ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/Phaser.java
(Generate patch)

Comparing jsr166/src/jsr166y/Phaser.java (file contents):
Revision 1.12 by jsr166, Thu Mar 19 05:10:42 2009 UTC vs.
Revision 1.38 by dl, Mon Aug 24 12:11:00 2009 UTC

# Line 7 | Line 7
7   package jsr166y;
8  
9   import java.util.concurrent.*;
10 < import java.util.concurrent.atomic.*;
10 >
11 > import java.util.concurrent.atomic.AtomicReference;
12   import java.util.concurrent.locks.LockSupport;
12 import sun.misc.Unsafe;
13 import java.lang.reflect.*;
13  
14   /**
15 < * A reusable synchronization barrier, similar in functionality to a
15 > * A reusable synchronization barrier, similar in functionality to
16   * {@link java.util.concurrent.CyclicBarrier CyclicBarrier} and
17   * {@link java.util.concurrent.CountDownLatch CountDownLatch}
18   * but supporting more flexible usage.
19   *
20 < * <ul>
21 < *
22 < * <li> The number of parties synchronizing on a phaser may vary over
23 < * time.  A task may register to be a party at any time, and may
24 < * deregister upon arriving at the barrier.  As is the case with most
25 < * basic synchronization constructs, registration and deregistration
26 < * affect only internal counts; they do not establish any further
27 < * internal bookkeeping, so tasks cannot query whether they are
28 < * registered. (However, you can introduce such bookkeeping by
29 < * subclassing this class.)
30 < *
31 < * <li> Each generation has an associated phase value, starting at
32 < * zero, and advancing when all parties reach the barrier (wrapping
33 < * around to zero after reaching {@code Integer.MAX_VALUE}).
34 < *
35 < * <li> Like a CyclicBarrier, a Phaser may be repeatedly awaited.
36 < * Method {@code arriveAndAwaitAdvance} has effect analogous to
37 < * {@code CyclicBarrier.await}.  However, Phasers separate two
38 < * aspects of coordination, that may also be invoked independently:
20 > * <p> <b>Registration.</b> Unlike the case for other barriers, the
21 > * number of parties <em>registered</em> to synchronize on a phaser
22 > * may vary over time.  Tasks may be registered at any time (using
23 > * methods {@link #register}, {@link #bulkRegister}, or forms of
24 > * constructors establishing initial numbers of parties), and
25 > * optionally deregistered upon any arrival (using {@link
26 > * #arriveAndDeregister}).  As is the case with most basic
27 > * synchronization constructs, registration and deregistration affect
28 > * only internal counts; they do not establish any further internal
29 > * bookkeeping, so tasks cannot query whether they are registered.
30 > * (However, you can introduce such bookkeeping by subclassing this
31 > * class.)
32 > *
33 > * <p> <b>Synchronization.</b> Like a {@code CyclicBarrier}, a {@code
34 > * Phaser} may be repeatedly awaited.  Method {@link
35 > * #arriveAndAwaitAdvance} has effect analogous to {@link
36 > * java.util.concurrent.CyclicBarrier#await CyclicBarrier.await}. Each
37 > * generation of a {@code Phaser} has an associated phase number. The
38 > * phase number starts at zero, amd advances when all parties arrive
39 > * at the barrier, wrapping around to zero after reaching {@code
40 > * Integer.MAX_VALUE}. The use of phase numbers enables independent
41 > * control of actions upon arrival at a barrier and upon awaiting
42 > * others, via two kinds of methods that may be invoked by any
43 > * registered party:
44   *
45   * <ul>
46   *
47 < *   <li> Arriving at a barrier. Methods {@code arrive} and
48 < *       {@code arriveAndDeregister} do not block, but return
49 < *       the phase value current upon entry to the method.
50 < *
51 < *   <li> Awaiting others. Method {@code awaitAdvance} requires an
52 < *       argument indicating the entry phase, and returns when the
53 < *       barrier advances to a new phase.
54 < * </ul>
47 > *   <li> <b>Arrival.</b> Methods {@link #arrive} and
48 > *       {@link #arriveAndDeregister} record arrival at a
49 > *       barrier. These methods do not block, but return an associated
50 > *       <em>arrival phase number</em>; that is, the phase number of
51 > *       the barrier to which the arrival applied. When the final
52 > *       party for a given phase arrives, an optional barrier action
53 > *       is performed and the phase advances.  Barrier actions,
54 > *       performed by the party triggering a phase advance, are
55 > *       arranged by overriding method {@link #onAdvance(int, int)},
56 > *       which also controls termination. Overriding this method is
57 > *       similar to, but more flexible than, providing a barrier
58 > *       action to a {@code CyclicBarrier}.
59 > *
60 > *   <li> <b>Waiting.</b> Method {@link #awaitAdvance} requires an
61 > *       argument indicating an arrival phase number, and returns when
62 > *       the barrier advances to (or is already at) a different phase.
63 > *       Unlike similar constructions using {@code CyclicBarrier},
64 > *       method {@code awaitAdvance} continues to wait even if the
65 > *       waiting thread is interrupted. (Interruptible and timeout
66 > *       versions are also available.)  Exceptions encountered while
67 > *       tasks wait interruptibly or with timeout do not change the
68 > *       state of the barrier. If necessary, you can perform any
69 > *       associated recovery within handlers of those exceptions,
70 > *       often after invoking {@code forceTermination}.  Phasers may
71 > *       also be used by tasks executing in a {@link ForkJoinPool},
72 > *       which will ensure sufficient parallelism to execute tasks
73 > *       when others are blocked waiting for a phase to advance.
74   *
75 + * </ul>
76   *
77 < * <li> Barrier actions, performed by the task triggering a phase
78 < * advance while others may be waiting, are arranged by overriding
79 < * method {@code onAdvance}, that also controls termination.
80 < * Overriding this method may be used to similar but more flexible
81 < * effect as providing a barrier action to a CyclicBarrier.
82 < *
83 < * <li> Phasers may enter a <em>termination</em> state in which all
84 < * actions immediately return without updating phaser state or waiting
85 < * for advance, and indicating (via a negative phase value) that
86 < * execution is complete.  Termination is triggered by executing the
87 < * overridable {@code onAdvance} method that is invoked each time the
64 < * barrier is about to be tripped. When a Phaser is controlling an
65 < * action with a fixed number of iterations, it is often convenient to
66 < * override this method to cause termination when the current phase
67 < * number reaches a threshold. Method {@code forceTermination} is also
68 < * available to abruptly release waiting threads and allow them to
69 < * terminate.
77 > * <p> <b>Termination.</b> A {@code Phaser} may enter a
78 > * <em>termination</em> state in which all actions immediately return
79 > * without updating phaser state or waiting for advance, and
80 > * indicating (via a negative phase value) that execution is complete.
81 > * Termination is triggered when an invocation of {@code onAdvance}
82 > * returns {@code true}.  As illustrated below, when phasers control
83 > * actions with a fixed number of iterations, it is often convenient
84 > * to override this method to cause termination when the current phase
85 > * number reaches a threshold. Method {@link #forceTermination} is
86 > * also available to abruptly release waiting threads and allow them
87 > * to terminate.
88   *
89 < * <li> Phasers may be tiered to reduce contention. Phasers with large
89 > * <p> <b>Tiering.</b> Phasers may be <em>tiered</em> (i.e., arranged
90 > * in tree structures) to reduce contention. Phasers with large
91   * numbers of parties that would otherwise experience heavy
92 < * synchronization contention costs may instead be arranged in trees.
93 < * This will typically greatly increase throughput even though it
94 < * incurs somewhat greater per-operation overhead.
95 < *
96 < * <li> By default, {@code awaitAdvance} continues to wait even if
97 < * the waiting thread is interrupted. And unlike the case in
98 < * CyclicBarriers, exceptions encountered while tasks wait
99 < * interruptibly or with timeout do not change the state of the
100 < * barrier. If necessary, you can perform any associated recovery
101 < * within handlers of those exceptions, often after invoking
102 < * {@code forceTermination}.
103 < *
104 < * <li>Phasers ensure lack of starvation when used by ForkJoinTasks.
86 < *
87 < * </ul>
92 > * synchronization contention costs may instead be set up so that
93 > * groups of sub-phasers share a common parent.  This may greatly
94 > * increase throughput even though it incurs greater per-operation
95 > * overhead.
96 > *
97 > * <p><b>Monitoring.</b> While synchronization methods may be invoked
98 > * only by registered parties, the current state of a phaser may be
99 > * monitored by any caller.  At any given moment there are {@link
100 > * #getRegisteredParties}, where {@link #getArrivedParties} have
101 > * arrived at the current phase ({@link #getPhase}). When the
102 > * remaining {@link #getUnarrivedParties}) arrive, the phase
103 > * advances. Method {@link #toString} returns snapshots of these state
104 > * queries in a form convenient for informal monitoring.
105   *
106   * <p><b>Sample usages:</b>
107   *
108 < * <p>A Phaser may be used instead of a {@code CountDownLatch} to control
109 < * a one-shot action serving a variable number of parties. The typical
110 < * idiom is for the method setting this up to first register, then
111 < * start the actions, then deregister, as in:
112 < *
113 < * <pre>
114 < *  void runTasks(List&lt;Runnable&gt; list) {
115 < *    final Phaser phaser = new Phaser(1); // "1" to register self
116 < *    for (Runnable r : list) {
117 < *      phaser.register();
118 < *      new Thread() {
119 < *        public void run() {
120 < *          phaser.arriveAndAwaitAdvance(); // await all creation
121 < *          r.run();
122 < *          phaser.arriveAndDeregister();   // signal completion
123 < *        }
124 < *      }.start();
108 > * <p>A {@code Phaser} may be used instead of a {@code CountDownLatch}
109 > * to control a one-shot action serving a variable number of
110 > * parties. The typical idiom is for the method setting this up to
111 > * first register, then start the actions, then deregister, as in:
112 > *
113 > *  <pre> {@code
114 > * void runTasks(List<Runnable> tasks) {
115 > *   final Phaser phaser = new Phaser(1); // "1" to register self
116 > *   // create and start threads
117 > *   for (Runnable task : tasks) {
118 > *     phaser.register();
119 > *     new Thread() {
120 > *       public void run() {
121 > *         phaser.arriveAndAwaitAdvance(); // await all creation
122 > *         task.run();
123 > *       }
124 > *     }.start();
125   *   }
126   *
127 < *   doSomethingOnBehalfOfWorkers();
128 < *   phaser.arrive(); // allow threads to start
129 < *   int p = phaser.arriveAndDeregister(); // deregister self  ...
113 < *   p = phaser.awaitAdvance(p); // ... and await arrival
114 < *   otherActions(); // do other things while tasks execute
115 < *   phaser.awaitAdvance(p); // await final completion
116 < * }
117 < * </pre>
127 > *   // allow threads to start and deregister self
128 > *   phaser.arriveAndDeregister();
129 > * }}</pre>
130   *
131   * <p>One way to cause a set of threads to repeatedly perform actions
132   * for a given number of iterations is to override {@code onAdvance}:
133   *
134 < * <pre>
135 < *  void startTasks(List&lt;Runnable&gt; list, final int iterations) {
136 < *    final Phaser phaser = new Phaser() {
137 < *       public boolean onAdvance(int phase, int registeredParties) {
138 < *         return phase &gt;= iterations || registeredParties == 0;
134 > *  <pre> {@code
135 > * void startTasks(List<Runnable> tasks, final int iterations) {
136 > *   final Phaser phaser = new Phaser() {
137 > *     protected boolean onAdvance(int phase, int registeredParties) {
138 > *       return phase >= iterations || registeredParties == 0;
139 > *     }
140 > *   };
141 > *   phaser.register();
142 > *   for (Runnable task : tasks) {
143 > *     phaser.register();
144 > *     new Thread() {
145 > *       public void run() {
146 > *         do {
147 > *           task.run();
148 > *           phaser.arriveAndAwaitAdvance();
149 > *         } while(!phaser.isTerminated();
150   *       }
151 < *    };
129 < *    phaser.register();
130 < *    for (Runnable r : list) {
131 < *      phaser.register();
132 < *      new Thread() {
133 < *        public void run() {
134 < *           do {
135 < *             r.run();
136 < *             phaser.arriveAndAwaitAdvance();
137 < *           } while(!phaser.isTerminated();
138 < *        }
139 < *      }.start();
151 > *     }.start();
152   *   }
153   *   phaser.arriveAndDeregister(); // deregister self, don't wait
154 < * }
143 < * </pre>
154 > * }}</pre>
155   *
156 < * <p> To create a set of tasks using a tree of Phasers,
156 > * If the main task must later await termination, it
157 > * may re-register and then execute a similar loop:
158 > * <pre> {@code
159 > *   // ...
160 > *   phaser.register();
161 > *   while (!phaser.isTerminated())
162 > *     phaser.arriveAndAwaitAdvance();
163 > * }</pre>
164 > *
165 > * Related constructions may be used to await particular phase numbers
166 > * in contexts where you are sure that the phase will never wrap around
167 > * {@code Integer.MAX_VALUE}. For example:
168 > *
169 > * <pre> {@code
170 > *   void awaitPhase(Phaser phaser, int phase) {
171 > *     int p = phaser.register(); // assumes caller not already registered
172 > *     while (p < phase) {
173 > *       if (phaser.isTerminated())
174 > *         // ... deal with unexpected termination
175 > *       else
176 > *         p = phaser.arriveAndAwaitAdvance();
177 > *     }
178 > *     phaser.arriveAndDeregister();
179 > *   }
180 > * }</pre>
181 > *
182 > *
183 > * <p>To create a set of tasks using a tree of phasers,
184   * you could use code of the following form, assuming a
185 < * Task class with a constructor accepting a Phaser that
185 > * Task class with a constructor accepting a phaser that
186   * it registers for upon construction:
187 < * <pre>
188 < *  void build(Task[] actions, int lo, int hi, Phaser b) {
189 < *    int step = (hi - lo) / TASKS_PER_PHASER;
190 < *    if (step &gt; 1) {
191 < *       int i = lo;
192 < *       while (i &lt; hi) {
193 < *         int r = Math.min(i + step, hi);
194 < *         build(actions, i, r, new Phaser(b));
195 < *         i = r;
196 < *       }
197 < *    }
198 < *    else {
199 < *      for (int i = lo; i &lt; hi; ++i)
200 < *        actions[i] = new Task(b);
201 < *        // assumes new Task(b) performs b.register()
202 < *    }
203 < *  }
204 < *  // .. initially called, for n tasks via
167 < *  build(new Task[n], 0, n, new Phaser());
168 < * </pre>
187 > *  <pre> {@code
188 > * void build(Task[] actions, int lo, int hi, Phaser b) {
189 > *   int step = (hi - lo) / TASKS_PER_PHASER;
190 > *   if (step > 1) {
191 > *     int i = lo;
192 > *     while (i < hi) {
193 > *       int r = Math.min(i + step, hi);
194 > *       build(actions, i, r, new Phaser(b));
195 > *       i = r;
196 > *     }
197 > *   } else {
198 > *     for (int i = lo; i < hi; ++i)
199 > *       actions[i] = new Task(b);
200 > *       // assumes new Task(b) performs b.register()
201 > *   }
202 > * }
203 > * // .. initially called, for n tasks via
204 > * build(new Task[n], 0, n, new Phaser());}</pre>
205   *
206   * The best value of {@code TASKS_PER_PHASER} depends mainly on
207   * expected barrier synchronization rates. A value as low as four may
# Line 176 | Line 212 | import java.lang.reflect.*;
212   *
213   * <p><b>Implementation notes</b>: This implementation restricts the
214   * maximum number of parties to 65535. Attempts to register additional
215 < * parties result in IllegalStateExceptions. However, you can and
215 > * parties result in {@code IllegalStateException}. However, you can and
216   * should create tiered phasers to accommodate arbitrarily large sets
217   * of participants.
218 + *
219 + * @since 1.7
220 + * @author Doug Lea
221   */
222   public class Phaser {
223      /*
# Line 212 | Line 251 | public class Phaser {
251      private static final int phaseMask  = 0x7fffffff;
252  
253      private static int unarrivedOf(long s) {
254 <        return (int)(s & ushortMask);
254 >        return (int) (s & ushortMask);
255      }
256  
257      private static int partiesOf(long s) {
258 <        return ((int)s) >>> 16;
258 >        return ((int) s) >>> 16;
259      }
260  
261      private static int phaseOf(long s) {
262 <        return (int)(s >>> 32);
262 >        return (int) (s >>> 32);
263      }
264  
265      private static int arrivedOf(long s) {
# Line 228 | Line 267 | public class Phaser {
267      }
268  
269      private static long stateFor(int phase, int parties, int unarrived) {
270 <        return ((((long)phase) << 32) | (((long)parties) << 16) |
271 <                (long)unarrived);
270 >        return ((((long) phase) << 32) | (((long) parties) << 16) |
271 >                (long) unarrived);
272      }
273  
274      private static long trippedStateFor(int phase, int parties) {
275 <        long lp = (long)parties;
276 <        return (((long)phase) << 32) | (lp << 16) | lp;
275 >        long lp = (long) parties;
276 >        return (((long) phase) << 32) | (lp << 16) | lp;
277      }
278  
279      /**
280 <     * Returns message string for bad bounds exceptions
280 >     * Returns message string for bad bounds exceptions.
281       */
282      private static String badBounds(int parties, int unarrived) {
283          return ("Attempt to set " + unarrived +
# Line 251 | Line 290 | public class Phaser {
290      private final Phaser parent;
291  
292      /**
293 <     * The root of Phaser tree. Equals this if not in a tree.  Used to
293 >     * The root of phaser tree. Equals this if not in a tree.  Used to
294       * support faster state push-down.
295       */
296      private final Phaser root;
# Line 267 | Line 306 | public class Phaser {
306      private final AtomicReference<QNode> oddQ  = new AtomicReference<QNode>();
307  
308      private AtomicReference<QNode> queueFor(int phase) {
309 <        return (phase & 1) == 0? evenQ : oddQ;
309 >        return ((phase & 1) == 0) ? evenQ : oddQ;
310      }
311  
312      /**
# Line 275 | Line 314 | public class Phaser {
314       * root if necessary.
315       */
316      private long getReconciledState() {
317 <        return parent == null? state : reconcileState();
317 >        return (parent == null) ? state : reconcileState();
318      }
319  
320      /**
# Line 302 | Line 341 | public class Phaser {
341      }
342  
343      /**
344 <     * Creates a new Phaser without any initially registered parties,
344 >     * Creates a new phaser without any initially registered parties,
345       * initial phase number 0, and no parent. Any thread using this
346 <     * Phaser will need to first register for it.
346 >     * phaser will need to first register for it.
347       */
348      public Phaser() {
349          this(null);
350      }
351  
352      /**
353 <     * Creates a new Phaser with the given numbers of registered
353 >     * Creates a new phaser with the given numbers of registered
354       * unarrived parties, initial phase number 0, and no parent.
355 <     * @param parties the number of parties required to trip barrier.
355 >     *
356 >     * @param parties the number of parties required to trip barrier
357       * @throws IllegalArgumentException if parties less than zero
358 <     * or greater than the maximum number of parties supported.
358 >     * or greater than the maximum number of parties supported
359       */
360      public Phaser(int parties) {
361          this(null, parties);
362      }
363  
364      /**
365 <     * Creates a new Phaser with the given parent, without any
365 >     * Creates a new phaser with the given parent, without any
366       * initially registered parties. If parent is non-null this phaser
367       * is registered with the parent and its initial phase number is
368       * the same as that of parent phaser.
369 <     * @param parent the parent phaser.
369 >     *
370 >     * @param parent the parent phaser
371       */
372      public Phaser(Phaser parent) {
373          int phase = 0;
# Line 341 | Line 382 | public class Phaser {
382      }
383  
384      /**
385 <     * Creates a new Phaser with the given parent and numbers of
386 <     * registered unarrived parties. If parent is non-null this phaser
385 >     * Creates a new phaser with the given parent and numbers of
386 >     * registered unarrived parties. If parent is non-null, this phaser
387       * is registered with the parent and its initial phase number is
388       * the same as that of parent phaser.
389 <     * @param parent the parent phaser.
390 <     * @param parties the number of parties required to trip barrier.
389 >     *
390 >     * @param parent the parent phaser
391 >     * @param parties the number of parties required to trip barrier
392       * @throws IllegalArgumentException if parties less than zero
393 <     * or greater than the maximum number of parties supported.
393 >     * or greater than the maximum number of parties supported
394       */
395      public Phaser(Phaser parent, int parties) {
396          if (parties < 0 || parties > ushortMask)
# Line 366 | Line 408 | public class Phaser {
408  
409      /**
410       * Adds a new unarrived party to this phaser.
411 <     * @return the current barrier phase number upon registration
411 >     *
412 >     * @return the arrival phase number to which this registration applied
413       * @throws IllegalStateException if attempting to register more
414 <     * than the maximum supported number of parties.
414 >     * than the maximum supported number of parties
415       */
416      public int register() {
417          return doRegister(1);
# Line 376 | Line 419 | public class Phaser {
419  
420      /**
421       * Adds the given number of new unarrived parties to this phaser.
422 <     * @param parties the number of parties required to trip barrier.
423 <     * @return the current barrier phase number upon registration
422 >     *
423 >     * @param parties the number of parties required to trip barrier
424 >     * @return the arrival phase number to which this registration applied
425       * @throws IllegalStateException if attempting to register more
426 <     * than the maximum supported number of parties.
426 >     * than the maximum supported number of parties
427       */
428      public int bulkRegister(int parties) {
429          if (parties < 0)
# Line 412 | Line 456 | public class Phaser {
456  
457      /**
458       * Arrives at the barrier, but does not wait for others.  (You can
459 <     * in turn wait for others via {@link #awaitAdvance}).
459 >     * in turn wait for others via {@link #awaitAdvance}).  It is an
460 >     * unenforced usage error for an unregistered party to invoke this
461 >     * method.
462       *
463 <     * @return the barrier phase number upon entry to this method, or a
418 <     * negative value if terminated;
463 >     * @return the arrival phase number, or a negative value if terminated
464       * @throws IllegalStateException if not terminated and the number
465 <     * of unarrived parties would become negative.
465 >     * of unarrived parties would become negative
466       */
467      public int arrive() {
468          int phase;
# Line 437 | Line 482 | public class Phaser {
482                  if (par == null) {      // directly trip
483                      if (casState
484                          (s,
485 <                         trippedStateFor(onAdvance(phase, parties)? -1 :
485 >                         trippedStateFor(onAdvance(phase, parties) ? -1 :
486                                           ((phase + 1) & phaseMask), parties))) {
487                          releaseWaiters(phase);
488                          break;
# Line 460 | Line 505 | public class Phaser {
505      }
506  
507      /**
508 <     * Arrives at the barrier, and deregisters from it, without
509 <     * waiting for others. Deregistration reduces number of parties
508 >     * Arrives at the barrier and deregisters from it without waiting
509 >     * for others. Deregistration reduces the number of parties
510       * required to trip the barrier in future phases.  If this phaser
511       * has a parent, and deregistration causes this phaser to have
512 <     * zero parties, this phaser is also deregistered from its parent.
512 >     * zero parties, this phaser also arrives at and is deregistered
513 >     * from its parent.  It is an unenforced usage error for an
514 >     * unregistered party to invoke this method.
515       *
516 <     * @return the current barrier phase number upon entry to
470 <     * this method, or a negative value if terminated;
516 >     * @return the arrival phase number, or a negative value if terminated
517       * @throws IllegalStateException if not terminated and the number
518 <     * of registered or unarrived parties would become negative.
518 >     * of registered or unarrived parties would become negative
519       */
520      public int arriveAndDeregister() {
521          // similar code to arrive, but too different to merge
# Line 498 | Line 544 | public class Phaser {
544                  if (unarrived == 0) {
545                      if (casState
546                          (s,
547 <                         trippedStateFor(onAdvance(phase, parties)? -1 :
547 >                         trippedStateFor(onAdvance(phase, parties) ? -1 :
548                                           ((phase + 1) & phaseMask), parties))) {
549                          releaseWaiters(phase);
550                          break;
# Line 517 | Line 563 | public class Phaser {
563  
564      /**
565       * Arrives at the barrier and awaits others. Equivalent in effect
566 <     * to {@code awaitAdvance(arrive())}.  If you instead need to
567 <     * await with interruption of timeout, and/or deregister upon
568 <     * arrival, you can arrange them using analogous constructions.
569 <     * @return the phase on entry to this method
566 >     * to {@code awaitAdvance(arrive())}.  If you need to await with
567 >     * interruption or timeout, you can arrange this with an analogous
568 >     * construction using one of the other forms of the awaitAdvance
569 >     * method.  If instead you need to deregister upon arrival use
570 >     * {@code arriveAndDeregister}. It is an unenforced usage error
571 >     * for an unregistered party to invoke this method.
572 >     *
573 >     * @return the arrival phase number, or a negative number if terminated
574       * @throws IllegalStateException if not terminated and the number
575 <     * of unarrived parties would become negative.
575 >     * of unarrived parties would become negative
576       */
577      public int arriveAndAwaitAdvance() {
578          return awaitAdvance(arrive());
579      }
580  
581      /**
582 <     * Awaits the phase of the barrier to advance from the given
583 <     * value, or returns immediately if argument is negative or this
584 <     * barrier is terminated.
585 <     * @param phase the phase on entry to this method
586 <     * @return the phase on exit from this method
582 >     * Awaits the phase of the barrier to advance from the given phase
583 >     * value, returning immediately if the current phase of the
584 >     * barrier is not equal to the given phase value or this barrier
585 >     * is terminated.  It is an unenforced usage error for an
586 >     * unregistered party to invoke this method.
587 >     *
588 >     * @param phase an arrival phase number, or negative value if
589 >     * terminated; this argument is normally the value returned by a
590 >     * previous call to {@code arrive} or its variants
591 >     * @return the next arrival phase number, or a negative value
592 >     * if terminated or argument is negative
593       */
594      public int awaitAdvance(int phase) {
595          if (phase < 0)
# Line 549 | Line 605 | public class Phaser {
605      }
606  
607      /**
608 <     * Awaits the phase of the barrier to advance from the given
609 <     * value, or returns immediately if argument is negative or this
610 <     * barrier is terminated, or throws InterruptedException if
611 <     * interrupted while waiting.
612 <     * @param phase the phase on entry to this method
613 <     * @return the phase on exit from this method
608 >     * Awaits the phase of the barrier to advance from the given phase
609 >     * value, throwing {@code InterruptedException} if interrupted
610 >     * while waiting, or returning immediately if the current phase of
611 >     * the barrier is not equal to the given phase value or this
612 >     * barrier is terminated. It is an unenforced usage error for an
613 >     * unregistered party to invoke this method.
614 >     *
615 >     * @param phase an arrival phase number, or negative value if
616 >     * terminated; this argument is normally the value returned by a
617 >     * previous call to {@code arrive} or its variants
618 >     * @return the next arrival phase number, or a negative value
619 >     * if terminated or argument is negative
620       * @throws InterruptedException if thread interrupted while waiting
621       */
622      public int awaitAdvanceInterruptibly(int phase)
# Line 571 | Line 633 | public class Phaser {
633      }
634  
635      /**
636 <     * Awaits the phase of the barrier to advance from the given value
637 <     * or the given timeout elapses, or returns immediately if
638 <     * argument is negative or this barrier is terminated.
639 <     * @param phase the phase on entry to this method
640 <     * @return the phase on exit from this method
636 >     * Awaits the phase of the barrier to advance from the given phase
637 >     * value or the given timeout to elapse, throwing {@code
638 >     * InterruptedException} if interrupted while waiting, or
639 >     * returning immediately if the current phase of the barrier is
640 >     * not equal to the given phase value or this barrier is
641 >     * terminated.  It is an unenforced usage error for an
642 >     * unregistered party to invoke this method.
643 >     *
644 >     * @param phase an arrival phase number, or negative value if
645 >     * terminated; this argument is normally the value returned by a
646 >     * previous call to {@code arrive} or its variants
647 >     * @param timeout how long to wait before giving up, in units of
648 >     *        {@code unit}
649 >     * @param unit a {@code TimeUnit} determining how to interpret the
650 >     *        {@code timeout} parameter
651 >     * @return the next arrival phase number, or a negative value
652 >     * if terminated or argument is negative
653       * @throws InterruptedException if thread interrupted while waiting
654       * @throws TimeoutException if timed out while waiting
655       */
656 <    public int awaitAdvanceInterruptibly(int phase, long timeout, TimeUnit unit)
656 >    public int awaitAdvanceInterruptibly(int phase,
657 >                                         long timeout, TimeUnit unit)
658          throws InterruptedException, TimeoutException {
659          if (phase < 0)
660              return phase;
# Line 620 | Line 695 | public class Phaser {
695       * Returns the current phase number. The maximum phase number is
696       * {@code Integer.MAX_VALUE}, after which it restarts at
697       * zero. Upon termination, the phase number is negative.
698 +     *
699       * @return the phase number, or a negative value if terminated
700       */
701      public final int getPhase() {
# Line 627 | Line 703 | public class Phaser {
703      }
704  
705      /**
630     * Returns {@code true} if the current phase number equals the given phase.
631     * @param phase the phase
632     * @return {@code true} if the current phase number equals the given phase
633     */
634    public final boolean hasPhase(int phase) {
635        return phaseOf(getReconciledState()) == phase;
636    }
637
638    /**
706       * Returns the number of parties registered at this barrier.
707 +     *
708       * @return the number of parties
709       */
710      public int getRegisteredParties() {
# Line 644 | Line 712 | public class Phaser {
712      }
713  
714      /**
715 <     * Returns the number of parties that have arrived at the current
716 <     * phase of this barrier.
715 >     * Returns the number of registered parties that have arrived at
716 >     * the current phase of this barrier.
717 >     *
718       * @return the number of arrived parties
719       */
720      public int getArrivedParties() {
# Line 655 | Line 724 | public class Phaser {
724      /**
725       * Returns the number of registered parties that have not yet
726       * arrived at the current phase of this barrier.
727 +     *
728       * @return the number of unarrived parties
729       */
730      public int getUnarrivedParties() {
# Line 662 | Line 732 | public class Phaser {
732      }
733  
734      /**
735 <     * Returns the parent of this phaser, or null if none.
736 <     * @return the parent of this phaser, or null if none
735 >     * Returns the parent of this phaser, or {@code null} if none.
736 >     *
737 >     * @return the parent of this phaser, or {@code null} if none
738       */
739      public Phaser getParent() {
740          return parent;
# Line 672 | Line 743 | public class Phaser {
743      /**
744       * Returns the root ancestor of this phaser, which is the same as
745       * this phaser if it has no parent.
746 +     *
747       * @return the root ancestor of this phaser
748       */
749      public Phaser getRoot() {
# Line 680 | Line 752 | public class Phaser {
752  
753      /**
754       * Returns {@code true} if this barrier has been terminated.
755 +     *
756       * @return {@code true} if this barrier has been terminated
757       */
758      public boolean isTerminated() {
# Line 690 | Line 763 | public class Phaser {
763       * Overridable method to perform an action upon phase advance, and
764       * to control termination. This method is invoked whenever the
765       * barrier is tripped (and thus all other waiting parties are
766 <     * dormant). If it returns true, then, rather than advance the
767 <     * phase number, this barrier will be set to a final termination
768 <     * state, and subsequent calls to {@code isTerminated} will
769 <     * return true.
766 >     * dormant). If it returns {@code true}, then, rather than advance
767 >     * the phase number, this barrier will be set to a final
768 >     * termination state, and subsequent calls to {@link #isTerminated}
769 >     * will return true.
770       *
771 <     * <p> The default version returns true when the number of
771 >     * <p>The default version returns {@code true} when the number of
772       * registered parties is zero. Normally, overrides that arrange
773       * termination for other reasons should also preserve this
774       * property.
775       *
776 <     * <p> You may override this method to perform an action with side
776 >     * <p>You may override this method to perform an action with side
777       * effects visible to participating tasks, but it is in general
778       * only sensible to do so in designs where all parties register
779 <     * before any arrive, and all {@code awaitAdvance} at each phase.
780 <     * Otherwise, you cannot ensure lack of interference. In
781 <     * particular, this method may be invoked more than once per
709 <     * transition if other parties successfully register while the
710 <     * invocation of this method is in progress, thus postponing the
711 <     * transition until those parties also arrive, re-triggering this
712 <     * method.
779 >     * before any arrive, and all {@link #awaitAdvance} at each phase.
780 >     * Otherwise, you cannot ensure lack of interference from other
781 >     * parties during the invocation of this method.
782       *
783       * @param phase the phase number on entering the barrier
784       * @param registeredParties the current number of registered parties
# Line 803 | Line 872 | public class Phaser {
872      }
873  
874      /**
875 <     * Removes and signals waiting threads from wait queue
875 >     * Removes and signals waiting threads from wait queue.
876       */
877      private void releaseWaiters(int phase) {
878          AtomicReference<QNode> head = queueFor(phase);
# Line 815 | Line 884 | public class Phaser {
884      }
885  
886      /**
887 <     * Tries to enqueue given node in the appropriate wait queue
887 >     * Tries to enqueue given node in the appropriate wait queue.
888 >     *
889       * @return true if successful
890       */
891      private boolean tryEnqueue(QNode node) {
# Line 825 | Line 895 | public class Phaser {
895  
896      /**
897       * Enqueues node and waits unless aborted or signalled.
898 +     *
899       * @return current phase
900       */
901      private int untimedWait(int phase) {
# Line 912 | Line 983 | public class Phaser {
983          return p;
984      }
985  
986 <    // Temporary Unsafe mechanics for preliminary release
916 <    private static Unsafe getUnsafe() throws Throwable {
917 <        try {
918 <            return Unsafe.getUnsafe();
919 <        } catch (SecurityException se) {
920 <            try {
921 <                return java.security.AccessController.doPrivileged
922 <                    (new java.security.PrivilegedExceptionAction<Unsafe>() {
923 <                        public Unsafe run() throws Exception {
924 <                            return getUnsafePrivileged();
925 <                        }});
926 <            } catch (java.security.PrivilegedActionException e) {
927 <                throw e.getCause();
928 <            }
929 <        }
930 <    }
986 >    // Unsafe mechanics
987  
988 <    private static Unsafe getUnsafePrivileged()
989 <            throws NoSuchFieldException, IllegalAccessException {
990 <        Field f = Unsafe.class.getDeclaredField("theUnsafe");
935 <        f.setAccessible(true);
936 <        return (Unsafe) f.get(null);
937 <    }
988 >    private static final sun.misc.Unsafe UNSAFE = getUnsafe();
989 >    private static final long stateOffset =
990 >        objectFieldOffset("state", Phaser.class);
991  
992 <    private static long fieldOffset(String fieldName)
993 <            throws NoSuchFieldException {
941 <        return _unsafe.objectFieldOffset
942 <            (Phaser.class.getDeclaredField(fieldName));
992 >    private final boolean casState(long cmp, long val) {
993 >        return UNSAFE.compareAndSwapLong(this, stateOffset, cmp, val);
994      }
995  
996 <    static final Unsafe _unsafe;
946 <    static final long stateOffset;
947 <
948 <    static {
996 >    private static long objectFieldOffset(String field, Class<?> klazz) {
997          try {
998 <            _unsafe = getUnsafe();
999 <            stateOffset = fieldOffset("state");
1000 <        } catch (Throwable e) {
1001 <            throw new RuntimeException("Could not initialize intrinsics", e);
998 >            return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
999 >        } catch (NoSuchFieldException e) {
1000 >            // Convert Exception to corresponding Error
1001 >            NoSuchFieldError error = new NoSuchFieldError(field);
1002 >            error.initCause(e);
1003 >            throw error;
1004          }
1005      }
1006  
1007 <    final boolean casState(long cmp, long val) {
1008 <        return _unsafe.compareAndSwapLong(this, stateOffset, cmp, val);
1007 >    /**
1008 >     * Returns a sun.misc.Unsafe.  Suitable for use in a 3rd party package.
1009 >     * Replace with a simple call to Unsafe.getUnsafe when integrating
1010 >     * into a jdk.
1011 >     *
1012 >     * @return a sun.misc.Unsafe
1013 >     */
1014 >    private static sun.misc.Unsafe getUnsafe() {
1015 >        try {
1016 >            return sun.misc.Unsafe.getUnsafe();
1017 >        } catch (SecurityException se) {
1018 >            try {
1019 >                return java.security.AccessController.doPrivileged
1020 >                    (new java.security
1021 >                     .PrivilegedExceptionAction<sun.misc.Unsafe>() {
1022 >                        public sun.misc.Unsafe run() throws Exception {
1023 >                            java.lang.reflect.Field f = sun.misc
1024 >                                .Unsafe.class.getDeclaredField("theUnsafe");
1025 >                            f.setAccessible(true);
1026 >                            return (sun.misc.Unsafe) f.get(null);
1027 >                        }});
1028 >            } catch (java.security.PrivilegedActionException e) {
1029 >                throw new RuntimeException("Could not initialize intrinsics",
1030 >                                           e.getCause());
1031 >            }
1032 >        }
1033      }
1034   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines