ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/Phaser.java
(Generate patch)

Comparing jsr166/src/jsr166y/Phaser.java (file contents):
Revision 1.2 by jsr166, Fri Jul 25 18:10:41 2008 UTC vs.
Revision 1.12 by jsr166, Thu Mar 19 05:10:42 2009 UTC

# Line 5 | Line 5
5   */
6  
7   package jsr166y;
8 < import jsr166y.forkjoin.*;
8 >
9   import java.util.concurrent.*;
10   import java.util.concurrent.atomic.*;
11   import java.util.concurrent.locks.LockSupport;
12 + import sun.misc.Unsafe;
13 + import java.lang.reflect.*;
14  
15   /**
16   * A reusable synchronization barrier, similar in functionality to a
17 < * {@link java.util.concurrent.CyclicBarrier}, but supporting more
18 < * flexible usage.
17 > * {@link java.util.concurrent.CyclicBarrier CyclicBarrier} and
18 > * {@link java.util.concurrent.CountDownLatch CountDownLatch}
19 > * but supporting more flexible usage.
20   *
21   * <ul>
22   *
23 < * <li> The number of parties synchronizing on the barrier may vary
24 < * over time.  A task may register to be a party in a barrier at any
25 < * time, and may deregister upon arriving at the barrier.  As is the
26 < * case with most basic synchronization constructs, registration
27 < * and deregistration affect only internal counts; they do not
28 < * establish any further internal bookkeeping, so tasks cannot query
29 < * whether they are registered.
23 > * <li> The number of parties synchronizing on a phaser may vary over
24 > * time.  A task may register to be a party at any time, and may
25 > * deregister upon arriving at the barrier.  As is the case with most
26 > * basic synchronization constructs, registration and deregistration
27 > * affect only internal counts; they do not establish any further
28 > * internal bookkeeping, so tasks cannot query whether they are
29 > * registered. (However, you can introduce such bookkeeping by
30 > * subclassing this class.)
31   *
32   * <li> Each generation has an associated phase value, starting at
33   * zero, and advancing when all parties reach the barrier (wrapping
34 < * around to zero after reaching <tt>Integer.MAX_VALUE</tt>).
35 < *
34 > * around to zero after reaching {@code Integer.MAX_VALUE}).
35 > *
36   * <li> Like a CyclicBarrier, a Phaser may be repeatedly awaited.
37 < * Method <tt>arriveAndAwaitAdvance</tt> has effect analogous to
38 < * <tt>CyclicBarrier.await</tt>.  However, Phasers separate two
39 < * aspects of coordination, that may be invoked independently:
37 > * Method {@code arriveAndAwaitAdvance} has effect analogous to
38 > * {@code CyclicBarrier.await}.  However, Phasers separate two
39 > * aspects of coordination, that may also be invoked independently:
40   *
41   * <ul>
42   *
43 < *   <li> Arriving at a barrier. Methods <tt>arrive</tt> and
44 < *       <tt>arriveAndDeregister</tt> do not block, but return
45 < *       the phase value on entry to the method.
43 > *   <li> Arriving at a barrier. Methods {@code arrive} and
44 > *       {@code arriveAndDeregister} do not block, but return
45 > *       the phase value current upon entry to the method.
46   *
47 < *   <li> Awaiting others. Method <tt>awaitAdvance</tt> requires an
47 > *   <li> Awaiting others. Method {@code awaitAdvance} requires an
48   *       argument indicating the entry phase, and returns when the
49   *       barrier advances to a new phase.
50   * </ul>
# Line 48 | Line 52 | import java.util.concurrent.locks.LockSu
52   *
53   * <li> Barrier actions, performed by the task triggering a phase
54   * advance while others may be waiting, are arranged by overriding
55 < * method <tt>onAdvance</tt>, that also controls termination.
55 > * method {@code onAdvance}, that also controls termination.
56 > * Overriding this method may be used to similar but more flexible
57 > * effect as providing a barrier action to a CyclicBarrier.
58   *
59   * <li> Phasers may enter a <em>termination</em> state in which all
60 < * await actions immediately return, indicating (via a negative phase
61 < * value) that execution is complete.  Termination is triggered by
62 < * executing the overridable <tt>onAdvance</tt> method that is invoked
63 < * each time the barrier is tripped. When a Phaser is controlling an
60 > * actions immediately return without updating phaser state or waiting
61 > * for advance, and indicating (via a negative phase value) that
62 > * execution is complete.  Termination is triggered by executing the
63 > * overridable {@code onAdvance} method that is invoked each time the
64 > * barrier is about to be tripped. When a Phaser is controlling an
65   * action with a fixed number of iterations, it is often convenient to
66   * override this method to cause termination when the current phase
67 < * number reaches a threshold.  Method <tt>forceTermination</tt> is
68 < * also available to assist recovery actions upon failure.
67 > * number reaches a threshold. Method {@code forceTermination} is also
68 > * available to abruptly release waiting threads and allow them to
69 > * terminate.
70 > *
71 > * <li> Phasers may be tiered to reduce contention. Phasers with large
72 > * numbers of parties that would otherwise experience heavy
73 > * synchronization contention costs may instead be arranged in trees.
74 > * This will typically greatly increase throughput even though it
75 > * incurs somewhat greater per-operation overhead.
76   *
77 < * <li> Unlike most synchronizers, a Phaser may also be used with
78 < * ForkJoinTasks (as well as plain threads).
65 < *
66 < * <li> By default, <tt>awaitAdvance</tt> continues to wait even if
67 < * the current thread is interrupted. And unlike the case in
77 > * <li> By default, {@code awaitAdvance} continues to wait even if
78 > * the waiting thread is interrupted. And unlike the case in
79   * CyclicBarriers, exceptions encountered while tasks wait
80   * interruptibly or with timeout do not change the state of the
81   * barrier. If necessary, you can perform any associated recovery
82 < * within handlers of those exceptions.
82 > * within handlers of those exceptions, often after invoking
83 > * {@code forceTermination}.
84   *
85 < * </ul>
85 > * <li>Phasers ensure lack of starvation when used by ForkJoinTasks.
86   *
87 < * <p><b>Sample usage:</b>
87 > * </ul>
88   *
89 < * <p>[todo: non-FJ example]
89 > * <p><b>Sample usages:</b>
90   *
91 < * <p> A Phaser may be used to support a style of programming in
92 < * which a task waits for others to complete, without otherwise
93 < * needing to keep track of which tasks it is waiting for. This is
94 < * similar to the "sync" construct in Cilk and "clocks" in X10.
83 < * Special constructions based on such barriers are available using
84 < * the <tt>LinkedAsyncAction</tt> and <tt>CyclicAction</tt> classes,
85 < * but they can be useful in other contexts as well.  For a simple
86 < * (but not very useful) example, here is a variant of Fibonacci:
91 > * <p>A Phaser may be used instead of a {@code CountDownLatch} to control
92 > * a one-shot action serving a variable number of parties. The typical
93 > * idiom is for the method setting this up to first register, then
94 > * start the actions, then deregister, as in:
95   *
96   * <pre>
97 < * class BarrierFibonacci extends RecursiveAction {
98 < *   int argument, result;
99 < *   final Phaser parentBarrier;
100 < *   BarrierFibonacci(int n, Phaser parentBarrier) {
101 < *     this.argument = n;
102 < *     this.parentBarrier = parentBarrier;
103 < *     parentBarrier.register();
97 > *  void runTasks(List&lt;Runnable&gt; list) {
98 > *    final Phaser phaser = new Phaser(1); // "1" to register self
99 > *    for (Runnable r : list) {
100 > *      phaser.register();
101 > *      new Thread() {
102 > *        public void run() {
103 > *          phaser.arriveAndAwaitAdvance(); // await all creation
104 > *          r.run();
105 > *          phaser.arriveAndDeregister();   // signal completion
106 > *        }
107 > *      }.start();
108   *   }
109 < *   protected void compute() {
110 < *     int n = argument;
111 < *     if (n &lt;= 1)
112 < *        result = n;
113 < *     else {
114 < *        Phaser childBarrier = new Phaser(1);
115 < *        BarrierFibonacci f1 = new BarrierFibonacci(n - 1, childBarrier);
116 < *        BarrierFibonacci f2 = new BarrierFibonacci(n - 2, childBarrier);
117 < *        f1.fork();
118 < *        f2.fork();
119 < *        childBarrier.arriveAndAwait();
120 < *        result = f1.result + f2.result;
121 < *     }
122 < *     parentBarrier.arriveAndDeregister();
109 > *
110 > *   doSomethingOnBehalfOfWorkers();
111 > *   phaser.arrive(); // allow threads to start
112 > *   int p = phaser.arriveAndDeregister(); // deregister self  ...
113 > *   p = phaser.awaitAdvance(p); // ... and await arrival
114 > *   otherActions(); // do other things while tasks execute
115 > *   phaser.awaitAdvance(p); // await final completion
116 > * }
117 > * </pre>
118 > *
119 > * <p>One way to cause a set of threads to repeatedly perform actions
120 > * for a given number of iterations is to override {@code onAdvance}:
121 > *
122 > * <pre>
123 > *  void startTasks(List&lt;Runnable&gt; list, final int iterations) {
124 > *    final Phaser phaser = new Phaser() {
125 > *       public boolean onAdvance(int phase, int registeredParties) {
126 > *         return phase &gt;= iterations || registeredParties == 0;
127 > *       }
128 > *    };
129 > *    phaser.register();
130 > *    for (Runnable r : list) {
131 > *      phaser.register();
132 > *      new Thread() {
133 > *        public void run() {
134 > *           do {
135 > *             r.run();
136 > *             phaser.arriveAndAwaitAdvance();
137 > *           } while(!phaser.isTerminated();
138 > *        }
139 > *      }.start();
140   *   }
141 + *   phaser.arriveAndDeregister(); // deregister self, don't wait
142   * }
143   * </pre>
144   *
145 + * <p> To create a set of tasks using a tree of Phasers,
146 + * you could use code of the following form, assuming a
147 + * Task class with a constructor accepting a Phaser that
148 + * it registers for upon construction:
149 + * <pre>
150 + *  void build(Task[] actions, int lo, int hi, Phaser b) {
151 + *    int step = (hi - lo) / TASKS_PER_PHASER;
152 + *    if (step &gt; 1) {
153 + *       int i = lo;
154 + *       while (i &lt; hi) {
155 + *         int r = Math.min(i + step, hi);
156 + *         build(actions, i, r, new Phaser(b));
157 + *         i = r;
158 + *       }
159 + *    }
160 + *    else {
161 + *      for (int i = lo; i &lt; hi; ++i)
162 + *        actions[i] = new Task(b);
163 + *        // assumes new Task(b) performs b.register()
164 + *    }
165 + *  }
166 + *  // .. initially called, for n tasks via
167 + *  build(new Task[n], 0, n, new Phaser());
168 + * </pre>
169 + *
170 + * The best value of {@code TASKS_PER_PHASER} depends mainly on
171 + * expected barrier synchronization rates. A value as low as four may
172 + * be appropriate for extremely small per-barrier task bodies (thus
173 + * high rates), or up to hundreds for extremely large ones.
174 + *
175 + * </pre>
176 + *
177   * <p><b>Implementation notes</b>: This implementation restricts the
178 < * maximum number of parties to 65535. Attempts to register
179 < * additional parties result in IllegalStateExceptions.  
178 > * maximum number of parties to 65535. Attempts to register additional
179 > * parties result in IllegalStateExceptions. However, you can and
180 > * should create tiered phasers to accommodate arbitrarily large sets
181 > * of participants.
182   */
183   public class Phaser {
184      /*
185       * This class implements an extension of X10 "clocks".  Thanks to
186 <     * Vijay Saraswat for the idea of applying it to ForkJoinTasks,
187 <     * and to Vivek Sarkar for enhancements to extend functionality.
186 >     * Vijay Saraswat for the idea, and to Vivek Sarkar for
187 >     * enhancements to extend functionality.
188       */
189  
190      /**
191       * Barrier state representation. Conceptually, a barrier contains
192       * four values:
193 <     *
193 >     *
194       * * parties -- the number of parties to wait (16 bits)
195       * * unarrived -- the number of parties yet to hit barrier (16 bits)
196       * * phase -- the generation of the barrier (31 bits)
197       * * terminated -- set if barrier is terminated (1 bit)
198       *
199       * However, to efficiently maintain atomicity, these values are
200 <     * packed into a single AtomicLong. Termination uses the sign bit
201 <     * of 32 bit representation of phase, so phase is set to -1 on
202 <     * termination.
203 <     */
204 <    private final AtomicLong state;
205 <
206 <    /**
143 <     * Head of Treiber stack for waiting nonFJ threads.
200 >     * packed into a single (atomic) long. Termination uses the sign
201 >     * bit of 32 bit representation of phase, so phase is set to -1 on
202 >     * termination. Good performance relies on keeping state decoding
203 >     * and encoding simple, and keeping race windows short.
204 >     *
205 >     * Note: there are some cheats in arrive() that rely on unarrived
206 >     * count being lowest 16 bits.
207       */
208 <    private final AtomicReference<QNode> head = new AtomicReference<QNode>();
208 >    private volatile long state;
209  
210      private static final int ushortBits = 16;
211 <    private static final int ushortMask =  (1 << ushortBits) - 1;
212 <    private static final int phaseMask = 0x7fffffff;
211 >    private static final int ushortMask = 0xffff;
212 >    private static final int phaseMask  = 0x7fffffff;
213  
214      private static int unarrivedOf(long s) {
215          return (int)(s & ushortMask);
216      }
217  
218      private static int partiesOf(long s) {
219 <        return (int)(s & (ushortMask << 16)) >>> 16;
219 >        return ((int)s) >>> 16;
220      }
221  
222      private static int phaseOf(long s) {
# Line 165 | Line 228 | public class Phaser {
228      }
229  
230      private static long stateFor(int phase, int parties, int unarrived) {
231 <        return (((long)phase) << 32) | ((parties << 16) | unarrived);
231 >        return ((((long)phase) << 32) | (((long)parties) << 16) |
232 >                (long)unarrived);
233 >    }
234 >
235 >    private static long trippedStateFor(int phase, int parties) {
236 >        long lp = (long)parties;
237 >        return (((long)phase) << 32) | (lp << 16) | lp;
238 >    }
239 >
240 >    /**
241 >     * Returns message string for bad bounds exceptions
242 >     */
243 >    private static String badBounds(int parties, int unarrived) {
244 >        return ("Attempt to set " + unarrived +
245 >                " unarrived of " + parties + " parties");
246 >    }
247 >
248 >    /**
249 >     * The parent of this phaser, or null if none
250 >     */
251 >    private final Phaser parent;
252 >
253 >    /**
254 >     * The root of Phaser tree. Equals this if not in a tree.  Used to
255 >     * support faster state push-down.
256 >     */
257 >    private final Phaser root;
258 >
259 >    // Wait queues
260 >
261 >    /**
262 >     * Heads of Treiber stacks for waiting threads. To eliminate
263 >     * contention while releasing some threads while adding others, we
264 >     * use two of them, alternating across even and odd phases.
265 >     */
266 >    private final AtomicReference<QNode> evenQ = new AtomicReference<QNode>();
267 >    private final AtomicReference<QNode> oddQ  = new AtomicReference<QNode>();
268 >
269 >    private AtomicReference<QNode> queueFor(int phase) {
270 >        return (phase & 1) == 0? evenQ : oddQ;
271      }
272  
273 <    private static IllegalStateException badBounds(int parties, int unarrived) {
274 <        return new IllegalStateException("Attempt to set " + unarrived +
275 <                                         " unarrived of " + parties + " parties");
273 >    /**
274 >     * Returns current state, first resolving lagged propagation from
275 >     * root if necessary.
276 >     */
277 >    private long getReconciledState() {
278 >        return parent == null? state : reconcileState();
279 >    }
280 >
281 >    /**
282 >     * Recursively resolves state.
283 >     */
284 >    private long reconcileState() {
285 >        Phaser p = parent;
286 >        long s = state;
287 >        if (p != null) {
288 >            while (unarrivedOf(s) == 0 && phaseOf(s) != phaseOf(root.state)) {
289 >                long parentState = p.getReconciledState();
290 >                int parentPhase = phaseOf(parentState);
291 >                int phase = phaseOf(s = state);
292 >                if (phase != parentPhase) {
293 >                    long next = trippedStateFor(parentPhase, partiesOf(s));
294 >                    if (casState(s, next)) {
295 >                        releaseWaiters(phase);
296 >                        s = next;
297 >                    }
298 >                }
299 >            }
300 >        }
301 >        return s;
302      }
303  
304      /**
305       * Creates a new Phaser without any initially registered parties,
306 <     * and initial phase number 0.
306 >     * initial phase number 0, and no parent. Any thread using this
307 >     * Phaser will need to first register for it.
308       */
309      public Phaser() {
310 <        state = new AtomicLong(stateFor(0, 0, 0));
310 >        this(null);
311      }
312  
313      /**
314       * Creates a new Phaser with the given numbers of registered
315 <     * unarrived parties and initial phase number 0.
315 >     * unarrived parties, initial phase number 0, and no parent.
316       * @param parties the number of parties required to trip barrier.
317       * @throws IllegalArgumentException if parties less than zero
318       * or greater than the maximum number of parties supported.
319       */
320      public Phaser(int parties) {
321 +        this(null, parties);
322 +    }
323 +
324 +    /**
325 +     * Creates a new Phaser with the given parent, without any
326 +     * initially registered parties. If parent is non-null this phaser
327 +     * is registered with the parent and its initial phase number is
328 +     * the same as that of parent phaser.
329 +     * @param parent the parent phaser.
330 +     */
331 +    public Phaser(Phaser parent) {
332 +        int phase = 0;
333 +        this.parent = parent;
334 +        if (parent != null) {
335 +            this.root = parent.root;
336 +            phase = parent.register();
337 +        }
338 +        else
339 +            this.root = this;
340 +        this.state = trippedStateFor(phase, 0);
341 +    }
342 +
343 +    /**
344 +     * Creates a new Phaser with the given parent and numbers of
345 +     * registered unarrived parties. If parent is non-null this phaser
346 +     * is registered with the parent and its initial phase number is
347 +     * the same as that of parent phaser.
348 +     * @param parent the parent phaser.
349 +     * @param parties the number of parties required to trip barrier.
350 +     * @throws IllegalArgumentException if parties less than zero
351 +     * or greater than the maximum number of parties supported.
352 +     */
353 +    public Phaser(Phaser parent, int parties) {
354          if (parties < 0 || parties > ushortMask)
355              throw new IllegalArgumentException("Illegal number of parties");
356 <        state = new AtomicLong(stateFor(0, parties, parties));
356 >        int phase = 0;
357 >        this.parent = parent;
358 >        if (parent != null) {
359 >            this.root = parent.root;
360 >            phase = parent.register();
361 >        }
362 >        else
363 >            this.root = this;
364 >        this.state = trippedStateFor(phase, parties);
365      }
366  
367      /**
# Line 200 | Line 370 | public class Phaser {
370       * @throws IllegalStateException if attempting to register more
371       * than the maximum supported number of parties.
372       */
373 <    public int register() { // increment both parties and unarrived
374 <        final AtomicLong state = this.state;
373 >    public int register() {
374 >        return doRegister(1);
375 >    }
376 >
377 >    /**
378 >     * Adds the given number of new unarrived parties to this phaser.
379 >     * @param parties the number of parties required to trip barrier.
380 >     * @return the current barrier phase number upon registration
381 >     * @throws IllegalStateException if attempting to register more
382 >     * than the maximum supported number of parties.
383 >     */
384 >    public int bulkRegister(int parties) {
385 >        if (parties < 0)
386 >            throw new IllegalArgumentException();
387 >        if (parties == 0)
388 >            return getPhase();
389 >        return doRegister(parties);
390 >    }
391 >
392 >    /**
393 >     * Shared code for register, bulkRegister
394 >     */
395 >    private int doRegister(int registrations) {
396 >        int phase;
397          for (;;) {
398 <            long s = state.get();
399 <            int phase = phaseOf(s);
400 <            int parties = partiesOf(s) + 1;
401 <            int unarrived = unarrivedOf(s) + 1;
398 >            long s = getReconciledState();
399 >            phase = phaseOf(s);
400 >            int unarrived = unarrivedOf(s) + registrations;
401 >            int parties = partiesOf(s) + registrations;
402 >            if (phase < 0)
403 >                break;
404              if (parties > ushortMask || unarrived > ushortMask)
405 <                throw badBounds(parties, unarrived);
406 <            if (state.compareAndSet(s, stateFor(phase, parties, unarrived)))
407 <                return phase;
405 >                throw new IllegalStateException(badBounds(parties, unarrived));
406 >            if (phase == phaseOf(root.state) &&
407 >                casState(s, stateFor(phase, parties, unarrived)))
408 >                break;
409          }
410 +        return phase;
411      }
412  
413      /**
414       * Arrives at the barrier, but does not wait for others.  (You can
415       * in turn wait for others via {@link #awaitAdvance}).
416       *
417 <     * @return the current barrier phase number upon entry to
418 <     * this method, or a negative value if terminated;
419 <     * @throws IllegalStateException if the number of unarrived
420 <     * parties would become negative.
417 >     * @return the barrier phase number upon entry to this method, or a
418 >     * negative value if terminated;
419 >     * @throws IllegalStateException if not terminated and the number
420 >     * of unarrived parties would become negative.
421       */
422 <    public int arrive() { // decrement unarrived. If zero, trip
423 <        final AtomicLong state = this.state;
422 >    public int arrive() {
423 >        int phase;
424          for (;;) {
425 <            long s = state.get();
426 <            int phase = phaseOf(s);
425 >            long s = state;
426 >            phase = phaseOf(s);
427 >            if (phase < 0)
428 >                break;
429              int parties = partiesOf(s);
430              int unarrived = unarrivedOf(s) - 1;
431 <            if (unarrived < 0)
432 <                throw badBounds(parties, unarrived);
433 <            if (unarrived == 0 && phase >= 0) {
434 <                trip(phase, parties);
435 <                return phase;
431 >            if (unarrived > 0) {        // Not the last arrival
432 >                if (casState(s, s - 1)) // s-1 adds one arrival
433 >                    break;
434 >            }
435 >            else if (unarrived == 0) {  // the last arrival
436 >                Phaser par = parent;
437 >                if (par == null) {      // directly trip
438 >                    if (casState
439 >                        (s,
440 >                         trippedStateFor(onAdvance(phase, parties)? -1 :
441 >                                         ((phase + 1) & phaseMask), parties))) {
442 >                        releaseWaiters(phase);
443 >                        break;
444 >                    }
445 >                }
446 >                else {                  // cascade to parent
447 >                    if (casState(s, s - 1)) { // zeroes unarrived
448 >                        par.arrive();
449 >                        reconcileState();
450 >                        break;
451 >                    }
452 >                }
453              }
454 <            if (state.compareAndSet(s, stateFor(phase, parties, unarrived)))
455 <                return phase;
454 >            else if (phase != phaseOf(root.state)) // or if unreconciled
455 >                reconcileState();
456 >            else
457 >                throw new IllegalStateException(badBounds(parties, unarrived));
458          }
459 +        return phase;
460      }
461  
462      /**
463       * Arrives at the barrier, and deregisters from it, without
464 <     * waiting for others.
464 >     * waiting for others. Deregistration reduces number of parties
465 >     * required to trip the barrier in future phases.  If this phaser
466 >     * has a parent, and deregistration causes this phaser to have
467 >     * zero parties, this phaser is also deregistered from its parent.
468       *
469       * @return the current barrier phase number upon entry to
470       * this method, or a negative value if terminated;
471 <     * @throws IllegalStateException if the number of registered or
472 <     * unarrived parties would become negative.
471 >     * @throws IllegalStateException if not terminated and the number
472 >     * of registered or unarrived parties would become negative.
473       */
474 <    public int arriveAndDeregister() { // Same as arrive, plus decrement parties
475 <        final AtomicLong state = this.state;
474 >    public int arriveAndDeregister() {
475 >        // similar code to arrive, but too different to merge
476 >        Phaser par = parent;
477 >        int phase;
478          for (;;) {
479 <            long s = state.get();
480 <            int phase = phaseOf(s);
479 >            long s = state;
480 >            phase = phaseOf(s);
481 >            if (phase < 0)
482 >                break;
483              int parties = partiesOf(s) - 1;
484              int unarrived = unarrivedOf(s) - 1;
485 <            if (parties < 0 || unarrived < 0)
486 <                throw badBounds(parties, unarrived);
487 <            if (unarrived == 0 && phase >= 0) {
488 <                trip(phase, parties);
489 <                return phase;
485 >            if (parties >= 0) {
486 >                if (unarrived > 0 || (unarrived == 0 && par != null)) {
487 >                    if (casState
488 >                        (s,
489 >                         stateFor(phase, parties, unarrived))) {
490 >                        if (unarrived == 0) {
491 >                            par.arriveAndDeregister();
492 >                            reconcileState();
493 >                        }
494 >                        break;
495 >                    }
496 >                    continue;
497 >                }
498 >                if (unarrived == 0) {
499 >                    if (casState
500 >                        (s,
501 >                         trippedStateFor(onAdvance(phase, parties)? -1 :
502 >                                         ((phase + 1) & phaseMask), parties))) {
503 >                        releaseWaiters(phase);
504 >                        break;
505 >                    }
506 >                    continue;
507 >                }
508 >                if (par != null && phase != phaseOf(root.state)) {
509 >                    reconcileState();
510 >                    continue;
511 >                }
512              }
513 <            if (state.compareAndSet(s, stateFor(phase, parties, unarrived)))
267 <                return phase;
513 >            throw new IllegalStateException(badBounds(parties, unarrived));
514          }
515 +        return phase;
516      }
517  
518      /**
519 <     * Arrives at the barrier and awaits others. Unlike other arrival
520 <     * methods, this method returns the arrival index of the
521 <     * caller. The caller tripping the barrier returns zero, the
522 <     * previous caller 1, and so on.
523 <     * @return the arrival index
524 <     * @throws IllegalStateException if the number of unarrived
525 <     * parties would become negative.
519 >     * Arrives at the barrier and awaits others. Equivalent in effect
520 >     * to {@code awaitAdvance(arrive())}.  If you instead need to
521 >     * await with interruption of timeout, and/or deregister upon
522 >     * arrival, you can arrange them using analogous constructions.
523 >     * @return the phase on entry to this method
524 >     * @throws IllegalStateException if not terminated and the number
525 >     * of unarrived parties would become negative.
526       */
527      public int arriveAndAwaitAdvance() {
528 <        final AtomicLong state = this.state;
282 <        for (;;) {
283 <            long s = state.get();
284 <            int phase = phaseOf(s);
285 <            int parties = partiesOf(s);
286 <            int unarrived = unarrivedOf(s) - 1;
287 <            if (unarrived < 0)
288 <                throw badBounds(parties, unarrived);
289 <            if (unarrived == 0 && phase >= 0) {
290 <                trip(phase, parties);
291 <                return 0;
292 <            }
293 <            if (state.compareAndSet(s, stateFor(phase, parties, unarrived))) {
294 <                awaitAdvance(phase);
295 <                return unarrived;
296 <            }
297 <        }
528 >        return awaitAdvance(arrive());
529      }
530  
531      /**
532       * Awaits the phase of the barrier to advance from the given
533 <     * value, or returns immediately if this barrier is terminated.
533 >     * value, or returns immediately if argument is negative or this
534 >     * barrier is terminated.
535       * @param phase the phase on entry to this method
536       * @return the phase on exit from this method
537       */
538      public int awaitAdvance(int phase) {
539          if (phase < 0)
540              return phase;
541 <        Thread current = Thread.currentThread();
542 <        if (current instanceof ForkJoinWorkerThread)
543 <            return helpingWait(phase);
544 <        if (untimedWait(current, phase, false))
545 <            current.interrupt();
546 <        return phaseOf(state.get());
541 >        long s = getReconciledState();
542 >        int p = phaseOf(s);
543 >        if (p != phase)
544 >            return p;
545 >        if (unarrivedOf(s) == 0 && parent != null)
546 >            parent.awaitAdvance(phase);
547 >        // Fall here even if parent waited, to reconcile and help release
548 >        return untimedWait(phase);
549      }
550  
551      /**
552       * Awaits the phase of the barrier to advance from the given
553 <     * value, or returns immediately if this barrier is terminated, or
554 <     * throws InterruptedException if interrupted while waiting.
553 >     * value, or returns immediately if argument is negative or this
554 >     * barrier is terminated, or throws InterruptedException if
555 >     * interrupted while waiting.
556       * @param phase the phase on entry to this method
557       * @return the phase on exit from this method
558       * @throws InterruptedException if thread interrupted while waiting
559       */
560 <    public int awaitAdvanceInterruptibly(int phase) throws InterruptedException {
560 >    public int awaitAdvanceInterruptibly(int phase)
561 >        throws InterruptedException {
562          if (phase < 0)
563              return phase;
564 <        Thread current = Thread.currentThread();
565 <        if (current instanceof ForkJoinWorkerThread)
566 <            return helpingWait(phase);
567 <        else if (Thread.interrupted() || untimedWait(current, phase, true))
568 <            throw new InterruptedException();
569 <        else
570 <            return phaseOf(state.get());
564 >        long s = getReconciledState();
565 >        int p = phaseOf(s);
566 >        if (p != phase)
567 >            return p;
568 >        if (unarrivedOf(s) == 0 && parent != null)
569 >            parent.awaitAdvanceInterruptibly(phase);
570 >        return interruptibleWait(phase);
571      }
572  
573      /**
574       * Awaits the phase of the barrier to advance from the given value
575 <     * or the given timeout elapses, or returns immediately if this
576 <     * barrier is terminated.
575 >     * or the given timeout elapses, or returns immediately if
576 >     * argument is negative or this barrier is terminated.
577       * @param phase the phase on entry to this method
578       * @return the phase on exit from this method
579       * @throws InterruptedException if thread interrupted while waiting
580       * @throws TimeoutException if timed out while waiting
581       */
582 <    public int awaitAdvanceInterruptibly(int phase, long timeout, TimeUnit unit)
582 >    public int awaitAdvanceInterruptibly(int phase, long timeout, TimeUnit unit)
583          throws InterruptedException, TimeoutException {
584          if (phase < 0)
585              return phase;
586 <        long nanos = unit.toNanos(timeout);
587 <        Thread current = Thread.currentThread();
588 <        if (current instanceof ForkJoinWorkerThread)
589 <            return timedHelpingWait(phase, nanos);
590 <        timedWait(current, phase, nanos);
591 <        return phaseOf(state.get());
586 >        long s = getReconciledState();
587 >        int p = phaseOf(s);
588 >        if (p != phase)
589 >            return p;
590 >        if (unarrivedOf(s) == 0 && parent != null)
591 >            parent.awaitAdvanceInterruptibly(phase, timeout, unit);
592 >        return timedWait(phase, unit.toNanos(timeout));
593      }
594  
595      /**
596       * Forces this barrier to enter termination state. Counts of
597 <     * arrived and registered parties are unaffected. This method may
598 <     * be useful for coordinating recovery after one or more tasks
599 <     * encounter unexpected exceptions.
597 >     * arrived and registered parties are unaffected. If this phaser
598 >     * has a parent, it too is terminated. This method may be useful
599 >     * for coordinating recovery after one or more tasks encounter
600 >     * unexpected exceptions.
601       */
602      public void forceTermination() {
365        final AtomicLong state = this.state;
603          for (;;) {
604 <            long s = state.get();
604 >            long s = getReconciledState();
605              int phase = phaseOf(s);
606              int parties = partiesOf(s);
607              int unarrived = unarrivedOf(s);
608              if (phase < 0 ||
609 <                state.compareAndSet(s, stateFor(-1, parties, unarrived))) {
610 <                if (head.get() != null)
611 <                    releaseWaiters(-1);
609 >                casState(s, stateFor(-1, parties, unarrived))) {
610 >                releaseWaiters(0);
611 >                releaseWaiters(1);
612 >                if (parent != null)
613 >                    parent.forceTermination();
614                  return;
615              }
616          }
617      }
618  
619      /**
620 <     * Resets the barrier with the given numbers of registered unarrived
621 <     * parties and phase number 0. This method allows repeated reuse
622 <     * of this barrier, but only if it is somehow known not to be in
623 <     * use for other purposes.
385 <     * @param parties the number of parties required to trip barrier.
386 <     * @throws IllegalArgumentException if parties less than zero
387 <     * or greater than the maximum number of parties supported.
620 >     * Returns the current phase number. The maximum phase number is
621 >     * {@code Integer.MAX_VALUE}, after which it restarts at
622 >     * zero. Upon termination, the phase number is negative.
623 >     * @return the phase number, or a negative value if terminated
624       */
625 <    public void reset(int parties) {
626 <        if (parties < 0 || parties > ushortMask)
391 <            throw new IllegalArgumentException("Illegal number of parties");
392 <        state.set(stateFor(0, parties, parties));
393 <        if (head.get() != null)
394 <            releaseWaiters(0);
625 >    public final int getPhase() {
626 >        return phaseOf(getReconciledState());
627      }
628  
629      /**
630 <     * Returns the current phase number. The maximum phase number is
631 <     * <tt>Integer.MAX_VALUE</tt>, after which it restarts at
632 <     * zero. Upon termination, the phase number is negative.
401 <     * @return the phase number, or a negative value if terminated
630 >     * Returns {@code true} if the current phase number equals the given phase.
631 >     * @param phase the phase
632 >     * @return {@code true} if the current phase number equals the given phase
633       */
634 <    public int getPhase() {
635 <        return phaseOf(state.get());
634 >    public final boolean hasPhase(int phase) {
635 >        return phaseOf(getReconciledState()) == phase;
636      }
637  
638      /**
# Line 409 | Line 640 | public class Phaser {
640       * @return the number of parties
641       */
642      public int getRegisteredParties() {
643 <        return partiesOf(state.get());
643 >        return partiesOf(state);
644      }
645  
646      /**
# Line 418 | Line 649 | public class Phaser {
649       * @return the number of arrived parties
650       */
651      public int getArrivedParties() {
652 <        return arrivedOf(state.get());
652 >        return arrivedOf(state);
653      }
654  
655      /**
# Line 427 | Line 658 | public class Phaser {
658       * @return the number of unarrived parties
659       */
660      public int getUnarrivedParties() {
661 <        return unarrivedOf(state.get());
661 >        return unarrivedOf(state);
662 >    }
663 >
664 >    /**
665 >     * Returns the parent of this phaser, or null if none.
666 >     * @return the parent of this phaser, or null if none
667 >     */
668 >    public Phaser getParent() {
669 >        return parent;
670      }
671  
672      /**
673 <     * Returns true if this barrier has been terminated.
674 <     * @return true if this barrier has been terminated
673 >     * Returns the root ancestor of this phaser, which is the same as
674 >     * this phaser if it has no parent.
675 >     * @return the root ancestor of this phaser
676 >     */
677 >    public Phaser getRoot() {
678 >        return root;
679 >    }
680 >
681 >    /**
682 >     * Returns {@code true} if this barrier has been terminated.
683 >     * @return {@code true} if this barrier has been terminated
684       */
685      public boolean isTerminated() {
686 <        return phaseOf(state.get()) < 0;
686 >        return getPhase() < 0;
687      }
688  
689      /**
# Line 444 | Line 692 | public class Phaser {
692       * barrier is tripped (and thus all other waiting parties are
693       * dormant). If it returns true, then, rather than advance the
694       * phase number, this barrier will be set to a final termination
695 <     * state, and subsequent calls to <tt>isTerminated</tt> will
695 >     * state, and subsequent calls to {@code isTerminated} will
696       * return true.
697 <     *
697 >     *
698       * <p> The default version returns true when the number of
699       * registered parties is zero. Normally, overrides that arrange
700       * termination for other reasons should also preserve this
701       * property.
702       *
703 +     * <p> You may override this method to perform an action with side
704 +     * effects visible to participating tasks, but it is in general
705 +     * only sensible to do so in designs where all parties register
706 +     * before any arrive, and all {@code awaitAdvance} at each phase.
707 +     * Otherwise, you cannot ensure lack of interference. In
708 +     * particular, this method may be invoked more than once per
709 +     * transition if other parties successfully register while the
710 +     * invocation of this method is in progress, thus postponing the
711 +     * transition until those parties also arrive, re-triggering this
712 +     * method.
713 +     *
714       * @param phase the phase number on entering the barrier
715 <     * @param registeredParties the current number of registered
716 <     * parties.
458 <     * @return true if this barrier should terminate
715 >     * @param registeredParties the current number of registered parties
716 >     * @return {@code true} if this barrier should terminate
717       */
718      protected boolean onAdvance(int phase, int registeredParties) {
719          return registeredParties <= 0;
720      }
721  
722      /**
723 <     * Returns a string identifying this barrier, as well as its
723 >     * Returns a string identifying this phaser, as well as its
724       * state.  The state, in brackets, includes the String {@code
725 <     * "phase ="} followed by the phase number, {@code "parties ="}
725 >     * "phase = "} followed by the phase number, {@code "parties = "}
726       * followed by the number of registered parties, and {@code
727 <     * "arrived ="} followed by the number of arrived parties
727 >     * "arrived = "} followed by the number of arrived parties.
728       *
729       * @return a string identifying this barrier, as well as its state
730       */
731      public String toString() {
732 <        long s = state.get();
733 <        return super.toString() + "[phase = " + phaseOf(s) + " parties = " + partiesOf(s) + " arrived = " + arrivedOf(s) + "]";
732 >        long s = getReconciledState();
733 >        return super.toString() +
734 >            "[phase = " + phaseOf(s) +
735 >            " parties = " + partiesOf(s) +
736 >            " arrived = " + arrivedOf(s) + "]";
737      }
738  
739 <    // methods for tripping and waiting
739 >    // methods for waiting
740  
741      /**
742 <     * Advance the current phase (or terminate)
742 >     * Wait nodes for Treiber stack representing wait queue
743       */
744 <    private void trip(int phase, int parties) {
745 <        int next = onAdvance(phase, parties)? -1 : ((phase + 1) & phaseMask);
746 <        state.set(stateFor(next, parties, parties));
747 <        if (head.get() != null)
748 <            releaseWaiters(next);
749 <    }
750 <
751 <    private int helpingWait(int phase) {
752 <        final AtomicLong state = this.state;
753 <        int p;
754 <        while ((p = phaseOf(state.get())) == phase) {
755 <            ForkJoinTask<?> t = ForkJoinWorkerThread.pollTask();
756 <            if (t != null) {
757 <                if ((p = phaseOf(state.get())) == phase)
758 <                    t.exec();
759 <                else {   // push task and exit if barrier advanced
760 <                    t.fork();
761 <                    break;
762 <                }
744 >    static final class QNode implements ForkJoinPool.ManagedBlocker {
745 >        final Phaser phaser;
746 >        final int phase;
747 >        final long startTime;
748 >        final long nanos;
749 >        final boolean timed;
750 >        final boolean interruptible;
751 >        volatile boolean wasInterrupted = false;
752 >        volatile Thread thread; // nulled to cancel wait
753 >        QNode next;
754 >        QNode(Phaser phaser, int phase, boolean interruptible,
755 >              boolean timed, long startTime, long nanos) {
756 >            this.phaser = phaser;
757 >            this.phase = phase;
758 >            this.timed = timed;
759 >            this.interruptible = interruptible;
760 >            this.startTime = startTime;
761 >            this.nanos = nanos;
762 >            thread = Thread.currentThread();
763 >        }
764 >        public boolean isReleasable() {
765 >            return (thread == null ||
766 >                    phaser.getPhase() != phase ||
767 >                    (interruptible && wasInterrupted) ||
768 >                    (timed && (nanos - (System.nanoTime() - startTime)) <= 0));
769 >        }
770 >        public boolean block() {
771 >            if (Thread.interrupted()) {
772 >                wasInterrupted = true;
773 >                if (interruptible)
774 >                    return true;
775 >            }
776 >            if (!timed)
777 >                LockSupport.park(this);
778 >            else {
779 >                long waitTime = nanos - (System.nanoTime() - startTime);
780 >                if (waitTime <= 0)
781 >                    return true;
782 >                LockSupport.parkNanos(this, waitTime);
783              }
784 +            return isReleasable();
785          }
786 <        return p;
787 <    }
506 <
507 <    private int timedHelpingWait(int phase, long nanos) throws TimeoutException {
508 <        final AtomicLong state = this.state;
509 <        long lastTime = System.nanoTime();
510 <        int p;
511 <        while ((p = phaseOf(state.get())) == phase) {
512 <            long now = System.nanoTime();
513 <            nanos -= now - lastTime;
514 <            lastTime = now;
515 <            if (nanos <= 0) {
516 <                if ((p = phaseOf(state.get())) == phase)
517 <                    throw new TimeoutException();
518 <                else
519 <                    break;
520 <            }
521 <            ForkJoinTask<?> t = ForkJoinWorkerThread.pollTask();
786 >        void signal() {
787 >            Thread t = thread;
788              if (t != null) {
789 <                if ((p = phaseOf(state.get())) == phase)
790 <                    t.exec();
791 <                else {   // push task and exit if barrier advanced
792 <                    t.fork();
793 <                    break;
789 >                thread = null;
790 >                LockSupport.unpark(t);
791 >            }
792 >        }
793 >        boolean doWait() {
794 >            if (thread != null) {
795 >                try {
796 >                    ForkJoinPool.managedBlock(this, false);
797 >                } catch (InterruptedException ie) {
798                  }
799              }
800 +            return wasInterrupted;
801          }
802 <        return p;
802 >
803      }
804  
805      /**
806 <     * Wait nodes for Treiber stack representing wait queue for non-FJ
536 <     * tasks. The waiting scheme is an adaptation of the one used in
537 <     * forkjoin.PoolBarrier.
806 >     * Removes and signals waiting threads from wait queue
807       */
808 <    static final class QNode {
809 <        QNode next;
810 <        volatile Thread thread; // nulled to cancel wait
811 <        final int phase;
812 <        QNode(Thread t, int c) {
813 <            thread = t;
545 <            phase = c;
808 >    private void releaseWaiters(int phase) {
809 >        AtomicReference<QNode> head = queueFor(phase);
810 >        QNode q;
811 >        while ((q = head.get()) != null) {
812 >            if (head.compareAndSet(q, q.next))
813 >                q.signal();
814          }
815      }
816  
549    private void releaseWaiters(int currentPhase) {
550        final AtomicReference<QNode> head = this.head;
551        QNode p;
552        while ((p = head.get()) != null && p.phase != currentPhase) {
553            if (head.compareAndSet(p, null)) {
554                do {
555                    Thread t = p.thread;
556                    if (t != null) {
557                        p.thread = null;
558                        LockSupport.unpark(t);
559                    }
560                } while ((p = p.next) != null);
561            }
562        }
563    }
564
565    /** The number of CPUs, for spin control */
566    static final int NCPUS = Runtime.getRuntime().availableProcessors();
567
817      /**
818 <     * The number of times to spin before blocking in timed waits.
819 <     * The value is empirically derived.
818 >     * Tries to enqueue given node in the appropriate wait queue
819 >     * @return true if successful
820       */
821 <    static final int maxTimedSpins = (NCPUS < 2)? 0 : 32;
822 <
823 <    /**
824 <     * The number of times to spin before blocking in untimed waits.
576 <     * This is greater than timed value because untimed waits spin
577 <     * faster since they don't need to check times on each spin.
578 <     */
579 <    static final int maxUntimedSpins = maxTimedSpins * 32;
821 >    private boolean tryEnqueue(QNode node) {
822 >        AtomicReference<QNode> head = queueFor(node.phase);
823 >        return head.compareAndSet(node.next = head.get(), node);
824 >    }
825  
826      /**
827 <     * The number of nanoseconds for which it is faster to spin
828 <     * rather than to use timed park. A rough estimate suffices.
827 >     * Enqueues node and waits unless aborted or signalled.
828 >     * @return current phase
829       */
830 <    static final long spinForTimeoutThreshold = 1000L;
830 >    private int untimedWait(int phase) {
831 >        QNode node = null;
832 >        boolean queued = false;
833 >        boolean interrupted = false;
834 >        int p;
835 >        while ((p = getPhase()) == phase) {
836 >            if (Thread.interrupted())
837 >                interrupted = true;
838 >            else if (node == null)
839 >                node = new QNode(this, phase, false, false, 0, 0);
840 >            else if (!queued)
841 >                queued = tryEnqueue(node);
842 >            else
843 >                interrupted = node.doWait();
844 >        }
845 >        if (node != null)
846 >            node.thread = null;
847 >        releaseWaiters(phase);
848 >        if (interrupted)
849 >            Thread.currentThread().interrupt();
850 >        return p;
851 >    }
852  
853      /**
854 <     * Enqueues node and waits unless aborted or signalled.
854 >     * Interruptible version
855 >     * @return current phase
856       */
857 <    private boolean untimedWait(Thread thread, int currentPhase,
591 <                               boolean abortOnInterrupt) {
592 <        final AtomicReference<QNode> head = this.head;
593 <        final AtomicLong state = this.state;
594 <        boolean wasInterrupted = false;
857 >    private int interruptibleWait(int phase) throws InterruptedException {
858          QNode node = null;
859          boolean queued = false;
860 <        int spins = maxUntimedSpins;
861 <        while (phaseOf(state.get()) == currentPhase) {
862 <            QNode h;
863 <            if (node != null && queued) {
864 <                if (node.thread != null) {
865 <                    LockSupport.park();
866 <                    if (Thread.interrupted()) {
867 <                        wasInterrupted = true;
868 <                        if (abortOnInterrupt)
606 <                            break;
607 <                    }
608 <                }
609 <            }
610 <            else if ((h = head.get()) != null && h.phase != currentPhase) {
611 <                if (phaseOf(state.get()) == currentPhase) { // must recheck
612 <                    if (head.compareAndSet(h, h.next)) {
613 <                        Thread t = h.thread; // help clear out old waiters
614 <                        if (t != null) {
615 <                            h.thread = null;
616 <                            LockSupport.unpark(t);
617 <                        }
618 <                    }
619 <                }
620 <                else
621 <                    break;
622 <            }
623 <            else if (node != null)
624 <                queued = head.compareAndSet(node.next = h, node);
625 <            else if (spins <= 0)
626 <                node = new QNode(thread, currentPhase);
860 >        boolean interrupted = false;
861 >        int p;
862 >        while ((p = getPhase()) == phase && !interrupted) {
863 >            if (Thread.interrupted())
864 >                interrupted = true;
865 >            else if (node == null)
866 >                node = new QNode(this, phase, true, false, 0, 0);
867 >            else if (!queued)
868 >                queued = tryEnqueue(node);
869              else
870 <                --spins;
870 >                interrupted = node.doWait();
871          }
872          if (node != null)
873              node.thread = null;
874 <        return wasInterrupted;
874 >        if (p != phase || (p = getPhase()) != phase)
875 >            releaseWaiters(phase);
876 >        if (interrupted)
877 >            throw new InterruptedException();
878 >        return p;
879      }
880  
881      /**
882 <     * Messier timeout version
882 >     * Timeout version.
883 >     * @return current phase
884       */
885 <    private void timedWait(Thread thread, int currentPhase, long nanos)
885 >    private int timedWait(int phase, long nanos)
886          throws InterruptedException, TimeoutException {
887 <        final AtomicReference<QNode> head = this.head;
641 <        final AtomicLong state = this.state;
642 <        long lastTime = System.nanoTime();
887 >        long startTime = System.nanoTime();
888          QNode node = null;
889          boolean queued = false;
890 <        int spins = maxTimedSpins;
891 <        while (phaseOf(state.get()) == currentPhase) {
892 <            QNode h;
893 <            long now = System.nanoTime();
894 <            nanos -= now - lastTime;
895 <            lastTime = now;
896 <            if (nanos <= 0) {
897 <                if (node != null)
898 <                    node.thread = null;
899 <                if (phaseOf(state.get()) == currentPhase)
900 <                    throw new TimeoutException();
656 <                else
657 <                    break;
658 <            }
659 <            else if (node != null && queued) {
660 <                if (node.thread != null &&
661 <                    nanos > spinForTimeoutThreshold) {
662 <                    //                LockSupport.parkNanos(this, nanos);
663 <                    LockSupport.parkNanos(nanos);
664 <                    if (Thread.interrupted()) {
665 <                        node.thread = null;
666 <                        throw new InterruptedException();
667 <                    }
668 <                }
669 <            }
670 <            else if ((h = head.get()) != null && h.phase != currentPhase) {
671 <                if (phaseOf(state.get()) == currentPhase) { // must recheck
672 <                    if (head.compareAndSet(h, h.next)) {
673 <                        Thread t = h.thread; // help clear out old waiters
674 <                        if (t != null) {
675 <                            h.thread = null;
676 <                            LockSupport.unpark(t);
677 <                        }
678 <                    }
679 <                }
680 <                else
681 <                    break;
682 <            }
683 <            else if (node != null)
684 <                queued = head.compareAndSet(node.next = h, node);
685 <            else if (spins <= 0)
686 <                node = new QNode(thread, currentPhase);
890 >        boolean interrupted = false;
891 >        int p;
892 >        while ((p = getPhase()) == phase && !interrupted) {
893 >            if (Thread.interrupted())
894 >                interrupted = true;
895 >            else if (nanos - (System.nanoTime() - startTime) <= 0)
896 >                break;
897 >            else if (node == null)
898 >                node = new QNode(this, phase, true, true, startTime, nanos);
899 >            else if (!queued)
900 >                queued = tryEnqueue(node);
901              else
902 <                --spins;
902 >                interrupted = node.doWait();
903          }
904          if (node != null)
905              node.thread = null;
906 +        if (p != phase || (p = getPhase()) != phase)
907 +            releaseWaiters(phase);
908 +        if (interrupted)
909 +            throw new InterruptedException();
910 +        if (p == phase)
911 +            throw new TimeoutException();
912 +        return p;
913      }
914  
915 < }
915 >    // Temporary Unsafe mechanics for preliminary release
916 >    private static Unsafe getUnsafe() throws Throwable {
917 >        try {
918 >            return Unsafe.getUnsafe();
919 >        } catch (SecurityException se) {
920 >            try {
921 >                return java.security.AccessController.doPrivileged
922 >                    (new java.security.PrivilegedExceptionAction<Unsafe>() {
923 >                        public Unsafe run() throws Exception {
924 >                            return getUnsafePrivileged();
925 >                        }});
926 >            } catch (java.security.PrivilegedActionException e) {
927 >                throw e.getCause();
928 >            }
929 >        }
930 >    }
931 >
932 >    private static Unsafe getUnsafePrivileged()
933 >            throws NoSuchFieldException, IllegalAccessException {
934 >        Field f = Unsafe.class.getDeclaredField("theUnsafe");
935 >        f.setAccessible(true);
936 >        return (Unsafe) f.get(null);
937 >    }
938 >
939 >    private static long fieldOffset(String fieldName)
940 >            throws NoSuchFieldException {
941 >        return _unsafe.objectFieldOffset
942 >            (Phaser.class.getDeclaredField(fieldName));
943 >    }
944  
945 +    static final Unsafe _unsafe;
946 +    static final long stateOffset;
947 +
948 +    static {
949 +        try {
950 +            _unsafe = getUnsafe();
951 +            stateOffset = fieldOffset("state");
952 +        } catch (Throwable e) {
953 +            throw new RuntimeException("Could not initialize intrinsics", e);
954 +        }
955 +    }
956 +
957 +    final boolean casState(long cmp, long val) {
958 +        return _unsafe.compareAndSwapLong(this, stateOffset, cmp, val);
959 +    }
960 + }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines