ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/Phaser.java
(Generate patch)

Comparing jsr166/src/jsr166y/Phaser.java (file contents):
Revision 1.1 by dl, Mon Jul 7 16:53:30 2008 UTC vs.
Revision 1.45 by jsr166, Tue Aug 25 16:50:24 2009 UTC

# Line 5 | Line 5
5   */
6  
7   package jsr166y;
8 < import jsr166y.forkjoin.*;
8 >
9   import java.util.concurrent.*;
10 < import java.util.concurrent.atomic.*;
10 >
11 > import java.util.concurrent.atomic.AtomicReference;
12   import java.util.concurrent.locks.LockSupport;
13  
14   /**
15 < * A reusable synchronization barrier, similar in functionality to a
16 < * {@link java.util.concurrent.CyclicBarrier}, but supporting more
17 < * flexible usage.
15 > * A reusable synchronization barrier, similar in functionality to
16 > * {@link java.util.concurrent.CyclicBarrier CyclicBarrier} and
17 > * {@link java.util.concurrent.CountDownLatch CountDownLatch}
18 > * but supporting more flexible usage.
19   *
20 < * <ul>
20 > * <p> <b>Registration.</b> Unlike the case for other barriers, the
21 > * number of parties <em>registered</em> to synchronize on a phaser
22 > * may vary over time.  Tasks may be registered at any time (using
23 > * methods {@link #register}, {@link #bulkRegister}, or forms of
24 > * constructors establishing initial numbers of parties), and
25 > * optionally deregistered upon any arrival (using {@link
26 > * #arriveAndDeregister}).  As is the case with most basic
27 > * synchronization constructs, registration and deregistration affect
28 > * only internal counts; they do not establish any further internal
29 > * bookkeeping, so tasks cannot query whether they are registered.
30 > * (However, you can introduce such bookkeeping by subclassing this
31 > * class.)
32   *
33 < * <li> The number of parties synchronizing on the barrier may vary
34 < * over time.  A task may register to be a party in a barrier at any
35 < * time, and may deregister upon arriving at the barrier.  As is the
36 < * case with most basic synchronization constructs, registration
37 < * and deregistration affect only internal counts; they do not
38 < * establish any further internal bookkeeping, so tasks cannot query
39 < * whether they are registered.
40 < *
41 < * <li> Each generation has an associated phase value, starting at
42 < * zero, and advancing when all parties reach the barrier (wrapping
43 < * around to zero after reaching <tt>Integer.MAX_VALUE</tt>).
31 < *
32 < * <li> Like a CyclicBarrier, a Phaser may be repeatedly awaited.
33 < * Method <tt>arriveAndAwaitAdvance</tt> has effect analogous to
34 < * <tt>CyclicBarrier.await</tt>.  However, Phasers separate two
35 < * aspects of coordination, that may be invoked independently:
33 > * <p> <b>Synchronization.</b> Like a {@code CyclicBarrier}, a {@code
34 > * Phaser} may be repeatedly awaited.  Method {@link
35 > * #arriveAndAwaitAdvance} has effect analogous to {@link
36 > * java.util.concurrent.CyclicBarrier#await CyclicBarrier.await}. Each
37 > * generation of a {@code Phaser} has an associated phase number. The
38 > * phase number starts at zero, and advances when all parties arrive
39 > * at the barrier, wrapping around to zero after reaching {@code
40 > * Integer.MAX_VALUE}. The use of phase numbers enables independent
41 > * control of actions upon arrival at a barrier and upon awaiting
42 > * others, via two kinds of methods that may be invoked by any
43 > * registered party:
44   *
45   * <ul>
46   *
47 < *   <li> Arriving at a barrier. Methods <tt>arrive</tt> and
48 < *       <tt>arriveAndDeregister</tt> do not block, but return
49 < *       the phase value on entry to the method.
50 < *
51 < *   <li> Awaiting others. Method <tt>awaitAdvance</tt> requires an
52 < *       argument indicating the entry phase, and returns when the
53 < *       barrier advances to a new phase.
47 > *   <li> <b>Arrival.</b> Methods {@link #arrive} and
48 > *       {@link #arriveAndDeregister} record arrival at a
49 > *       barrier. These methods do not block, but return an associated
50 > *       <em>arrival phase number</em>; that is, the phase number of
51 > *       the barrier to which the arrival applied. When the final
52 > *       party for a given phase arrives, an optional barrier action
53 > *       is performed and the phase advances.  Barrier actions,
54 > *       performed by the party triggering a phase advance, are
55 > *       arranged by overriding method {@link #onAdvance(int, int)},
56 > *       which also controls termination. Overriding this method is
57 > *       similar to, but more flexible than, providing a barrier
58 > *       action to a {@code CyclicBarrier}.
59 > *
60 > *   <li> <b>Waiting.</b> Method {@link #awaitAdvance} requires an
61 > *       argument indicating an arrival phase number, and returns when
62 > *       the barrier advances to (or is already at) a different phase.
63 > *       Unlike similar constructions using {@code CyclicBarrier},
64 > *       method {@code awaitAdvance} continues to wait even if the
65 > *       waiting thread is interrupted. Interruptible and timeout
66 > *       versions are also available, but exceptions encountered while
67 > *       tasks wait interruptibly or with timeout do not change the
68 > *       state of the barrier. If necessary, you can perform any
69 > *       associated recovery within handlers of those exceptions,
70 > *       often after invoking {@code forceTermination}.  Phasers may
71 > *       also be used by tasks executing in a {@link ForkJoinPool},
72 > *       which will ensure sufficient parallelism to execute tasks
73 > *       when others are blocked waiting for a phase to advance.
74 > *
75   * </ul>
76   *
77 + * <p> <b>Termination.</b> A {@code Phaser} may enter a
78 + * <em>termination</em> state in which all synchronization methods
79 + * immediately return without updating phaser state or waiting for
80 + * advance, and indicating (via a negative phase value) that execution
81 + * is complete.  Termination is triggered when an invocation of {@code
82 + * onAdvance} returns {@code true}.  As illustrated below, when
83 + * phasers control actions with a fixed number of iterations, it is
84 + * often convenient to override this method to cause termination when
85 + * the current phase number reaches a threshold. Method {@link
86 + * #forceTermination} is also available to abruptly release waiting
87 + * threads and allow them to terminate.
88   *
89 < * <li> Barrier actions, performed by the task triggering a phase
90 < * advance while others may be waiting, are arranged by overriding
91 < * method <tt>onAdvance</tt>, that also controls termination.
92 < *
93 < * <li> Phasers may enter a <em>termination</em> state in which all
94 < * await actions immediately return, indicating (via a negative phase
95 < * value) that execution is complete.  Termination is triggered by
56 < * executing the overridable <tt>onAdvance</tt> method that is invoked
57 < * each time the barrier is tripped. When a Phaser is controlling an
58 < * action with a fixed number of iterations, it is often convenient to
59 < * override this method to cause termination when the current phase
60 < * number reaches a threshold.  Method <tt>forceTermination</tt> is
61 < * also available to assist recovery actions upon failure.
62 < *
63 < * <li> Unlike most synchronizers, a Phaser may also be used with
64 < * ForkJoinTasks (as well as plain threads).
65 < *
66 < * <li> By default, <tt>awaitAdvance</tt> continues to wait even if
67 < * the current thread is interrupted. And unlike the case in
68 < * CyclicBarriers, exceptions encountered while tasks wait
69 < * interruptibly or with timeout do not change the state of the
70 < * barrier. If necessary, you can perform any associated recovery
71 < * within handlers of those exceptions.
89 > * <p> <b>Tiering.</b> Phasers may be <em>tiered</em> (i.e., arranged
90 > * in tree structures) to reduce contention. Phasers with large
91 > * numbers of parties that would otherwise experience heavy
92 > * synchronization contention costs may instead be set up so that
93 > * groups of sub-phasers share a common parent.  This may greatly
94 > * increase throughput even though it incurs greater per-operation
95 > * overhead.
96   *
97 < * </ul>
97 > * <p><b>Monitoring.</b> While synchronization methods may be invoked
98 > * only by registered parties, the current state of a phaser may be
99 > * monitored by any caller.  At any given moment there are {@link
100 > * #getRegisteredParties} parties in total, of which {@link
101 > * #getArrivedParties} have arrived at the current phase ({@link
102 > * #getPhase}).  When the remaining ({@link #getUnarrivedParties})
103 > * parties arrive, the phase advances.  The values returned by these
104 > * methods may reflect transient states and so are not in general
105 > * useful for synchronization control.  Method {@link #toString}
106 > * returns snapshots of these state queries in a form convenient for
107 > * informal monitoring.
108 > *
109 > * <p><b>Sample usages:</b>
110 > *
111 > * <p>A {@code Phaser} may be used instead of a {@code CountDownLatch}
112 > * to control a one-shot action serving a variable number of
113 > * parties. The typical idiom is for the method setting this up to
114 > * first register, then start the actions, then deregister, as in:
115 > *
116 > *  <pre> {@code
117 > * void runTasks(List<Runnable> tasks) {
118 > *   final Phaser phaser = new Phaser(1); // "1" to register self
119 > *   // create and start threads
120 > *   for (Runnable task : tasks) {
121 > *     phaser.register();
122 > *     new Thread() {
123 > *       public void run() {
124 > *         phaser.arriveAndAwaitAdvance(); // await all creation
125 > *         task.run();
126 > *       }
127 > *     }.start();
128 > *   }
129 > *
130 > *   // allow threads to start and deregister self
131 > *   phaser.arriveAndDeregister();
132 > * }}</pre>
133 > *
134 > * <p>One way to cause a set of threads to repeatedly perform actions
135 > * for a given number of iterations is to override {@code onAdvance}:
136 > *
137 > *  <pre> {@code
138 > * void startTasks(List<Runnable> tasks, final int iterations) {
139 > *   final Phaser phaser = new Phaser() {
140 > *     protected boolean onAdvance(int phase, int registeredParties) {
141 > *       return phase >= iterations || registeredParties == 0;
142 > *     }
143 > *   };
144 > *   phaser.register();
145 > *   for (final Runnable task : tasks) {
146 > *     phaser.register();
147 > *     new Thread() {
148 > *       public void run() {
149 > *         do {
150 > *           task.run();
151 > *           phaser.arriveAndAwaitAdvance();
152 > *         } while (!phaser.isTerminated());
153 > *       }
154 > *     }.start();
155 > *   }
156 > *   phaser.arriveAndDeregister(); // deregister self, don't wait
157 > * }}</pre>
158   *
159 < * <p><b>Sample usage:</b>
159 > * If the main task must later await termination, it
160 > * may re-register and then execute a similar loop:
161 > *  <pre> {@code
162 > *   // ...
163 > *   phaser.register();
164 > *   while (!phaser.isTerminated())
165 > *     phaser.arriveAndAwaitAdvance();}</pre>
166   *
167 < * <p>[todo: non-FJ example]
167 > * <p>Related constructions may be used to await particular phase numbers
168 > * in contexts where you are sure that the phase will never wrap around
169 > * {@code Integer.MAX_VALUE}. For example:
170   *
171 < * <p> A Phaser may be used to support a style of programming in
172 < * which a task waits for others to complete, without otherwise
173 < * needing to keep track of which tasks it is waiting for. This is
174 < * similar to the "sync" construct in Cilk and "clocks" in X10.
175 < * Special constructions based on such barriers are available using
176 < * the <tt>LinkedAsyncAction</tt> and <tt>CyclicAction</tt> classes,
177 < * but they can be useful in other contexts as well.  For a simple
178 < * (but not very useful) example, here is a variant of Fibonacci:
87 < *
88 < * <pre>
89 < * class BarrierFibonacci extends RecursiveAction {
90 < *   int argument, result;
91 < *   final Phaser parentBarrier;
92 < *   BarrierFibonacci(int n, Phaser parentBarrier) {
93 < *     this.argument = n;
94 < *     this.parentBarrier = parentBarrier;
95 < *     parentBarrier.register();
171 > *  <pre> {@code
172 > * void awaitPhase(Phaser phaser, int phase) {
173 > *   int p = phaser.register(); // assumes caller not already registered
174 > *   while (p < phase) {
175 > *     if (phaser.isTerminated())
176 > *       // ... deal with unexpected termination
177 > *     else
178 > *       p = phaser.arriveAndAwaitAdvance();
179   *   }
180 < *   protected void compute() {
181 < *     int n = argument;
182 < *     if (n &lt;= 1)
183 < *        result = n;
184 < *     else {
185 < *        Phaser childBarrier = new Phaser(1);
186 < *        BarrierFibonacci f1 = new BarrierFibonacci(n - 1, childBarrier);
187 < *        BarrierFibonacci f2 = new BarrierFibonacci(n - 2, childBarrier);
188 < *        f1.fork();
189 < *        f2.fork();
190 < *        childBarrier.arriveAndAwait();
191 < *        result = f1.result + f2.result;
180 > *   phaser.arriveAndDeregister();
181 > * }}</pre>
182 > *
183 > *
184 > * <p>To create a set of tasks using a tree of phasers,
185 > * you could use code of the following form, assuming a
186 > * Task class with a constructor accepting a phaser that
187 > * it registers for upon construction:
188 > *
189 > *  <pre> {@code
190 > * void build(Task[] actions, int lo, int hi, Phaser ph) {
191 > *   if (hi - lo > TASKS_PER_PHASER) {
192 > *     for (int i = lo; i < hi; i += TASKS_PER_PHASER) {
193 > *       int j = Math.min(i + TASKS_PER_PHASER, hi);
194 > *       build(actions, i, j, new Phaser(ph));
195   *     }
196 < *     parentBarrier.arriveAndDeregister();
196 > *   } else {
197 > *     for (int i = lo; i < hi; ++i)
198 > *       actions[i] = new Task(ph);
199 > *       // assumes new Task(ph) performs ph.register()
200   *   }
201   * }
202 + * // .. initially called, for n tasks via
203 + * build(new Task[n], 0, n, new Phaser());}</pre>
204 + *
205 + * The best value of {@code TASKS_PER_PHASER} depends mainly on
206 + * expected barrier synchronization rates. A value as low as four may
207 + * be appropriate for extremely small per-barrier task bodies (thus
208 + * high rates), or up to hundreds for extremely large ones.
209 + *
210   * </pre>
211   *
212   * <p><b>Implementation notes</b>: This implementation restricts the
213 < * maximum number of parties to 65535. Attempts to register
214 < * additional parties result in IllegalStateExceptions.  
213 > * maximum number of parties to 65535. Attempts to register additional
214 > * parties result in {@code IllegalStateException}. However, you can and
215 > * should create tiered phasers to accommodate arbitrarily large sets
216 > * of participants.
217 > *
218 > * @since 1.7
219 > * @author Doug Lea
220   */
221   public class Phaser {
222      /*
223       * This class implements an extension of X10 "clocks".  Thanks to
224 <     * Vijay Saraswat for the idea of applying it to ForkJoinTasks,
225 <     * and to Vivek Sarkar for enhancements to extend functionality.
224 >     * Vijay Saraswat for the idea, and to Vivek Sarkar for
225 >     * enhancements to extend functionality.
226       */
227  
228      /**
229       * Barrier state representation. Conceptually, a barrier contains
230       * four values:
231 <     *
231 >     *
232       * * parties -- the number of parties to wait (16 bits)
233       * * unarrived -- the number of parties yet to hit barrier (16 bits)
234       * * phase -- the generation of the barrier (31 bits)
235       * * terminated -- set if barrier is terminated (1 bit)
236       *
237       * However, to efficiently maintain atomicity, these values are
238 <     * packed into a single AtomicLong. Termination uses the sign bit
239 <     * of 32 bit representation of phase, so phase is set to -1 on
240 <     * termination.
241 <     */
242 <    private final AtomicLong state;
243 <
244 <    /**
143 <     * Head of Treiber stack for waiting nonFJ threads.
238 >     * packed into a single (atomic) long. Termination uses the sign
239 >     * bit of 32 bit representation of phase, so phase is set to -1 on
240 >     * termination. Good performance relies on keeping state decoding
241 >     * and encoding simple, and keeping race windows short.
242 >     *
243 >     * Note: there are some cheats in arrive() that rely on unarrived
244 >     * count being lowest 16 bits.
245       */
246 <    private final AtomicReference<QNode> head = new AtomicReference<QNode>();
246 >    private volatile long state;
247  
248 <    private static final int ushortBits = 16;
249 <    private static final int ushortMask =  (1 << ushortBits) - 1;
149 <    private static final int phaseMask = 0x7fffffff;
248 >    private static final int ushortMask = 0xffff;
249 >    private static final int phaseMask  = 0x7fffffff;
250  
251      private static int unarrivedOf(long s) {
252 <        return (int)(s & ushortMask);
252 >        return (int) (s & ushortMask);
253      }
254  
255      private static int partiesOf(long s) {
256 <        return (int)(s & (ushortMask << 16)) >>> 16;
256 >        return ((int) s) >>> 16;
257      }
258  
259      private static int phaseOf(long s) {
260 <        return (int)(s >>> 32);
260 >        return (int) (s >>> 32);
261      }
262  
263      private static int arrivedOf(long s) {
# Line 165 | Line 265 | public class Phaser {
265      }
266  
267      private static long stateFor(int phase, int parties, int unarrived) {
268 <        return (((long)phase) << 32) | ((parties << 16) | unarrived);
268 >        return ((((long) phase) << 32) | (((long) parties) << 16) |
269 >                (long) unarrived);
270      }
271  
272 <    private static IllegalStateException badBounds(int parties, int unarrived) {
273 <        return new IllegalStateException("Attempt to set " + unarrived +
274 <                                         " unarrived of " + parties + " parties");
272 >    private static long trippedStateFor(int phase, int parties) {
273 >        long lp = (long) parties;
274 >        return (((long) phase) << 32) | (lp << 16) | lp;
275      }
276  
277      /**
278 <     * Creates a new Phaser without any initially registered parties,
279 <     * and initial phase number 0.
278 >     * Returns message string for bad bounds exceptions.
279 >     */
280 >    private static String badBounds(int parties, int unarrived) {
281 >        return ("Attempt to set " + unarrived +
282 >                " unarrived of " + parties + " parties");
283 >    }
284 >
285 >    /**
286 >     * The parent of this phaser, or null if none
287 >     */
288 >    private final Phaser parent;
289 >
290 >    /**
291 >     * The root of phaser tree. Equals this if not in a tree.  Used to
292 >     * support faster state push-down.
293 >     */
294 >    private final Phaser root;
295 >
296 >    // Wait queues
297 >
298 >    /**
299 >     * Heads of Treiber stacks for waiting threads. To eliminate
300 >     * contention while releasing some threads while adding others, we
301 >     * use two of them, alternating across even and odd phases.
302 >     */
303 >    private final AtomicReference<QNode> evenQ = new AtomicReference<QNode>();
304 >    private final AtomicReference<QNode> oddQ  = new AtomicReference<QNode>();
305 >
306 >    private AtomicReference<QNode> queueFor(int phase) {
307 >        return ((phase & 1) == 0) ? evenQ : oddQ;
308 >    }
309 >
310 >    /**
311 >     * Returns current state, first resolving lagged propagation from
312 >     * root if necessary.
313 >     */
314 >    private long getReconciledState() {
315 >        return (parent == null) ? state : reconcileState();
316 >    }
317 >
318 >    /**
319 >     * Recursively resolves state.
320 >     */
321 >    private long reconcileState() {
322 >        Phaser p = parent;
323 >        long s = state;
324 >        if (p != null) {
325 >            while (unarrivedOf(s) == 0 && phaseOf(s) != phaseOf(root.state)) {
326 >                long parentState = p.getReconciledState();
327 >                int parentPhase = phaseOf(parentState);
328 >                int phase = phaseOf(s = state);
329 >                if (phase != parentPhase) {
330 >                    long next = trippedStateFor(parentPhase, partiesOf(s));
331 >                    if (casState(s, next)) {
332 >                        releaseWaiters(phase);
333 >                        s = next;
334 >                    }
335 >                }
336 >            }
337 >        }
338 >        return s;
339 >    }
340 >
341 >    /**
342 >     * Creates a new phaser without any initially registered parties,
343 >     * initial phase number 0, and no parent. Any thread using this
344 >     * phaser will need to first register for it.
345       */
346      public Phaser() {
347 <        state = new AtomicLong(stateFor(0, 0, 0));
347 >        this(null);
348      }
349  
350      /**
351 <     * Creates a new Phaser with the given numbers of registered
352 <     * unarrived parties and initial phase number 0.
353 <     * @param parties the number of parties required to trip barrier.
351 >     * Creates a new phaser with the given numbers of registered
352 >     * unarrived parties, initial phase number 0, and no parent.
353 >     *
354 >     * @param parties the number of parties required to trip barrier
355       * @throws IllegalArgumentException if parties less than zero
356 <     * or greater than the maximum number of parties supported.
356 >     * or greater than the maximum number of parties supported
357       */
358      public Phaser(int parties) {
359 +        this(null, parties);
360 +    }
361 +
362 +    /**
363 +     * Creates a new phaser with the given parent, without any
364 +     * initially registered parties. If parent is non-null this phaser
365 +     * is registered with the parent and its initial phase number is
366 +     * the same as that of parent phaser.
367 +     *
368 +     * @param parent the parent phaser
369 +     */
370 +    public Phaser(Phaser parent) {
371 +        int phase = 0;
372 +        this.parent = parent;
373 +        if (parent != null) {
374 +            this.root = parent.root;
375 +            phase = parent.register();
376 +        }
377 +        else
378 +            this.root = this;
379 +        this.state = trippedStateFor(phase, 0);
380 +    }
381 +
382 +    /**
383 +     * Creates a new phaser with the given parent and numbers of
384 +     * registered unarrived parties. If parent is non-null, this phaser
385 +     * is registered with the parent and its initial phase number is
386 +     * the same as that of parent phaser.
387 +     *
388 +     * @param parent the parent phaser
389 +     * @param parties the number of parties required to trip barrier
390 +     * @throws IllegalArgumentException if parties less than zero
391 +     * or greater than the maximum number of parties supported
392 +     */
393 +    public Phaser(Phaser parent, int parties) {
394          if (parties < 0 || parties > ushortMask)
395              throw new IllegalArgumentException("Illegal number of parties");
396 <        state = new AtomicLong(stateFor(0, parties, parties));
396 >        int phase = 0;
397 >        this.parent = parent;
398 >        if (parent != null) {
399 >            this.root = parent.root;
400 >            phase = parent.register();
401 >        }
402 >        else
403 >            this.root = this;
404 >        this.state = trippedStateFor(phase, parties);
405      }
406  
407      /**
408       * Adds a new unarrived party to this phaser.
409 <     * @return the current barrier phase number upon registration
409 >     *
410 >     * @return the arrival phase number to which this registration applied
411 >     * @throws IllegalStateException if attempting to register more
412 >     * than the maximum supported number of parties
413 >     */
414 >    public int register() {
415 >        return doRegister(1);
416 >    }
417 >
418 >    /**
419 >     * Adds the given number of new unarrived parties to this phaser.
420 >     *
421 >     * @param parties the number of parties required to trip barrier
422 >     * @return the arrival phase number to which this registration applied
423       * @throws IllegalStateException if attempting to register more
424 <     * than the maximum supported number of parties.
424 >     * than the maximum supported number of parties
425       */
426 <    public int register() { // increment both parties and unarrived
427 <        final AtomicLong state = this.state;
426 >    public int bulkRegister(int parties) {
427 >        if (parties < 0)
428 >            throw new IllegalArgumentException();
429 >        if (parties == 0)
430 >            return getPhase();
431 >        return doRegister(parties);
432 >    }
433 >
434 >    /**
435 >     * Shared code for register, bulkRegister
436 >     */
437 >    private int doRegister(int registrations) {
438 >        int phase;
439          for (;;) {
440 <            long s = state.get();
441 <            int phase = phaseOf(s);
442 <            int parties = partiesOf(s) + 1;
443 <            int unarrived = unarrivedOf(s) + 1;
440 >            long s = getReconciledState();
441 >            phase = phaseOf(s);
442 >            int unarrived = unarrivedOf(s) + registrations;
443 >            int parties = partiesOf(s) + registrations;
444 >            if (phase < 0)
445 >                break;
446              if (parties > ushortMask || unarrived > ushortMask)
447 <                throw badBounds(parties, unarrived);
448 <            if (state.compareAndSet(s, stateFor(phase, parties, unarrived)))
449 <                return phase;
447 >                throw new IllegalStateException(badBounds(parties, unarrived));
448 >            if (phase == phaseOf(root.state) &&
449 >                casState(s, stateFor(phase, parties, unarrived)))
450 >                break;
451          }
452 +        return phase;
453      }
454  
455      /**
456       * Arrives at the barrier, but does not wait for others.  (You can
457 <     * in turn wait for others via {@link #awaitAdvance}).
457 >     * in turn wait for others via {@link #awaitAdvance}).  It is an
458 >     * unenforced usage error for an unregistered party to invoke this
459 >     * method.
460       *
461 <     * @return the current barrier phase number upon entry to
462 <     * this method, or a negative value if terminated;
463 <     * @throws IllegalStateException if the number of unarrived
224 <     * parties would become negative.
461 >     * @return the arrival phase number, or a negative value if terminated
462 >     * @throws IllegalStateException if not terminated and the number
463 >     * of unarrived parties would become negative
464       */
465 <    public int arrive() { // decrement unarrived. If zero, trip
466 <        final AtomicLong state = this.state;
465 >    public int arrive() {
466 >        int phase;
467          for (;;) {
468 <            long s = state.get();
469 <            int phase = phaseOf(s);
468 >            long s = state;
469 >            phase = phaseOf(s);
470 >            if (phase < 0)
471 >                break;
472              int parties = partiesOf(s);
473              int unarrived = unarrivedOf(s) - 1;
474 <            if (unarrived < 0)
475 <                throw badBounds(parties, unarrived);
476 <            if (unarrived == 0 && phase >= 0) {
236 <                trip(phase, parties);
237 <                return phase;
474 >            if (unarrived > 0) {        // Not the last arrival
475 >                if (casState(s, s - 1)) // s-1 adds one arrival
476 >                    break;
477              }
478 <            if (state.compareAndSet(s, stateFor(phase, parties, unarrived)))
479 <                return phase;
478 >            else if (unarrived == 0) {  // the last arrival
479 >                Phaser par = parent;
480 >                if (par == null) {      // directly trip
481 >                    if (casState
482 >                        (s,
483 >                         trippedStateFor(onAdvance(phase, parties) ? -1 :
484 >                                         ((phase + 1) & phaseMask), parties))) {
485 >                        releaseWaiters(phase);
486 >                        break;
487 >                    }
488 >                }
489 >                else {                  // cascade to parent
490 >                    if (casState(s, s - 1)) { // zeroes unarrived
491 >                        par.arrive();
492 >                        reconcileState();
493 >                        break;
494 >                    }
495 >                }
496 >            }
497 >            else if (phase != phaseOf(root.state)) // or if unreconciled
498 >                reconcileState();
499 >            else
500 >                throw new IllegalStateException(badBounds(parties, unarrived));
501          }
502 +        return phase;
503      }
504  
505      /**
506 <     * Arrives at the barrier, and deregisters from it, without
507 <     * waiting for others.
506 >     * Arrives at the barrier and deregisters from it without waiting
507 >     * for others. Deregistration reduces the number of parties
508 >     * required to trip the barrier in future phases.  If this phaser
509 >     * has a parent, and deregistration causes this phaser to have
510 >     * zero parties, this phaser also arrives at and is deregistered
511 >     * from its parent.  It is an unenforced usage error for an
512 >     * unregistered party to invoke this method.
513       *
514 <     * @return the current barrier phase number upon entry to
515 <     * this method, or a negative value if terminated;
516 <     * @throws IllegalStateException if the number of registered or
517 <     * unarrived parties would become negative.
518 <     */
519 <    public int arriveAndDeregister() { // Same as arrive, plus decrement parties
520 <        final AtomicLong state = this.state;
514 >     * @return the arrival phase number, or a negative value if terminated
515 >     * @throws IllegalStateException if not terminated and the number
516 >     * of registered or unarrived parties would become negative
517 >     */
518 >    public int arriveAndDeregister() {
519 >        // similar code to arrive, but too different to merge
520 >        Phaser par = parent;
521 >        int phase;
522          for (;;) {
523 <            long s = state.get();
524 <            int phase = phaseOf(s);
523 >            long s = state;
524 >            phase = phaseOf(s);
525 >            if (phase < 0)
526 >                break;
527              int parties = partiesOf(s) - 1;
528              int unarrived = unarrivedOf(s) - 1;
529 <            if (parties < 0 || unarrived < 0)
530 <                throw badBounds(parties, unarrived);
531 <            if (unarrived == 0 && phase >= 0) {
532 <                trip(phase, parties);
533 <                return phase;
529 >            if (parties >= 0) {
530 >                if (unarrived > 0 || (unarrived == 0 && par != null)) {
531 >                    if (casState
532 >                        (s,
533 >                         stateFor(phase, parties, unarrived))) {
534 >                        if (unarrived == 0) {
535 >                            par.arriveAndDeregister();
536 >                            reconcileState();
537 >                        }
538 >                        break;
539 >                    }
540 >                    continue;
541 >                }
542 >                if (unarrived == 0) {
543 >                    if (casState
544 >                        (s,
545 >                         trippedStateFor(onAdvance(phase, parties) ? -1 :
546 >                                         ((phase + 1) & phaseMask), parties))) {
547 >                        releaseWaiters(phase);
548 >                        break;
549 >                    }
550 >                    continue;
551 >                }
552 >                if (par != null && phase != phaseOf(root.state)) {
553 >                    reconcileState();
554 >                    continue;
555 >                }
556              }
557 <            if (state.compareAndSet(s, stateFor(phase, parties, unarrived)))
267 <                return phase;
557 >            throw new IllegalStateException(badBounds(parties, unarrived));
558          }
559 +        return phase;
560      }
561  
562      /**
563 <     * Arrives at the barrier and awaits others. Unlike other arrival
564 <     * methods, this method returns the arrival index of the
565 <     * caller. The caller tripping the barrier returns zero, the
566 <     * previous caller 1, and so on.
567 <     * @return the arrival index
568 <     * @throws IllegalStateException if the number of unarrived
569 <     * parties would become negative.
563 >     * Arrives at the barrier and awaits others. Equivalent in effect
564 >     * to {@code awaitAdvance(arrive())}.  If you need to await with
565 >     * interruption or timeout, you can arrange this with an analogous
566 >     * construction using one of the other forms of the awaitAdvance
567 >     * method.  If instead you need to deregister upon arrival use
568 >     * {@code arriveAndDeregister}. It is an unenforced usage error
569 >     * for an unregistered party to invoke this method.
570 >     *
571 >     * @return the arrival phase number, or a negative number if terminated
572 >     * @throws IllegalStateException if not terminated and the number
573 >     * of unarrived parties would become negative
574       */
575      public int arriveAndAwaitAdvance() {
576 <        final AtomicLong state = this.state;
282 <        for (;;) {
283 <            long s = state.get();
284 <            int phase = phaseOf(s);
285 <            int parties = partiesOf(s);
286 <            int unarrived = unarrivedOf(s) - 1;
287 <            if (unarrived < 0)
288 <                throw badBounds(parties, unarrived);
289 <            if (unarrived == 0 && phase >= 0) {
290 <                trip(phase, parties);
291 <                return 0;
292 <            }
293 <            if (state.compareAndSet(s, stateFor(phase, parties, unarrived))) {
294 <                awaitAdvance(phase);
295 <                return unarrived;
296 <            }
297 <        }
576 >        return awaitAdvance(arrive());
577      }
578  
579      /**
580 <     * Awaits the phase of the barrier to advance from the given
581 <     * value, or returns immediately if this barrier is terminated
582 <     * @param phase the phase on entry to this method
583 <     * @return the phase on exit from this method
580 >     * Awaits the phase of the barrier to advance from the given phase
581 >     * value, returning immediately if the current phase of the
582 >     * barrier is not equal to the given phase value or this barrier
583 >     * is terminated.  It is an unenforced usage error for an
584 >     * unregistered party to invoke this method.
585 >     *
586 >     * @param phase an arrival phase number, or negative value if
587 >     * terminated; this argument is normally the value returned by a
588 >     * previous call to {@code arrive} or its variants
589 >     * @return the next arrival phase number, or a negative value
590 >     * if terminated or argument is negative
591       */
592      public int awaitAdvance(int phase) {
593          if (phase < 0)
594              return phase;
595 <        Thread current = Thread.currentThread();
596 <        if (current instanceof ForkJoinWorkerThread)
597 <            return helpingWait(phase);
598 <        if (untimedWait(current, phase, false))
599 <            current.interrupt();
600 <        return phaseOf(state.get());
595 >        long s = getReconciledState();
596 >        int p = phaseOf(s);
597 >        if (p != phase)
598 >            return p;
599 >        if (unarrivedOf(s) == 0 && parent != null)
600 >            parent.awaitAdvance(phase);
601 >        // Fall here even if parent waited, to reconcile and help release
602 >        return untimedWait(phase);
603      }
604  
605      /**
606 <     * Awaits the phase of the barrier to advance from the given
607 <     * value, or returns immediately if this barrier is terminated, or
608 <     * throws InterruptedException if interrupted while waiting.
609 <     * @param phase the phase on entry to this method
610 <     * @return the phase on exit from this method
606 >     * Awaits the phase of the barrier to advance from the given phase
607 >     * value, throwing {@code InterruptedException} if interrupted
608 >     * while waiting, or returning immediately if the current phase of
609 >     * the barrier is not equal to the given phase value or this
610 >     * barrier is terminated. It is an unenforced usage error for an
611 >     * unregistered party to invoke this method.
612 >     *
613 >     * @param phase an arrival phase number, or negative value if
614 >     * terminated; this argument is normally the value returned by a
615 >     * previous call to {@code arrive} or its variants
616 >     * @return the next arrival phase number, or a negative value
617 >     * if terminated or argument is negative
618       * @throws InterruptedException if thread interrupted while waiting
619       */
620 <    public int awaitAdvanceInterruptibly(int phase) throws InterruptedException {
620 >    public int awaitAdvanceInterruptibly(int phase)
621 >        throws InterruptedException {
622          if (phase < 0)
623              return phase;
624 <        Thread current = Thread.currentThread();
625 <        if (current instanceof ForkJoinWorkerThread)
626 <            return helpingWait(phase);
627 <        else if (Thread.interrupted() || untimedWait(current, phase, true))
628 <            throw new InterruptedException();
629 <        else
630 <            return phaseOf(state.get());
624 >        long s = getReconciledState();
625 >        int p = phaseOf(s);
626 >        if (p != phase)
627 >            return p;
628 >        if (unarrivedOf(s) == 0 && parent != null)
629 >            parent.awaitAdvanceInterruptibly(phase);
630 >        return interruptibleWait(phase);
631      }
632  
633      /**
634 <     * Awaits the phase of the barrier to advance from the given value
635 <     * or the given timeout elapses, or returns immediately if this
636 <     * barrier is terminated
637 <     * @param phase the phase on entry to this method
638 <     * @return the phase on exit from this method
634 >     * Awaits the phase of the barrier to advance from the given phase
635 >     * value or the given timeout to elapse, throwing {@code
636 >     * InterruptedException} if interrupted while waiting, or
637 >     * returning immediately if the current phase of the barrier is
638 >     * not equal to the given phase value or this barrier is
639 >     * terminated.  It is an unenforced usage error for an
640 >     * unregistered party to invoke this method.
641 >     *
642 >     * @param phase an arrival phase number, or negative value if
643 >     * terminated; this argument is normally the value returned by a
644 >     * previous call to {@code arrive} or its variants
645 >     * @param timeout how long to wait before giving up, in units of
646 >     *        {@code unit}
647 >     * @param unit a {@code TimeUnit} determining how to interpret the
648 >     *        {@code timeout} parameter
649 >     * @return the next arrival phase number, or a negative value
650 >     * if terminated or argument is negative
651       * @throws InterruptedException if thread interrupted while waiting
652       * @throws TimeoutException if timed out while waiting
653       */
654 <    public int awaitAdvanceInterruptibly(int phase, long timeout, TimeUnit unit)
654 >    public int awaitAdvanceInterruptibly(int phase,
655 >                                         long timeout, TimeUnit unit)
656          throws InterruptedException, TimeoutException {
657          if (phase < 0)
658              return phase;
659 <        long nanos = unit.toNanos(timeout);
660 <        Thread current = Thread.currentThread();
661 <        if (current instanceof ForkJoinWorkerThread)
662 <            return timedHelpingWait(phase, nanos);
663 <        timedWait(current, phase, nanos);
664 <        return phaseOf(state.get());
659 >        long s = getReconciledState();
660 >        int p = phaseOf(s);
661 >        if (p != phase)
662 >            return p;
663 >        if (unarrivedOf(s) == 0 && parent != null)
664 >            parent.awaitAdvanceInterruptibly(phase, timeout, unit);
665 >        return timedWait(phase, unit.toNanos(timeout));
666      }
667  
668      /**
669       * Forces this barrier to enter termination state. Counts of
670 <     * arrived and registered parties are unaffected. This method may
671 <     * be useful for coordinating recovery after one or more tasks
672 <     * encounter unexpected exceptions.
670 >     * arrived and registered parties are unaffected. If this phaser
671 >     * has a parent, it too is terminated. This method may be useful
672 >     * for coordinating recovery after one or more tasks encounter
673 >     * unexpected exceptions.
674       */
675      public void forceTermination() {
365        final AtomicLong state = this.state;
676          for (;;) {
677 <            long s = state.get();
677 >            long s = getReconciledState();
678              int phase = phaseOf(s);
679              int parties = partiesOf(s);
680              int unarrived = unarrivedOf(s);
681              if (phase < 0 ||
682 <                state.compareAndSet(s, stateFor(-1, parties, unarrived))) {
683 <                if (head.get() != null)
684 <                    releaseWaiters(-1);
682 >                casState(s, stateFor(-1, parties, unarrived))) {
683 >                releaseWaiters(0);
684 >                releaseWaiters(1);
685 >                if (parent != null)
686 >                    parent.forceTermination();
687                  return;
688              }
689          }
690      }
691  
692      /**
381     * Resets the barrier with the given numbers of registered unarrived
382     * parties and phase number 0. This method allows repeated reuse
383     * of this barrier, but only if it is somehow known not to be in
384     * use for other purposes.
385     * @param parties the number of parties required to trip barrier.
386     * @throws IllegalArgumentException if parties less than zero
387     * or greater than the maximum number of parties supported.
388     */
389    public void reset(int parties) {
390        if (parties < 0 || parties > ushortMask)
391            throw new IllegalArgumentException("Illegal number of parties");
392        state.set(stateFor(0, parties, parties));
393        if (head.get() != null)
394            releaseWaiters(0);
395    }
396
397    /**
693       * Returns the current phase number. The maximum phase number is
694 <     * <tt>Integer.MAX_VALUE</tt>, after which it restarts at
694 >     * {@code Integer.MAX_VALUE}, after which it restarts at
695       * zero. Upon termination, the phase number is negative.
696 +     *
697       * @return the phase number, or a negative value if terminated
698       */
699 <    public int getPhase() {
700 <        return phaseOf(state.get());
699 >    public final int getPhase() {
700 >        return phaseOf(getReconciledState());
701      }
702  
703      /**
704       * Returns the number of parties registered at this barrier.
705 +     *
706       * @return the number of parties
707       */
708      public int getRegisteredParties() {
709 <        return partiesOf(state.get());
709 >        return partiesOf(state);
710      }
711  
712      /**
713 <     * Returns the number of parties that have arrived at the current
714 <     * phase of this barrier.
713 >     * Returns the number of registered parties that have arrived at
714 >     * the current phase of this barrier.
715 >     *
716       * @return the number of arrived parties
717       */
718      public int getArrivedParties() {
719 <        return arrivedOf(state.get());
719 >        return arrivedOf(state);
720      }
721  
722      /**
723       * Returns the number of registered parties that have not yet
724       * arrived at the current phase of this barrier.
725 +     *
726       * @return the number of unarrived parties
727       */
728      public int getUnarrivedParties() {
729 <        return unarrivedOf(state.get());
729 >        return unarrivedOf(state);
730 >    }
731 >
732 >    /**
733 >     * Returns the parent of this phaser, or {@code null} if none.
734 >     *
735 >     * @return the parent of this phaser, or {@code null} if none
736 >     */
737 >    public Phaser getParent() {
738 >        return parent;
739 >    }
740 >
741 >    /**
742 >     * Returns the root ancestor of this phaser, which is the same as
743 >     * this phaser if it has no parent.
744 >     *
745 >     * @return the root ancestor of this phaser
746 >     */
747 >    public Phaser getRoot() {
748 >        return root;
749      }
750  
751      /**
752 <     * Returns true if this barrier has been terminated
753 <     * @return true if this barrier has been terminated
752 >     * Returns {@code true} if this barrier has been terminated.
753 >     *
754 >     * @return {@code true} if this barrier has been terminated
755       */
756      public boolean isTerminated() {
757 <        return phaseOf(state.get()) < 0;
757 >        return getPhase() < 0;
758      }
759  
760      /**
761 <     * Overridable method to perform an action upon phase advance, and
762 <     * to control termination. This method is invoked whenever the
763 <     * barrier is tripped (and thus all other waiting parties are
764 <     * dormant). If it returns true, then, rather than advance the
765 <     * phase number, this barrier will be set to a final termination
766 <     * state, and subsequent calls to <tt>isTerminated</tt> will
767 <     * return true.
768 <     *
769 <     * <p> The default version returns true when the number of
761 >     * Overridable method to perform an action upon impending phase
762 >     * advance, and to control termination. This method is invoked
763 >     * upon arrival of the party tripping the barrier (when all other
764 >     * waiting parties are dormant).  If this method returns {@code
765 >     * true}, then, rather than advance the phase number, this barrier
766 >     * will be set to a final termination state, and subsequent calls
767 >     * to {@link #isTerminated} will return true. Any (unchecked)
768 >     * Exception or Error thrown by an invocation of this method is
769 >     * propagated to the party attempting to trip the barrier, in
770 >     * which case no advance occurs.
771 >     *
772 >     * <p>The arguments to this method provide the state of the phaser
773 >     * prevailing for the current transition. (When called from within
774 >     * an implementation of {@code onAdvance} the values returned by
775 >     * methods such as {@code getPhase} may or may not reliably
776 >     * indicate the state to which this transition applies.)
777 >     *
778 >     * <p>The default version returns {@code true} when the number of
779       * registered parties is zero. Normally, overrides that arrange
780       * termination for other reasons should also preserve this
781       * property.
782       *
783 +     * <p>You may override this method to perform an action with side
784 +     * effects visible to participating tasks, but doing so requires
785 +     * care: Method {@code onAdvance} may be invoked more than once
786 +     * per transition.  Further, unless all parties register before
787 +     * any arrive, and all {@link #awaitAdvance} at each phase, then
788 +     * you cannot ensure lack of interference from other parties
789 +     * during the invocation of this method.
790 +     *
791       * @param phase the phase number on entering the barrier
792 <     * @param registeredParties the current number of registered
793 <     * parties.
458 <     * @return true if this barrier should terminate
792 >     * @param registeredParties the current number of registered parties
793 >     * @return {@code true} if this barrier should terminate
794       */
795      protected boolean onAdvance(int phase, int registeredParties) {
796          return registeredParties <= 0;
797      }
798  
799      /**
800 <     * Returns a string identifying this barrier, as well as its
800 >     * Returns a string identifying this phaser, as well as its
801       * state.  The state, in brackets, includes the String {@code
802 <     * "phase ="} followed by the phase number, {@code "parties ="}
802 >     * "phase = "} followed by the phase number, {@code "parties = "}
803       * followed by the number of registered parties, and {@code
804 <     * "arrived ="} followed by the number of arrived parties
804 >     * "arrived = "} followed by the number of arrived parties.
805       *
806       * @return a string identifying this barrier, as well as its state
807       */
808      public String toString() {
809 <        long s = state.get();
810 <        return super.toString() + "[phase = " + phaseOf(s) + " parties = " + partiesOf(s) + " arrived = " + arrivedOf(s) + "]";
809 >        long s = getReconciledState();
810 >        return super.toString() +
811 >            "[phase = " + phaseOf(s) +
812 >            " parties = " + partiesOf(s) +
813 >            " arrived = " + arrivedOf(s) + "]";
814      }
815  
816 <    // methods for tripping and waiting
816 >    // methods for waiting
817  
818      /**
819 <     * Advance the current phase (or terminate)
819 >     * Wait nodes for Treiber stack representing wait queue
820       */
821 <    private void trip(int phase, int parties) {
822 <        int next = onAdvance(phase, parties)? -1 : ((phase + 1) & phaseMask);
823 <        state.set(stateFor(next, parties, parties));
824 <        if (head.get() != null)
825 <            releaseWaiters(next);
826 <    }
827 <
828 <    private int helpingWait(int phase) {
829 <        final AtomicLong state = this.state;
830 <        int p;
831 <        while ((p = phaseOf(state.get())) == phase) {
832 <            ForkJoinTask<?> t = ForkJoinWorkerThread.pollTask();
833 <            if (t != null) {
834 <                if ((p = phaseOf(state.get())) == phase)
835 <                    t.exec();
836 <                else {   // push task and exit if barrier advanced
837 <                    t.fork();
838 <                    break;
839 <                }
502 <            }
821 >    static final class QNode implements ForkJoinPool.ManagedBlocker {
822 >        final Phaser phaser;
823 >        final int phase;
824 >        final long startTime;
825 >        final long nanos;
826 >        final boolean timed;
827 >        final boolean interruptible;
828 >        volatile boolean wasInterrupted = false;
829 >        volatile Thread thread; // nulled to cancel wait
830 >        QNode next;
831 >        QNode(Phaser phaser, int phase, boolean interruptible,
832 >              boolean timed, long startTime, long nanos) {
833 >            this.phaser = phaser;
834 >            this.phase = phase;
835 >            this.timed = timed;
836 >            this.interruptible = interruptible;
837 >            this.startTime = startTime;
838 >            this.nanos = nanos;
839 >            thread = Thread.currentThread();
840          }
841 <        return p;
842 <    }
843 <
844 <    private int timedHelpingWait(int phase, long nanos) throws TimeoutException {
845 <        final AtomicLong state = this.state;
846 <        long lastTime = System.nanoTime();
847 <        int p;
848 <        while ((p = phaseOf(state.get())) == phase) {
849 <            long now = System.nanoTime();
850 <            nanos -= now - lastTime;
851 <            lastTime = now;
515 <            if (nanos <= 0) {
516 <                if ((p = phaseOf(state.get())) == phase)
517 <                    throw new TimeoutException();
518 <                else
519 <                    break;
841 >        public boolean isReleasable() {
842 >            return (thread == null ||
843 >                    phaser.getPhase() != phase ||
844 >                    (interruptible && wasInterrupted) ||
845 >                    (timed && (nanos - (System.nanoTime() - startTime)) <= 0));
846 >        }
847 >        public boolean block() {
848 >            if (Thread.interrupted()) {
849 >                wasInterrupted = true;
850 >                if (interruptible)
851 >                    return true;
852              }
853 <            ForkJoinTask<?> t = ForkJoinWorkerThread.pollTask();
853 >            if (!timed)
854 >                LockSupport.park(this);
855 >            else {
856 >                long waitTime = nanos - (System.nanoTime() - startTime);
857 >                if (waitTime <= 0)
858 >                    return true;
859 >                LockSupport.parkNanos(this, waitTime);
860 >            }
861 >            return isReleasable();
862 >        }
863 >        void signal() {
864 >            Thread t = thread;
865              if (t != null) {
866 <                if ((p = phaseOf(state.get())) == phase)
867 <                    t.exec();
868 <                else {   // push task and exit if barrier advanced
869 <                    t.fork();
870 <                    break;
866 >                thread = null;
867 >                LockSupport.unpark(t);
868 >            }
869 >        }
870 >        boolean doWait() {
871 >            if (thread != null) {
872 >                try {
873 >                    ForkJoinPool.managedBlock(this, false);
874 >                } catch (InterruptedException ie) {
875                  }
876              }
877 +            return wasInterrupted;
878          }
879 <        return p;
879 >
880      }
881  
882      /**
883 <     * Wait nodes for Treiber stack representing wait queue for non-FJ
536 <     * tasks. The waiting scheme is an adaptation of the one used in
537 <     * forkjoin.PoolBarrier.
883 >     * Removes and signals waiting threads from wait queue.
884       */
885 <    static final class QNode {
886 <        QNode next;
887 <        volatile Thread thread; // nulled to cancel wait
888 <        final int phase;
889 <        QNode(Thread t, int c) {
890 <            thread = t;
545 <            phase = c;
546 <        }
547 <    }
548 <
549 <    private void releaseWaiters(int currentPhase) {
550 <        final AtomicReference<QNode> head = this.head;
551 <        QNode p;
552 <        while ((p = head.get()) != null && p.phase != currentPhase) {
553 <            if (head.compareAndSet(p, null)) {
554 <                do {
555 <                    Thread t = p.thread;
556 <                    if (t != null) {
557 <                        p.thread = null;
558 <                        LockSupport.unpark(t);
559 <                    }
560 <                } while ((p = p.next) != null);
561 <            }
885 >    private void releaseWaiters(int phase) {
886 >        AtomicReference<QNode> head = queueFor(phase);
887 >        QNode q;
888 >        while ((q = head.get()) != null) {
889 >            if (head.compareAndSet(q, q.next))
890 >                q.signal();
891          }
892      }
893  
565    /** The number of CPUs, for spin control */
566    static final int NCPUS = Runtime.getRuntime().availableProcessors();
567
894      /**
895 <     * The number of times to spin before blocking in timed waits.
896 <     * The value is empirically derived
897 <     */
572 <    static final int maxTimedSpins = (NCPUS < 2)? 0 : 32;
573 <
574 <    /**
575 <     * The number of times to spin before blocking in untimed waits.
576 <     * This is greater than timed value because untimed waits spin
577 <     * faster since they don't need to check times on each spin.
895 >     * Tries to enqueue given node in the appropriate wait queue.
896 >     *
897 >     * @return true if successful
898       */
899 <    static final int maxUntimedSpins = maxTimedSpins * 32;
899 >    private boolean tryEnqueue(QNode node) {
900 >        AtomicReference<QNode> head = queueFor(node.phase);
901 >        return head.compareAndSet(node.next = head.get(), node);
902 >    }
903  
904      /**
905 <     * The number of nanoseconds for which it is faster to spin
906 <     * rather than to use timed park. A rough estimate suffices.
905 >     * Enqueues node and waits unless aborted or signalled.
906 >     *
907 >     * @return current phase
908       */
909 <    static final long spinForTimeoutThreshold = 1000L;
909 >    private int untimedWait(int phase) {
910 >        QNode node = null;
911 >        boolean queued = false;
912 >        boolean interrupted = false;
913 >        int p;
914 >        while ((p = getPhase()) == phase) {
915 >            if (Thread.interrupted())
916 >                interrupted = true;
917 >            else if (node == null)
918 >                node = new QNode(this, phase, false, false, 0, 0);
919 >            else if (!queued)
920 >                queued = tryEnqueue(node);
921 >            else
922 >                interrupted = node.doWait();
923 >        }
924 >        if (node != null)
925 >            node.thread = null;
926 >        releaseWaiters(phase);
927 >        if (interrupted)
928 >            Thread.currentThread().interrupt();
929 >        return p;
930 >    }
931  
932      /**
933 <     * Enqueues node and waits unless aborted or signalled.
933 >     * Interruptible version
934 >     * @return current phase
935       */
936 <    private boolean untimedWait(Thread thread, int currentPhase,
591 <                               boolean abortOnInterrupt) {
592 <        final AtomicReference<QNode> head = this.head;
593 <        final AtomicLong state = this.state;
594 <        boolean wasInterrupted = false;
936 >    private int interruptibleWait(int phase) throws InterruptedException {
937          QNode node = null;
938          boolean queued = false;
939 <        int spins = maxUntimedSpins;
940 <        while (phaseOf(state.get()) == currentPhase) {
941 <            QNode h;
942 <            if (node != null && queued) {
943 <                if (node.thread != null) {
944 <                    LockSupport.park();
945 <                    if (Thread.interrupted()) {
946 <                        wasInterrupted = true;
947 <                        if (abortOnInterrupt)
606 <                            break;
607 <                    }
608 <                }
609 <            }
610 <            else if ((h = head.get()) != null && h.phase != currentPhase) {
611 <                if (phaseOf(state.get()) == currentPhase) { // must recheck
612 <                    if (head.compareAndSet(h, h.next)) {
613 <                        Thread t = h.thread; // help clear out old waiters
614 <                        if (t != null) {
615 <                            h.thread = null;
616 <                            LockSupport.unpark(t);
617 <                        }
618 <                    }
619 <                }
620 <                else
621 <                    break;
622 <            }
623 <            else if (node != null)
624 <                queued = head.compareAndSet(node.next = h, node);
625 <            else if (spins <= 0)
626 <                node = new QNode(thread, currentPhase);
939 >        boolean interrupted = false;
940 >        int p;
941 >        while ((p = getPhase()) == phase && !interrupted) {
942 >            if (Thread.interrupted())
943 >                interrupted = true;
944 >            else if (node == null)
945 >                node = new QNode(this, phase, true, false, 0, 0);
946 >            else if (!queued)
947 >                queued = tryEnqueue(node);
948              else
949 <                --spins;
949 >                interrupted = node.doWait();
950          }
951          if (node != null)
952              node.thread = null;
953 <        return wasInterrupted;
953 >        if (p != phase || (p = getPhase()) != phase)
954 >            releaseWaiters(phase);
955 >        if (interrupted)
956 >            throw new InterruptedException();
957 >        return p;
958      }
959  
960      /**
961 <     * Messier timeout version
961 >     * Timeout version.
962 >     * @return current phase
963       */
964 <    private void timedWait(Thread thread, int currentPhase, long nanos)
964 >    private int timedWait(int phase, long nanos)
965          throws InterruptedException, TimeoutException {
966 <        final AtomicReference<QNode> head = this.head;
641 <        final AtomicLong state = this.state;
642 <        long lastTime = System.nanoTime();
966 >        long startTime = System.nanoTime();
967          QNode node = null;
968          boolean queued = false;
969 <        int spins = maxTimedSpins;
970 <        while (phaseOf(state.get()) == currentPhase) {
971 <            QNode h;
972 <            long now = System.nanoTime();
973 <            nanos -= now - lastTime;
974 <            lastTime = now;
975 <            if (nanos <= 0) {
976 <                if (node != null)
977 <                    node.thread = null;
978 <                if (phaseOf(state.get()) == currentPhase)
979 <                    throw new TimeoutException();
656 <                else
657 <                    break;
658 <            }
659 <            else if (node != null && queued) {
660 <                if (node.thread != null &&
661 <                    nanos > spinForTimeoutThreshold) {
662 <                    //                LockSupport.parkNanos(this, nanos);
663 <                    LockSupport.parkNanos(nanos);
664 <                    if (Thread.interrupted()) {
665 <                        node.thread = null;
666 <                        throw new InterruptedException();
667 <                    }
668 <                }
669 <            }
670 <            else if ((h = head.get()) != null && h.phase != currentPhase) {
671 <                if (phaseOf(state.get()) == currentPhase) { // must recheck
672 <                    if (head.compareAndSet(h, h.next)) {
673 <                        Thread t = h.thread; // help clear out old waiters
674 <                        if (t != null) {
675 <                            h.thread = null;
676 <                            LockSupport.unpark(t);
677 <                        }
678 <                    }
679 <                }
680 <                else
681 <                    break;
682 <            }
683 <            else if (node != null)
684 <                queued = head.compareAndSet(node.next = h, node);
685 <            else if (spins <= 0)
686 <                node = new QNode(thread, currentPhase);
969 >        boolean interrupted = false;
970 >        int p;
971 >        while ((p = getPhase()) == phase && !interrupted) {
972 >            if (Thread.interrupted())
973 >                interrupted = true;
974 >            else if (nanos - (System.nanoTime() - startTime) <= 0)
975 >                break;
976 >            else if (node == null)
977 >                node = new QNode(this, phase, true, true, startTime, nanos);
978 >            else if (!queued)
979 >                queued = tryEnqueue(node);
980              else
981 <                --spins;
981 >                interrupted = node.doWait();
982          }
983          if (node != null)
984              node.thread = null;
985 +        if (p != phase || (p = getPhase()) != phase)
986 +            releaseWaiters(phase);
987 +        if (interrupted)
988 +            throw new InterruptedException();
989 +        if (p == phase)
990 +            throw new TimeoutException();
991 +        return p;
992      }
993  
994 < }
994 >    // Unsafe mechanics
995  
996 +    private static final sun.misc.Unsafe UNSAFE = getUnsafe();
997 +    private static final long stateOffset =
998 +        objectFieldOffset("state", Phaser.class);
999 +
1000 +    private final boolean casState(long cmp, long val) {
1001 +        return UNSAFE.compareAndSwapLong(this, stateOffset, cmp, val);
1002 +    }
1003 +
1004 +    private static long objectFieldOffset(String field, Class<?> klazz) {
1005 +        try {
1006 +            return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
1007 +        } catch (NoSuchFieldException e) {
1008 +            // Convert Exception to corresponding Error
1009 +            NoSuchFieldError error = new NoSuchFieldError(field);
1010 +            error.initCause(e);
1011 +            throw error;
1012 +        }
1013 +    }
1014 +
1015 +    /**
1016 +     * Returns a sun.misc.Unsafe.  Suitable for use in a 3rd party package.
1017 +     * Replace with a simple call to Unsafe.getUnsafe when integrating
1018 +     * into a jdk.
1019 +     *
1020 +     * @return a sun.misc.Unsafe
1021 +     */
1022 +    private static sun.misc.Unsafe getUnsafe() {
1023 +        try {
1024 +            return sun.misc.Unsafe.getUnsafe();
1025 +        } catch (SecurityException se) {
1026 +            try {
1027 +                return java.security.AccessController.doPrivileged
1028 +                    (new java.security
1029 +                     .PrivilegedExceptionAction<sun.misc.Unsafe>() {
1030 +                        public sun.misc.Unsafe run() throws Exception {
1031 +                            java.lang.reflect.Field f = sun.misc
1032 +                                .Unsafe.class.getDeclaredField("theUnsafe");
1033 +                            f.setAccessible(true);
1034 +                            return (sun.misc.Unsafe) f.get(null);
1035 +                        }});
1036 +            } catch (java.security.PrivilegedActionException e) {
1037 +                throw new RuntimeException("Could not initialize intrinsics",
1038 +                                           e.getCause());
1039 +            }
1040 +        }
1041 +    }
1042 + }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines