFieldOffset(sun.misc.Unsafe UNSAFE,
1231 String field, Class<?> klazz) {
1232 try {
1233 return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
1234 } catch (NoSuchFieldException e) {
1235 // Convert Exception to corresponding Error
1236 NoSuchFieldError error = new NoSuchFieldError(field);
1237 error.initCause(e);
1238 throw error;
1239 }
1240 }
1241
1242 /**
1243 * Returns a sun.misc.Unsafe. Suitable for use in a 3rd party package.
1244 * Replace with a simple call to Unsafe.getUnsafe when integrating
1245 * into a jdk.
1246 *
1247 * @return a sun.misc.Unsafe
1248 */
1249 static sun.misc.Unsafe getUnsafe() {
1250 try {
1251 return sun.misc.Unsafe.getUnsafe();
1252 } catch (SecurityException se) {
1253 try {
1254 return java.security.AccessController.doPrivileged
1255 (new java.security
1256 .PrivilegedExceptionAction<sun.misc.Unsafe>() {
1257 public sun.misc.Unsafe run() throws Exception {
1258 java.lang.reflect.Field f = sun.misc
1259 .Unsafe.class.getDeclaredField("theUnsafe");
1260 f.setAccessible(true);
1261 return (sun.misc.Unsafe) f.get(null);
1262 }});
1263 } catch (java.security.PrivilegedActionException e) {
1264 throw new RuntimeException("Could not initialize intrinsics",
1265 e.getCause());
1266 }
1267 }
1268 }
1269
1270 }