ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/LinkedTransferQueue.java
Revision: 1.94
Committed: Sat Oct 3 18:17:51 2015 UTC (8 years, 7 months ago) by jsr166
Branch: MAIN
CVS Tags: HEAD
Changes since 1.93: +1 -1 lines
Log Message:
compare longs against 0L, not 0

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/publicdomain/zero/1.0/
5 */
6
7 package jsr166y;
8
9 import java.util.AbstractQueue;
10 import java.util.Collection;
11 import java.util.Iterator;
12 import java.util.NoSuchElementException;
13 import java.util.Queue;
14 import java.util.concurrent.TimeUnit;
15 import java.util.concurrent.locks.LockSupport;
16
17 /**
18 * An unbounded {@link TransferQueue} based on linked nodes.
19 * This queue orders elements FIFO (first-in-first-out) with respect
20 * to any given producer. The <em>head</em> of the queue is that
21 * element that has been on the queue the longest time for some
22 * producer. The <em>tail</em> of the queue is that element that has
23 * been on the queue the shortest time for some producer.
24 *
25 * <p>Beware that, unlike in most collections, the {@code size} method
26 * is <em>NOT</em> a constant-time operation. Because of the
27 * asynchronous nature of these queues, determining the current number
28 * of elements requires a traversal of the elements, and so may report
29 * inaccurate results if this collection is modified during traversal.
30 * Additionally, the bulk operations {@code addAll},
31 * {@code removeAll}, {@code retainAll}, {@code containsAll},
32 * {@code equals}, and {@code toArray} are <em>not</em> guaranteed
33 * to be performed atomically. For example, an iterator operating
34 * concurrently with an {@code addAll} operation might view only some
35 * of the added elements.
36 *
37 * <p>This class and its iterator implement all of the
38 * <em>optional</em> methods of the {@link Collection} and {@link
39 * Iterator} interfaces.
40 *
41 * <p>Memory consistency effects: As with other concurrent
42 * collections, actions in a thread prior to placing an object into a
43 * {@code LinkedTransferQueue}
44 * <a href="package-summary.html#MemoryVisibility"><i>happen-before</i></a>
45 * actions subsequent to the access or removal of that element from
46 * the {@code LinkedTransferQueue} in another thread.
47 *
48 * <p>This class is a member of the
49 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
50 * Java Collections Framework</a>.
51 *
52 * @since 1.7
53 * @author Doug Lea
54 * @param <E> the type of elements held in this collection
55 */
56 public class LinkedTransferQueue<E> extends AbstractQueue<E>
57 implements TransferQueue<E>, java.io.Serializable {
58 private static final long serialVersionUID = -3223113410248163686L;
59
60 /*
61 * *** Overview of Dual Queues with Slack ***
62 *
63 * Dual Queues, introduced by Scherer and Scott
64 * (http://www.cs.rice.edu/~wns1/papers/2004-DISC-DDS.pdf) are
65 * (linked) queues in which nodes may represent either data or
66 * requests. When a thread tries to enqueue a data node, but
67 * encounters a request node, it instead "matches" and removes it;
68 * and vice versa for enqueuing requests. Blocking Dual Queues
69 * arrange that threads enqueuing unmatched requests block until
70 * other threads provide the match. Dual Synchronous Queues (see
71 * Scherer, Lea, & Scott
72 * http://www.cs.rochester.edu/u/scott/papers/2009_Scherer_CACM_SSQ.pdf)
73 * additionally arrange that threads enqueuing unmatched data also
74 * block. Dual Transfer Queues support all of these modes, as
75 * dictated by callers.
76 *
77 * A FIFO dual queue may be implemented using a variation of the
78 * Michael & Scott (M&S) lock-free queue algorithm
79 * (http://www.cs.rochester.edu/~scott/papers/1996_PODC_queues.pdf).
80 * It maintains two pointer fields, "head", pointing to a
81 * (matched) node that in turn points to the first actual
82 * (unmatched) queue node (or null if empty); and "tail" that
83 * points to the last node on the queue (or again null if
84 * empty). For example, here is a possible queue with four data
85 * elements:
86 *
87 * head tail
88 * | |
89 * v v
90 * M -> U -> U -> U -> U
91 *
92 * The M&S queue algorithm is known to be prone to scalability and
93 * overhead limitations when maintaining (via CAS) these head and
94 * tail pointers. This has led to the development of
95 * contention-reducing variants such as elimination arrays (see
96 * Moir et al http://portal.acm.org/citation.cfm?id=1074013) and
97 * optimistic back pointers (see Ladan-Mozes & Shavit
98 * http://people.csail.mit.edu/edya/publications/OptimisticFIFOQueue-journal.pdf).
99 * However, the nature of dual queues enables a simpler tactic for
100 * improving M&S-style implementations when dual-ness is needed.
101 *
102 * In a dual queue, each node must atomically maintain its match
103 * status. While there are other possible variants, we implement
104 * this here as: for a data-mode node, matching entails CASing an
105 * "item" field from a non-null data value to null upon match, and
106 * vice-versa for request nodes, CASing from null to a data
107 * value. (Note that the linearization properties of this style of
108 * queue are easy to verify -- elements are made available by
109 * linking, and unavailable by matching.) Compared to plain M&S
110 * queues, this property of dual queues requires one additional
111 * successful atomic operation per enq/deq pair. But it also
112 * enables lower cost variants of queue maintenance mechanics. (A
113 * variation of this idea applies even for non-dual queues that
114 * support deletion of interior elements, such as
115 * j.u.c.ConcurrentLinkedQueue.)
116 *
117 * Once a node is matched, its match status can never again
118 * change. We may thus arrange that the linked list of them
119 * contain a prefix of zero or more matched nodes, followed by a
120 * suffix of zero or more unmatched nodes. (Note that we allow
121 * both the prefix and suffix to be zero length, which in turn
122 * means that we do not use a dummy header.) If we were not
123 * concerned with either time or space efficiency, we could
124 * correctly perform enqueue and dequeue operations by traversing
125 * from a pointer to the initial node; CASing the item of the
126 * first unmatched node on match and CASing the next field of the
127 * trailing node on appends. (Plus some special-casing when
128 * initially empty). While this would be a terrible idea in
129 * itself, it does have the benefit of not requiring ANY atomic
130 * updates on head/tail fields.
131 *
132 * We introduce here an approach that lies between the extremes of
133 * never versus always updating queue (head and tail) pointers.
134 * This offers a tradeoff between sometimes requiring extra
135 * traversal steps to locate the first and/or last unmatched
136 * nodes, versus the reduced overhead and contention of fewer
137 * updates to queue pointers. For example, a possible snapshot of
138 * a queue is:
139 *
140 * head tail
141 * | |
142 * v v
143 * M -> M -> U -> U -> U -> U
144 *
145 * The best value for this "slack" (the targeted maximum distance
146 * between the value of "head" and the first unmatched node, and
147 * similarly for "tail") is an empirical matter. We have found
148 * that using very small constants in the range of 1-3 work best
149 * over a range of platforms. Larger values introduce increasing
150 * costs of cache misses and risks of long traversal chains, while
151 * smaller values increase CAS contention and overhead.
152 *
153 * Dual queues with slack differ from plain M&S dual queues by
154 * virtue of only sometimes updating head or tail pointers when
155 * matching, appending, or even traversing nodes; in order to
156 * maintain a targeted slack. The idea of "sometimes" may be
157 * operationalized in several ways. The simplest is to use a
158 * per-operation counter incremented on each traversal step, and
159 * to try (via CAS) to update the associated queue pointer
160 * whenever the count exceeds a threshold. Another, that requires
161 * more overhead, is to use random number generators to update
162 * with a given probability per traversal step.
163 *
164 * In any strategy along these lines, because CASes updating
165 * fields may fail, the actual slack may exceed targeted
166 * slack. However, they may be retried at any time to maintain
167 * targets. Even when using very small slack values, this
168 * approach works well for dual queues because it allows all
169 * operations up to the point of matching or appending an item
170 * (hence potentially allowing progress by another thread) to be
171 * read-only, thus not introducing any further contention. As
172 * described below, we implement this by performing slack
173 * maintenance retries only after these points.
174 *
175 * As an accompaniment to such techniques, traversal overhead can
176 * be further reduced without increasing contention of head
177 * pointer updates: Threads may sometimes shortcut the "next" link
178 * path from the current "head" node to be closer to the currently
179 * known first unmatched node, and similarly for tail. Again, this
180 * may be triggered with using thresholds or randomization.
181 *
182 * These ideas must be further extended to avoid unbounded amounts
183 * of costly-to-reclaim garbage caused by the sequential "next"
184 * links of nodes starting at old forgotten head nodes: As first
185 * described in detail by Boehm
186 * (http://portal.acm.org/citation.cfm?doid=503272.503282) if a GC
187 * delays noticing that any arbitrarily old node has become
188 * garbage, all newer dead nodes will also be unreclaimed.
189 * (Similar issues arise in non-GC environments.) To cope with
190 * this in our implementation, upon CASing to advance the head
191 * pointer, we set the "next" link of the previous head to point
192 * only to itself; thus limiting the length of connected dead lists.
193 * (We also take similar care to wipe out possibly garbage
194 * retaining values held in other Node fields.) However, doing so
195 * adds some further complexity to traversal: If any "next"
196 * pointer links to itself, it indicates that the current thread
197 * has lagged behind a head-update, and so the traversal must
198 * continue from the "head". Traversals trying to find the
199 * current tail starting from "tail" may also encounter
200 * self-links, in which case they also continue at "head".
201 *
202 * It is tempting in slack-based scheme to not even use CAS for
203 * updates (similarly to Ladan-Mozes & Shavit). However, this
204 * cannot be done for head updates under the above link-forgetting
205 * mechanics because an update may leave head at a detached node.
206 * And while direct writes are possible for tail updates, they
207 * increase the risk of long retraversals, and hence long garbage
208 * chains, which can be much more costly than is worthwhile
209 * considering that the cost difference of performing a CAS vs
210 * write is smaller when they are not triggered on each operation
211 * (especially considering that writes and CASes equally require
212 * additional GC bookkeeping ("write barriers") that are sometimes
213 * more costly than the writes themselves because of contention).
214 *
215 * *** Overview of implementation ***
216 *
217 * We use a threshold-based approach to updates, with a slack
218 * threshold of two -- that is, we update head/tail when the
219 * current pointer appears to be two or more steps away from the
220 * first/last node. The slack value is hard-wired: a path greater
221 * than one is naturally implemented by checking equality of
222 * traversal pointers except when the list has only one element,
223 * in which case we keep slack threshold at one. Avoiding tracking
224 * explicit counts across method calls slightly simplifies an
225 * already-messy implementation. Using randomization would
226 * probably work better if there were a low-quality dirt-cheap
227 * per-thread one available, but even ThreadLocalRandom is too
228 * heavy for these purposes.
229 *
230 * With such a small slack threshold value, it is not worthwhile
231 * to augment this with path short-circuiting (i.e., unsplicing
232 * interior nodes) except in the case of cancellation/removal (see
233 * below).
234 *
235 * We allow both the head and tail fields to be null before any
236 * nodes are enqueued; initializing upon first append. This
237 * simplifies some other logic, as well as providing more
238 * efficient explicit control paths instead of letting JVMs insert
239 * implicit NullPointerExceptions when they are null. While not
240 * currently fully implemented, we also leave open the possibility
241 * of re-nulling these fields when empty (which is complicated to
242 * arrange, for little benefit.)
243 *
244 * All enqueue/dequeue operations are handled by the single method
245 * "xfer" with parameters indicating whether to act as some form
246 * of offer, put, poll, take, or transfer (each possibly with
247 * timeout). The relative complexity of using one monolithic
248 * method outweighs the code bulk and maintenance problems of
249 * using separate methods for each case.
250 *
251 * Operation consists of up to three phases. The first is
252 * implemented within method xfer, the second in tryAppend, and
253 * the third in method awaitMatch.
254 *
255 * 1. Try to match an existing node
256 *
257 * Starting at head, skip already-matched nodes until finding
258 * an unmatched node of opposite mode, if one exists, in which
259 * case matching it and returning, also if necessary updating
260 * head to one past the matched node (or the node itself if the
261 * list has no other unmatched nodes). If the CAS misses, then
262 * a loop retries advancing head by two steps until either
263 * success or the slack is at most two. By requiring that each
264 * attempt advances head by two (if applicable), we ensure that
265 * the slack does not grow without bound. Traversals also check
266 * if the initial head is now off-list, in which case they
267 * start at the new head.
268 *
269 * If no candidates are found and the call was untimed
270 * poll/offer, (argument "how" is NOW) return.
271 *
272 * 2. Try to append a new node (method tryAppend)
273 *
274 * Starting at current tail pointer, find the actual last node
275 * and try to append a new node (or if head was null, establish
276 * the first node). Nodes can be appended only if their
277 * predecessors are either already matched or are of the same
278 * mode. If we detect otherwise, then a new node with opposite
279 * mode must have been appended during traversal, so we must
280 * restart at phase 1. The traversal and update steps are
281 * otherwise similar to phase 1: Retrying upon CAS misses and
282 * checking for staleness. In particular, if a self-link is
283 * encountered, then we can safely jump to a node on the list
284 * by continuing the traversal at current head.
285 *
286 * On successful append, if the call was ASYNC, return.
287 *
288 * 3. Await match or cancellation (method awaitMatch)
289 *
290 * Wait for another thread to match node; instead cancelling if
291 * the current thread was interrupted or the wait timed out. On
292 * multiprocessors, we use front-of-queue spinning: If a node
293 * appears to be the first unmatched node in the queue, it
294 * spins a bit before blocking. In either case, before blocking
295 * it tries to unsplice any nodes between the current "head"
296 * and the first unmatched node.
297 *
298 * Front-of-queue spinning vastly improves performance of
299 * heavily contended queues. And so long as it is relatively
300 * brief and "quiet", spinning does not much impact performance
301 * of less-contended queues. During spins threads check their
302 * interrupt status and generate a thread-local random number
303 * to decide to occasionally perform a Thread.yield. While
304 * yield has underdefined specs, we assume that it might help,
305 * and will not hurt, in limiting impact of spinning on busy
306 * systems. We also use smaller (1/2) spins for nodes that are
307 * not known to be front but whose predecessors have not
308 * blocked -- these "chained" spins avoid artifacts of
309 * front-of-queue rules which otherwise lead to alternating
310 * nodes spinning vs blocking. Further, front threads that
311 * represent phase changes (from data to request node or vice
312 * versa) compared to their predecessors receive additional
313 * chained spins, reflecting longer paths typically required to
314 * unblock threads during phase changes.
315 *
316 *
317 * ** Unlinking removed interior nodes **
318 *
319 * In addition to minimizing garbage retention via self-linking
320 * described above, we also unlink removed interior nodes. These
321 * may arise due to timed out or interrupted waits, or calls to
322 * remove(x) or Iterator.remove. Normally, given a node that was
323 * at one time known to be the predecessor of some node s that is
324 * to be removed, we can unsplice s by CASing the next field of
325 * its predecessor if it still points to s (otherwise s must
326 * already have been removed or is now offlist). But there are two
327 * situations in which we cannot guarantee to make node s
328 * unreachable in this way: (1) If s is the trailing node of list
329 * (i.e., with null next), then it is pinned as the target node
330 * for appends, so can only be removed later after other nodes are
331 * appended. (2) We cannot necessarily unlink s given a
332 * predecessor node that is matched (including the case of being
333 * cancelled): the predecessor may already be unspliced, in which
334 * case some previous reachable node may still point to s.
335 * (For further explanation see Herlihy & Shavit "The Art of
336 * Multiprocessor Programming" chapter 9). Although, in both
337 * cases, we can rule out the need for further action if either s
338 * or its predecessor are (or can be made to be) at, or fall off
339 * from, the head of list.
340 *
341 * Without taking these into account, it would be possible for an
342 * unbounded number of supposedly removed nodes to remain
343 * reachable. Situations leading to such buildup are uncommon but
344 * can occur in practice; for example when a series of short timed
345 * calls to poll repeatedly time out but never otherwise fall off
346 * the list because of an untimed call to take at the front of the
347 * queue.
348 *
349 * When these cases arise, rather than always retraversing the
350 * entire list to find an actual predecessor to unlink (which
351 * won't help for case (1) anyway), we record a conservative
352 * estimate of possible unsplice failures (in "sweepVotes").
353 * We trigger a full sweep when the estimate exceeds a threshold
354 * ("SWEEP_THRESHOLD") indicating the maximum number of estimated
355 * removal failures to tolerate before sweeping through, unlinking
356 * cancelled nodes that were not unlinked upon initial removal.
357 * We perform sweeps by the thread hitting threshold (rather than
358 * background threads or by spreading work to other threads)
359 * because in the main contexts in which removal occurs, the
360 * caller is already timed-out, cancelled, or performing a
361 * potentially O(n) operation (e.g. remove(x)), none of which are
362 * time-critical enough to warrant the overhead that alternatives
363 * would impose on other threads.
364 *
365 * Because the sweepVotes estimate is conservative, and because
366 * nodes become unlinked "naturally" as they fall off the head of
367 * the queue, and because we allow votes to accumulate even while
368 * sweeps are in progress, there are typically significantly fewer
369 * such nodes than estimated. Choice of a threshold value
370 * balances the likelihood of wasted effort and contention, versus
371 * providing a worst-case bound on retention of interior nodes in
372 * quiescent queues. The value defined below was chosen
373 * empirically to balance these under various timeout scenarios.
374 *
375 * Note that we cannot self-link unlinked interior nodes during
376 * sweeps. However, the associated garbage chains terminate when
377 * some successor ultimately falls off the head of the list and is
378 * self-linked.
379 */
380
381 /** True if on multiprocessor */
382 private static final boolean MP =
383 Runtime.getRuntime().availableProcessors() > 1;
384
385 /**
386 * The number of times to spin (with randomly interspersed calls
387 * to Thread.yield) on multiprocessor before blocking when a node
388 * is apparently the first waiter in the queue. See above for
389 * explanation. Must be a power of two. The value is empirically
390 * derived -- it works pretty well across a variety of processors,
391 * numbers of CPUs, and OSes.
392 */
393 private static final int FRONT_SPINS = 1 << 7;
394
395 /**
396 * The number of times to spin before blocking when a node is
397 * preceded by another node that is apparently spinning. Also
398 * serves as an increment to FRONT_SPINS on phase changes, and as
399 * base average frequency for yielding during spins. Must be a
400 * power of two.
401 */
402 private static final int CHAINED_SPINS = FRONT_SPINS >>> 1;
403
404 /**
405 * The maximum number of estimated removal failures (sweepVotes)
406 * to tolerate before sweeping through the queue unlinking
407 * cancelled nodes that were not unlinked upon initial
408 * removal. See above for explanation. The value must be at least
409 * two to avoid useless sweeps when removing trailing nodes.
410 */
411 static final int SWEEP_THRESHOLD = 32;
412
413 /**
414 * Queue nodes. Uses Object, not E, for items to allow forgetting
415 * them after use. Relies heavily on Unsafe mechanics to minimize
416 * unnecessary ordering constraints: Writes that are intrinsically
417 * ordered wrt other accesses or CASes use simple relaxed forms.
418 */
419 static final class Node {
420 final boolean isData; // false if this is a request node
421 volatile Object item; // initially non-null if isData; CASed to match
422 volatile Node next;
423 volatile Thread waiter; // null until waiting
424
425 // CAS methods for fields
426 final boolean casNext(Node cmp, Node val) {
427 return UNSAFE.compareAndSwapObject(this, nextOffset, cmp, val);
428 }
429
430 final boolean casItem(Object cmp, Object val) {
431 // assert cmp == null || cmp.getClass() != Node.class;
432 return UNSAFE.compareAndSwapObject(this, itemOffset, cmp, val);
433 }
434
435 /**
436 * Constructs a new node. Uses relaxed write because item can
437 * only be seen after publication via casNext.
438 */
439 Node(Object item, boolean isData) {
440 UNSAFE.putObject(this, itemOffset, item); // relaxed write
441 this.isData = isData;
442 }
443
444 /**
445 * Links node to itself to avoid garbage retention. Called
446 * only after CASing head field, so uses relaxed write.
447 */
448 final void forgetNext() {
449 UNSAFE.putObject(this, nextOffset, this);
450 }
451
452 /**
453 * Sets item to self and waiter to null, to avoid garbage
454 * retention after matching or cancelling. Uses relaxed writes
455 * because order is already constrained in the only calling
456 * contexts: item is forgotten only after volatile/atomic
457 * mechanics that extract items. Similarly, clearing waiter
458 * follows either CAS or return from park (if ever parked;
459 * else we don't care).
460 */
461 final void forgetContents() {
462 UNSAFE.putObject(this, itemOffset, this);
463 UNSAFE.putObject(this, waiterOffset, null);
464 }
465
466 /**
467 * Returns true if this node has been matched, including the
468 * case of artificial matches due to cancellation.
469 */
470 final boolean isMatched() {
471 Object x = item;
472 return (x == this) || ((x == null) == isData);
473 }
474
475 /**
476 * Returns true if this is an unmatched request node.
477 */
478 final boolean isUnmatchedRequest() {
479 return !isData && item == null;
480 }
481
482 /**
483 * Returns true if a node with the given mode cannot be
484 * appended to this node because this node is unmatched and
485 * has opposite data mode.
486 */
487 final boolean cannotPrecede(boolean haveData) {
488 boolean d = isData;
489 Object x;
490 return d != haveData && (x = item) != this && (x != null) == d;
491 }
492
493 /**
494 * Tries to artificially match a data node -- used by remove.
495 */
496 final boolean tryMatchData() {
497 // assert isData;
498 Object x = item;
499 if (x != null && x != this && casItem(x, null)) {
500 LockSupport.unpark(waiter);
501 return true;
502 }
503 return false;
504 }
505
506 private static final long serialVersionUID = -3375979862319811754L;
507
508 // Unsafe mechanics
509 private static final sun.misc.Unsafe UNSAFE;
510 private static final long itemOffset;
511 private static final long nextOffset;
512 private static final long waiterOffset;
513 static {
514 try {
515 UNSAFE = getUnsafe();
516 Class<?> k = Node.class;
517 itemOffset = UNSAFE.objectFieldOffset
518 (k.getDeclaredField("item"));
519 nextOffset = UNSAFE.objectFieldOffset
520 (k.getDeclaredField("next"));
521 waiterOffset = UNSAFE.objectFieldOffset
522 (k.getDeclaredField("waiter"));
523 } catch (Exception e) {
524 throw new Error(e);
525 }
526 }
527 }
528
529 /** head of the queue; null until first enqueue */
530 transient volatile Node head;
531
532 /** tail of the queue; null until first append */
533 private transient volatile Node tail;
534
535 /** The number of apparent failures to unsplice removed nodes */
536 private transient volatile int sweepVotes;
537
538 // CAS methods for fields
539 private boolean casTail(Node cmp, Node val) {
540 return UNSAFE.compareAndSwapObject(this, tailOffset, cmp, val);
541 }
542
543 private boolean casHead(Node cmp, Node val) {
544 return UNSAFE.compareAndSwapObject(this, headOffset, cmp, val);
545 }
546
547 private boolean casSweepVotes(int cmp, int val) {
548 return UNSAFE.compareAndSwapInt(this, sweepVotesOffset, cmp, val);
549 }
550
551 /*
552 * Possible values for "how" argument in xfer method.
553 */
554 private static final int NOW = 0; // for untimed poll, tryTransfer
555 private static final int ASYNC = 1; // for offer, put, add
556 private static final int SYNC = 2; // for transfer, take
557 private static final int TIMED = 3; // for timed poll, tryTransfer
558
559 @SuppressWarnings("unchecked")
560 static <E> E cast(Object item) {
561 // assert item == null || item.getClass() != Node.class;
562 return (E) item;
563 }
564
565 /**
566 * Implements all queuing methods. See above for explanation.
567 *
568 * @param e the item or null for take
569 * @param haveData true if this is a put, else a take
570 * @param how NOW, ASYNC, SYNC, or TIMED
571 * @param nanos timeout in nanosecs, used only if mode is TIMED
572 * @return an item if matched, else e
573 * @throws NullPointerException if haveData mode but e is null
574 */
575 private E xfer(E e, boolean haveData, int how, long nanos) {
576 if (haveData && (e == null))
577 throw new NullPointerException();
578 Node s = null; // the node to append, if needed
579
580 retry:
581 for (;;) { // restart on append race
582
583 for (Node h = head, p = h; p != null;) { // find & match first node
584 boolean isData = p.isData;
585 Object item = p.item;
586 if (item != p && (item != null) == isData) { // unmatched
587 if (isData == haveData) // can't match
588 break;
589 if (p.casItem(item, e)) { // match
590 for (Node q = p; q != h;) {
591 Node n = q.next; // update by 2 unless singleton
592 if (head == h && casHead(h, n == null ? q : n)) {
593 h.forgetNext();
594 break;
595 } // advance and retry
596 if ((h = head) == null ||
597 (q = h.next) == null || !q.isMatched())
598 break; // unless slack < 2
599 }
600 LockSupport.unpark(p.waiter);
601 return LinkedTransferQueue.<E>cast(item);
602 }
603 }
604 Node n = p.next;
605 p = (p != n) ? n : (h = head); // Use head if p offlist
606 }
607
608 if (how != NOW) { // No matches available
609 if (s == null)
610 s = new Node(e, haveData);
611 Node pred = tryAppend(s, haveData);
612 if (pred == null)
613 continue retry; // lost race vs opposite mode
614 if (how != ASYNC)
615 return awaitMatch(s, pred, e, (how == TIMED), nanos);
616 }
617 return e; // not waiting
618 }
619 }
620
621 /**
622 * Tries to append node s as tail.
623 *
624 * @param s the node to append
625 * @param haveData true if appending in data mode
626 * @return null on failure due to losing race with append in
627 * different mode, else s's predecessor, or s itself if no
628 * predecessor
629 */
630 private Node tryAppend(Node s, boolean haveData) {
631 for (Node t = tail, p = t;;) { // move p to last node and append
632 Node n, u; // temps for reads of next & tail
633 if (p == null && (p = head) == null) {
634 if (casHead(null, s))
635 return s; // initialize
636 }
637 else if (p.cannotPrecede(haveData))
638 return null; // lost race vs opposite mode
639 else if ((n = p.next) != null) // not last; keep traversing
640 p = p != t && t != (u = tail) ? (t = u) : // stale tail
641 (p != n) ? n : null; // restart if off list
642 else if (!p.casNext(null, s))
643 p = p.next; // re-read on CAS failure
644 else {
645 if (p != t) { // update if slack now >= 2
646 while ((tail != t || !casTail(t, s)) &&
647 (t = tail) != null &&
648 (s = t.next) != null && // advance and retry
649 (s = s.next) != null && s != t);
650 }
651 return p;
652 }
653 }
654 }
655
656 /**
657 * Spins/yields/blocks until node s is matched or caller gives up.
658 *
659 * @param s the waiting node
660 * @param pred the predecessor of s, or s itself if it has no
661 * predecessor, or null if unknown (the null case does not occur
662 * in any current calls but may in possible future extensions)
663 * @param e the comparison value for checking match
664 * @param timed if true, wait only until timeout elapses
665 * @param nanos timeout in nanosecs, used only if timed is true
666 * @return matched item, or e if unmatched on interrupt or timeout
667 */
668 private E awaitMatch(Node s, Node pred, E e, boolean timed, long nanos) {
669 long lastTime = timed ? System.nanoTime() : 0L;
670 Thread w = Thread.currentThread();
671 int spins = -1; // initialized after first item and cancel checks
672 ThreadLocalRandom randomYields = null; // bound if needed
673
674 for (;;) {
675 Object item = s.item;
676 if (item != e) { // matched
677 // assert item != s;
678 s.forgetContents(); // avoid garbage
679 return LinkedTransferQueue.<E>cast(item);
680 }
681 if ((w.isInterrupted() || (timed && nanos <= 0L)) &&
682 s.casItem(e, s)) { // cancel
683 unsplice(pred, s);
684 return e;
685 }
686
687 if (spins < 0) { // establish spins at/near front
688 if ((spins = spinsFor(pred, s.isData)) > 0)
689 randomYields = ThreadLocalRandom.current();
690 }
691 else if (spins > 0) { // spin
692 --spins;
693 if (randomYields.nextInt(CHAINED_SPINS) == 0)
694 Thread.yield(); // occasionally yield
695 }
696 else if (s.waiter == null) {
697 s.waiter = w; // request unpark then recheck
698 }
699 else if (timed) {
700 long now = System.nanoTime();
701 if ((nanos -= now - lastTime) > 0)
702 LockSupport.parkNanos(this, nanos);
703 lastTime = now;
704 }
705 else {
706 LockSupport.park(this);
707 }
708 }
709 }
710
711 /**
712 * Returns spin/yield value for a node with given predecessor and
713 * data mode. See above for explanation.
714 */
715 private static int spinsFor(Node pred, boolean haveData) {
716 if (MP && pred != null) {
717 if (pred.isData != haveData) // phase change
718 return FRONT_SPINS + CHAINED_SPINS;
719 if (pred.isMatched()) // probably at front
720 return FRONT_SPINS;
721 if (pred.waiter == null) // pred apparently spinning
722 return CHAINED_SPINS;
723 }
724 return 0;
725 }
726
727 /* -------------- Traversal methods -------------- */
728
729 /**
730 * Returns the successor of p, or the head node if p.next has been
731 * linked to self, which will only be true if traversing with a
732 * stale pointer that is now off the list.
733 */
734 final Node succ(Node p) {
735 Node next = p.next;
736 return (p == next) ? head : next;
737 }
738
739 /**
740 * Returns the first unmatched node of the given mode, or null if
741 * none. Used by methods isEmpty, hasWaitingConsumer.
742 */
743 private Node firstOfMode(boolean isData) {
744 for (Node p = head; p != null; p = succ(p)) {
745 if (!p.isMatched())
746 return (p.isData == isData) ? p : null;
747 }
748 return null;
749 }
750
751 /**
752 * Returns the item in the first unmatched node with isData; or
753 * null if none. Used by peek.
754 */
755 private E firstDataItem() {
756 for (Node p = head; p != null; p = succ(p)) {
757 Object item = p.item;
758 if (p.isData) {
759 if (item != null && item != p)
760 return LinkedTransferQueue.<E>cast(item);
761 }
762 else if (item == null)
763 return null;
764 }
765 return null;
766 }
767
768 /**
769 * Traverses and counts unmatched nodes of the given mode.
770 * Used by methods size and getWaitingConsumerCount.
771 */
772 private int countOfMode(boolean data) {
773 int count = 0;
774 for (Node p = head; p != null; ) {
775 if (!p.isMatched()) {
776 if (p.isData != data)
777 return 0;
778 if (++count == Integer.MAX_VALUE) // saturated
779 break;
780 }
781 Node n = p.next;
782 if (n != p)
783 p = n;
784 else {
785 count = 0;
786 p = head;
787 }
788 }
789 return count;
790 }
791
792 final class Itr implements Iterator<E> {
793 private Node nextNode; // next node to return item for
794 private E nextItem; // the corresponding item
795 private Node lastRet; // last returned node, to support remove
796 private Node lastPred; // predecessor to unlink lastRet
797
798 /**
799 * Moves to next node after prev, or first node if prev null.
800 */
801 private void advance(Node prev) {
802 /*
803 * To track and avoid buildup of deleted nodes in the face
804 * of calls to both Queue.remove and Itr.remove, we must
805 * include variants of unsplice and sweep upon each
806 * advance: Upon Itr.remove, we may need to catch up links
807 * from lastPred, and upon other removes, we might need to
808 * skip ahead from stale nodes and unsplice deleted ones
809 * found while advancing.
810 */
811
812 Node r, b; // reset lastPred upon possible deletion of lastRet
813 if ((r = lastRet) != null && !r.isMatched())
814 lastPred = r; // next lastPred is old lastRet
815 else if ((b = lastPred) == null || b.isMatched())
816 lastPred = null; // at start of list
817 else {
818 Node s, n; // help with removal of lastPred.next
819 while ((s = b.next) != null &&
820 s != b && s.isMatched() &&
821 (n = s.next) != null && n != s)
822 b.casNext(s, n);
823 }
824
825 this.lastRet = prev;
826
827 for (Node p = prev, s, n;;) {
828 s = (p == null) ? head : p.next;
829 if (s == null)
830 break;
831 else if (s == p) {
832 p = null;
833 continue;
834 }
835 Object item = s.item;
836 if (s.isData) {
837 if (item != null && item != s) {
838 nextItem = LinkedTransferQueue.<E>cast(item);
839 nextNode = s;
840 return;
841 }
842 }
843 else if (item == null)
844 break;
845 // assert s.isMatched();
846 if (p == null)
847 p = s;
848 else if ((n = s.next) == null)
849 break;
850 else if (s == n)
851 p = null;
852 else
853 p.casNext(s, n);
854 }
855 nextNode = null;
856 nextItem = null;
857 }
858
859 Itr() {
860 advance(null);
861 }
862
863 public final boolean hasNext() {
864 return nextNode != null;
865 }
866
867 public final E next() {
868 Node p = nextNode;
869 if (p == null) throw new NoSuchElementException();
870 E e = nextItem;
871 advance(p);
872 return e;
873 }
874
875 public final void remove() {
876 final Node lastRet = this.lastRet;
877 if (lastRet == null)
878 throw new IllegalStateException();
879 this.lastRet = null;
880 if (lastRet.tryMatchData())
881 unsplice(lastPred, lastRet);
882 }
883 }
884
885 /* -------------- Removal methods -------------- */
886
887 /**
888 * Unsplices (now or later) the given deleted/cancelled node with
889 * the given predecessor.
890 *
891 * @param pred a node that was at one time known to be the
892 * predecessor of s, or null or s itself if s is/was at head
893 * @param s the node to be unspliced
894 */
895 final void unsplice(Node pred, Node s) {
896 s.forgetContents(); // forget unneeded fields
897 /*
898 * See above for rationale. Briefly: if pred still points to
899 * s, try to unlink s. If s cannot be unlinked, because it is
900 * trailing node or pred might be unlinked, and neither pred
901 * nor s are head or offlist, add to sweepVotes, and if enough
902 * votes have accumulated, sweep.
903 */
904 if (pred != null && pred != s && pred.next == s) {
905 Node n = s.next;
906 if (n == null ||
907 (n != s && pred.casNext(s, n) && pred.isMatched())) {
908 for (;;) { // check if at, or could be, head
909 Node h = head;
910 if (h == pred || h == s || h == null)
911 return; // at head or list empty
912 if (!h.isMatched())
913 break;
914 Node hn = h.next;
915 if (hn == null)
916 return; // now empty
917 if (hn != h && casHead(h, hn))
918 h.forgetNext(); // advance head
919 }
920 if (pred.next != pred && s.next != s) { // recheck if offlist
921 for (;;) { // sweep now if enough votes
922 int v = sweepVotes;
923 if (v < SWEEP_THRESHOLD) {
924 if (casSweepVotes(v, v + 1))
925 break;
926 }
927 else if (casSweepVotes(v, 0)) {
928 sweep();
929 break;
930 }
931 }
932 }
933 }
934 }
935 }
936
937 /**
938 * Unlinks matched (typically cancelled) nodes encountered in a
939 * traversal from head.
940 */
941 private void sweep() {
942 for (Node p = head, s, n; p != null && (s = p.next) != null; ) {
943 if (!s.isMatched())
944 // Unmatched nodes are never self-linked
945 p = s;
946 else if ((n = s.next) == null) // trailing node is pinned
947 break;
948 else if (s == n) // stale
949 // No need to also check for p == s, since that implies s == n
950 p = head;
951 else
952 p.casNext(s, n);
953 }
954 }
955
956 /**
957 * Main implementation of remove(Object)
958 */
959 private boolean findAndRemove(Object e) {
960 if (e != null) {
961 for (Node pred = null, p = head; p != null; ) {
962 Object item = p.item;
963 if (p.isData) {
964 if (item != null && item != p && e.equals(item) &&
965 p.tryMatchData()) {
966 unsplice(pred, p);
967 return true;
968 }
969 }
970 else if (item == null)
971 break;
972 pred = p;
973 if ((p = p.next) == pred) { // stale
974 pred = null;
975 p = head;
976 }
977 }
978 }
979 return false;
980 }
981
982
983 /**
984 * Creates an initially empty {@code LinkedTransferQueue}.
985 */
986 public LinkedTransferQueue() {
987 }
988
989 /**
990 * Creates a {@code LinkedTransferQueue}
991 * initially containing the elements of the given collection,
992 * added in traversal order of the collection's iterator.
993 *
994 * @param c the collection of elements to initially contain
995 * @throws NullPointerException if the specified collection or any
996 * of its elements are null
997 */
998 public LinkedTransferQueue(Collection<? extends E> c) {
999 this();
1000 addAll(c);
1001 }
1002
1003 /**
1004 * Inserts the specified element at the tail of this queue.
1005 * As the queue is unbounded, this method will never block.
1006 *
1007 * @throws NullPointerException if the specified element is null
1008 */
1009 public void put(E e) {
1010 xfer(e, true, ASYNC, 0);
1011 }
1012
1013 /**
1014 * Inserts the specified element at the tail of this queue.
1015 * As the queue is unbounded, this method will never block or
1016 * return {@code false}.
1017 *
1018 * @return {@code true} (as specified by
1019 * {@link java.util.concurrent.BlockingQueue#offer(Object,long,TimeUnit)
1020 * BlockingQueue.offer})
1021 * @throws NullPointerException if the specified element is null
1022 */
1023 public boolean offer(E e, long timeout, TimeUnit unit) {
1024 xfer(e, true, ASYNC, 0);
1025 return true;
1026 }
1027
1028 /**
1029 * Inserts the specified element at the tail of this queue.
1030 * As the queue is unbounded, this method will never return {@code false}.
1031 *
1032 * @return {@code true} (as specified by {@link Queue#offer})
1033 * @throws NullPointerException if the specified element is null
1034 */
1035 public boolean offer(E e) {
1036 xfer(e, true, ASYNC, 0);
1037 return true;
1038 }
1039
1040 /**
1041 * Inserts the specified element at the tail of this queue.
1042 * As the queue is unbounded, this method will never throw
1043 * {@link IllegalStateException} or return {@code false}.
1044 *
1045 * @return {@code true} (as specified by {@link Collection#add})
1046 * @throws NullPointerException if the specified element is null
1047 */
1048 public boolean add(E e) {
1049 xfer(e, true, ASYNC, 0);
1050 return true;
1051 }
1052
1053 /**
1054 * Transfers the element to a waiting consumer immediately, if possible.
1055 *
1056 * <p>More precisely, transfers the specified element immediately
1057 * if there exists a consumer already waiting to receive it (in
1058 * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
1059 * otherwise returning {@code false} without enqueuing the element.
1060 *
1061 * @throws NullPointerException if the specified element is null
1062 */
1063 public boolean tryTransfer(E e) {
1064 return xfer(e, true, NOW, 0) == null;
1065 }
1066
1067 /**
1068 * Transfers the element to a consumer, waiting if necessary to do so.
1069 *
1070 * <p>More precisely, transfers the specified element immediately
1071 * if there exists a consumer already waiting to receive it (in
1072 * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
1073 * else inserts the specified element at the tail of this queue
1074 * and waits until the element is received by a consumer.
1075 *
1076 * @throws NullPointerException if the specified element is null
1077 */
1078 public void transfer(E e) throws InterruptedException {
1079 if (xfer(e, true, SYNC, 0) != null) {
1080 Thread.interrupted(); // failure possible only due to interrupt
1081 throw new InterruptedException();
1082 }
1083 }
1084
1085 /**
1086 * Transfers the element to a consumer if it is possible to do so
1087 * before the timeout elapses.
1088 *
1089 * <p>More precisely, transfers the specified element immediately
1090 * if there exists a consumer already waiting to receive it (in
1091 * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
1092 * else inserts the specified element at the tail of this queue
1093 * and waits until the element is received by a consumer,
1094 * returning {@code false} if the specified wait time elapses
1095 * before the element can be transferred.
1096 *
1097 * @throws NullPointerException if the specified element is null
1098 */
1099 public boolean tryTransfer(E e, long timeout, TimeUnit unit)
1100 throws InterruptedException {
1101 if (xfer(e, true, TIMED, unit.toNanos(timeout)) == null)
1102 return true;
1103 if (!Thread.interrupted())
1104 return false;
1105 throw new InterruptedException();
1106 }
1107
1108 public E take() throws InterruptedException {
1109 E e = xfer(null, false, SYNC, 0);
1110 if (e != null)
1111 return e;
1112 Thread.interrupted();
1113 throw new InterruptedException();
1114 }
1115
1116 public E poll(long timeout, TimeUnit unit) throws InterruptedException {
1117 E e = xfer(null, false, TIMED, unit.toNanos(timeout));
1118 if (e != null || !Thread.interrupted())
1119 return e;
1120 throw new InterruptedException();
1121 }
1122
1123 public E poll() {
1124 return xfer(null, false, NOW, 0);
1125 }
1126
1127 /**
1128 * @throws NullPointerException {@inheritDoc}
1129 * @throws IllegalArgumentException {@inheritDoc}
1130 */
1131 public int drainTo(Collection<? super E> c) {
1132 if (c == null)
1133 throw new NullPointerException();
1134 if (c == this)
1135 throw new IllegalArgumentException();
1136 int n = 0;
1137 for (E e; (e = poll()) != null;) {
1138 c.add(e);
1139 ++n;
1140 }
1141 return n;
1142 }
1143
1144 /**
1145 * @throws NullPointerException {@inheritDoc}
1146 * @throws IllegalArgumentException {@inheritDoc}
1147 */
1148 public int drainTo(Collection<? super E> c, int maxElements) {
1149 if (c == null)
1150 throw new NullPointerException();
1151 if (c == this)
1152 throw new IllegalArgumentException();
1153 int n = 0;
1154 for (E e; n < maxElements && (e = poll()) != null;) {
1155 c.add(e);
1156 ++n;
1157 }
1158 return n;
1159 }
1160
1161 /**
1162 * Returns an iterator over the elements in this queue in proper sequence.
1163 * The elements will be returned in order from first (head) to last (tail).
1164 *
1165 * <p>The returned iterator is a "weakly consistent" iterator that
1166 * will never throw {@link java.util.ConcurrentModificationException
1167 * ConcurrentModificationException}, and guarantees to traverse
1168 * elements as they existed upon construction of the iterator, and
1169 * may (but is not guaranteed to) reflect any modifications
1170 * subsequent to construction.
1171 *
1172 * @return an iterator over the elements in this queue in proper sequence
1173 */
1174 public Iterator<E> iterator() {
1175 return new Itr();
1176 }
1177
1178 public E peek() {
1179 return firstDataItem();
1180 }
1181
1182 /**
1183 * Returns {@code true} if this queue contains no elements.
1184 *
1185 * @return {@code true} if this queue contains no elements
1186 */
1187 public boolean isEmpty() {
1188 for (Node p = head; p != null; p = succ(p)) {
1189 if (!p.isMatched())
1190 return !p.isData;
1191 }
1192 return true;
1193 }
1194
1195 public boolean hasWaitingConsumer() {
1196 return firstOfMode(false) != null;
1197 }
1198
1199 /**
1200 * Returns the number of elements in this queue. If this queue
1201 * contains more than {@code Integer.MAX_VALUE} elements, returns
1202 * {@code Integer.MAX_VALUE}.
1203 *
1204 * <p>Beware that, unlike in most collections, this method is
1205 * <em>NOT</em> a constant-time operation. Because of the
1206 * asynchronous nature of these queues, determining the current
1207 * number of elements requires an O(n) traversal.
1208 *
1209 * @return the number of elements in this queue
1210 */
1211 public int size() {
1212 return countOfMode(true);
1213 }
1214
1215 public int getWaitingConsumerCount() {
1216 return countOfMode(false);
1217 }
1218
1219 /**
1220 * Removes a single instance of the specified element from this queue,
1221 * if it is present. More formally, removes an element {@code e} such
1222 * that {@code o.equals(e)}, if this queue contains one or more such
1223 * elements.
1224 * Returns {@code true} if this queue contained the specified element
1225 * (or equivalently, if this queue changed as a result of the call).
1226 *
1227 * @param o element to be removed from this queue, if present
1228 * @return {@code true} if this queue changed as a result of the call
1229 */
1230 public boolean remove(Object o) {
1231 return findAndRemove(o);
1232 }
1233
1234 /**
1235 * Returns {@code true} if this queue contains the specified element.
1236 * More formally, returns {@code true} if and only if this queue contains
1237 * at least one element {@code e} such that {@code o.equals(e)}.
1238 *
1239 * @param o object to be checked for containment in this queue
1240 * @return {@code true} if this queue contains the specified element
1241 */
1242 public boolean contains(Object o) {
1243 if (o == null) return false;
1244 for (Node p = head; p != null; p = succ(p)) {
1245 Object item = p.item;
1246 if (p.isData) {
1247 if (item != null && item != p && o.equals(item))
1248 return true;
1249 }
1250 else if (item == null)
1251 break;
1252 }
1253 return false;
1254 }
1255
1256 /**
1257 * Always returns {@code Integer.MAX_VALUE} because a
1258 * {@code LinkedTransferQueue} is not capacity constrained.
1259 *
1260 * @return {@code Integer.MAX_VALUE} (as specified by
1261 * {@link java.util.concurrent.BlockingQueue#remainingCapacity()
1262 * BlockingQueue.remainingCapacity})
1263 */
1264 public int remainingCapacity() {
1265 return Integer.MAX_VALUE;
1266 }
1267
1268 /**
1269 * Saves the state to a stream (that is, serializes it).
1270 *
1271 * @serialData All of the elements (each an {@code E}) in
1272 * the proper order, followed by a null
1273 * @param s the stream
1274 */
1275 private void writeObject(java.io.ObjectOutputStream s)
1276 throws java.io.IOException {
1277 s.defaultWriteObject();
1278 for (E e : this)
1279 s.writeObject(e);
1280 // Use trailing null as sentinel
1281 s.writeObject(null);
1282 }
1283
1284 /**
1285 * Reconstitutes the Queue instance from a stream (that is,
1286 * deserializes it).
1287 *
1288 * @param s the stream
1289 */
1290 private void readObject(java.io.ObjectInputStream s)
1291 throws java.io.IOException, ClassNotFoundException {
1292 s.defaultReadObject();
1293 for (;;) {
1294 @SuppressWarnings("unchecked")
1295 E item = (E) s.readObject();
1296 if (item == null)
1297 break;
1298 else
1299 offer(item);
1300 }
1301 }
1302
1303 // Unsafe mechanics
1304
1305 private static final sun.misc.Unsafe UNSAFE;
1306 private static final long headOffset;
1307 private static final long tailOffset;
1308 private static final long sweepVotesOffset;
1309 static {
1310 try {
1311 UNSAFE = getUnsafe();
1312 Class<?> k = LinkedTransferQueue.class;
1313 headOffset = UNSAFE.objectFieldOffset
1314 (k.getDeclaredField("head"));
1315 tailOffset = UNSAFE.objectFieldOffset
1316 (k.getDeclaredField("tail"));
1317 sweepVotesOffset = UNSAFE.objectFieldOffset
1318 (k.getDeclaredField("sweepVotes"));
1319 } catch (Exception e) {
1320 throw new Error(e);
1321 }
1322 }
1323
1324 /**
1325 * Returns a sun.misc.Unsafe. Suitable for use in a 3rd party package.
1326 * Replace with a simple call to Unsafe.getUnsafe when integrating
1327 * into a jdk.
1328 *
1329 * @return a sun.misc.Unsafe
1330 */
1331 static sun.misc.Unsafe getUnsafe() {
1332 try {
1333 return sun.misc.Unsafe.getUnsafe();
1334 } catch (SecurityException tryReflectionInstead) {}
1335 try {
1336 return java.security.AccessController.doPrivileged
1337 (new java.security.PrivilegedExceptionAction<sun.misc.Unsafe>() {
1338 public sun.misc.Unsafe run() throws Exception {
1339 Class<sun.misc.Unsafe> k = sun.misc.Unsafe.class;
1340 for (java.lang.reflect.Field f : k.getDeclaredFields()) {
1341 f.setAccessible(true);
1342 Object x = f.get(null);
1343 if (k.isInstance(x))
1344 return k.cast(x);
1345 }
1346 throw new NoSuchFieldError("the Unsafe");
1347 }});
1348 } catch (java.security.PrivilegedActionException e) {
1349 throw new RuntimeException("Could not initialize intrinsics",
1350 e.getCause());
1351 }
1352 }
1353 }