ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/Phaser.java
(Generate patch)

Comparing jsr166/src/jsr166y/Phaser.java (file contents):
Revision 1.2 by jsr166, Fri Jul 25 18:10:41 2008 UTC vs.
Revision 1.50 by dl, Sat Nov 6 16:12:10 2010 UTC

# Line 5 | Line 5
5   */
6  
7   package jsr166y;
8 < import jsr166y.forkjoin.*;
8 >
9   import java.util.concurrent.*;
10 < import java.util.concurrent.atomic.*;
10 > import java.util.concurrent.atomic.AtomicReference;
11   import java.util.concurrent.locks.LockSupport;
12  
13   /**
14 < * A reusable synchronization barrier, similar in functionality to a
15 < * {@link java.util.concurrent.CyclicBarrier}, but supporting more
16 < * flexible usage.
14 > * A reusable synchronization barrier, similar in functionality to
15 > * {@link java.util.concurrent.CyclicBarrier CyclicBarrier} and
16 > * {@link java.util.concurrent.CountDownLatch CountDownLatch}
17 > * but supporting more flexible usage.
18   *
19 < * <ul>
19 > * <p> <b>Registration.</b> Unlike the case for other barriers, the
20 > * number of parties <em>registered</em> to synchronize on a phaser
21 > * may vary over time.  Tasks may be registered at any time (using
22 > * methods {@link #register}, {@link #bulkRegister}, or forms of
23 > * constructors establishing initial numbers of parties), and
24 > * optionally deregistered upon any arrival (using {@link
25 > * #arriveAndDeregister}).  As is the case with most basic
26 > * synchronization constructs, registration and deregistration affect
27 > * only internal counts; they do not establish any further internal
28 > * bookkeeping, so tasks cannot query whether they are registered.
29 > * (However, you can introduce such bookkeeping by subclassing this
30 > * class.)
31   *
32 < * <li> The number of parties synchronizing on the barrier may vary
33 < * over time.  A task may register to be a party in a barrier at any
34 < * time, and may deregister upon arriving at the barrier.  As is the
35 < * case with most basic synchronization constructs, registration
36 < * and deregistration affect only internal counts; they do not
37 < * establish any further internal bookkeeping, so tasks cannot query
38 < * whether they are registered.
39 < *
40 < * <li> Each generation has an associated phase value, starting at
41 < * zero, and advancing when all parties reach the barrier (wrapping
42 < * around to zero after reaching <tt>Integer.MAX_VALUE</tt>).
31 < *
32 < * <li> Like a CyclicBarrier, a Phaser may be repeatedly awaited.
33 < * Method <tt>arriveAndAwaitAdvance</tt> has effect analogous to
34 < * <tt>CyclicBarrier.await</tt>.  However, Phasers separate two
35 < * aspects of coordination, that may be invoked independently:
32 > * <p> <b>Synchronization.</b> Like a {@code CyclicBarrier}, a {@code
33 > * Phaser} may be repeatedly awaited.  Method {@link
34 > * #arriveAndAwaitAdvance} has effect analogous to {@link
35 > * java.util.concurrent.CyclicBarrier#await CyclicBarrier.await}. Each
36 > * generation of a {@code Phaser} has an associated phase number. The
37 > * phase number starts at zero, and advances when all parties arrive
38 > * at the barrier, wrapping around to zero after reaching {@code
39 > * Integer.MAX_VALUE}. The use of phase numbers enables independent
40 > * control of actions upon arrival at a barrier and upon awaiting
41 > * others, via two kinds of methods that may be invoked by any
42 > * registered party:
43   *
44   * <ul>
45   *
46 < *   <li> Arriving at a barrier. Methods <tt>arrive</tt> and
47 < *       <tt>arriveAndDeregister</tt> do not block, but return
48 < *       the phase value on entry to the method.
49 < *
50 < *   <li> Awaiting others. Method <tt>awaitAdvance</tt> requires an
51 < *       argument indicating the entry phase, and returns when the
52 < *       barrier advances to a new phase.
46 > *   <li> <b>Arrival.</b> Methods {@link #arrive} and
47 > *       {@link #arriveAndDeregister} record arrival at a
48 > *       barrier. These methods do not block, but return an associated
49 > *       <em>arrival phase number</em>; that is, the phase number of
50 > *       the barrier to which the arrival applied. When the final
51 > *       party for a given phase arrives, an optional barrier action
52 > *       is performed and the phase advances.  Barrier actions,
53 > *       performed by the party triggering a phase advance, are
54 > *       arranged by overriding method {@link #onAdvance(int, int)},
55 > *       which also controls termination. Overriding this method is
56 > *       similar to, but more flexible than, providing a barrier
57 > *       action to a {@code CyclicBarrier}.
58 > *
59 > *   <li> <b>Waiting.</b> Method {@link #awaitAdvance} requires an
60 > *       argument indicating an arrival phase number, and returns when
61 > *       the barrier advances to (or is already at) a different phase.
62 > *       Unlike similar constructions using {@code CyclicBarrier},
63 > *       method {@code awaitAdvance} continues to wait even if the
64 > *       waiting thread is interrupted. Interruptible and timeout
65 > *       versions are also available, but exceptions encountered while
66 > *       tasks wait interruptibly or with timeout do not change the
67 > *       state of the barrier. If necessary, you can perform any
68 > *       associated recovery within handlers of those exceptions,
69 > *       often after invoking {@code forceTermination}.  Phasers may
70 > *       also be used by tasks executing in a {@link ForkJoinPool},
71 > *       which will ensure sufficient parallelism to execute tasks
72 > *       when others are blocked waiting for a phase to advance.
73 > *
74   * </ul>
75   *
76 + * <p> <b>Termination.</b> A {@code Phaser} may enter a
77 + * <em>termination</em> state in which all synchronization methods
78 + * immediately return without updating phaser state or waiting for
79 + * advance, and indicating (via a negative phase value) that execution
80 + * is complete.  Termination is triggered when an invocation of {@code
81 + * onAdvance} returns {@code true}.  As illustrated below, when
82 + * phasers control actions with a fixed number of iterations, it is
83 + * often convenient to override this method to cause termination when
84 + * the current phase number reaches a threshold. Method {@link
85 + * #forceTermination} is also available to abruptly release waiting
86 + * threads and allow them to terminate.
87   *
88 < * <li> Barrier actions, performed by the task triggering a phase
89 < * advance while others may be waiting, are arranged by overriding
90 < * method <tt>onAdvance</tt>, that also controls termination.
91 < *
92 < * <li> Phasers may enter a <em>termination</em> state in which all
93 < * await actions immediately return, indicating (via a negative phase
94 < * value) that execution is complete.  Termination is triggered by
56 < * executing the overridable <tt>onAdvance</tt> method that is invoked
57 < * each time the barrier is tripped. When a Phaser is controlling an
58 < * action with a fixed number of iterations, it is often convenient to
59 < * override this method to cause termination when the current phase
60 < * number reaches a threshold.  Method <tt>forceTermination</tt> is
61 < * also available to assist recovery actions upon failure.
62 < *
63 < * <li> Unlike most synchronizers, a Phaser may also be used with
64 < * ForkJoinTasks (as well as plain threads).
65 < *
66 < * <li> By default, <tt>awaitAdvance</tt> continues to wait even if
67 < * the current thread is interrupted. And unlike the case in
68 < * CyclicBarriers, exceptions encountered while tasks wait
69 < * interruptibly or with timeout do not change the state of the
70 < * barrier. If necessary, you can perform any associated recovery
71 < * within handlers of those exceptions.
88 > * <p> <b>Tiering.</b> Phasers may be <em>tiered</em> (i.e., arranged
89 > * in tree structures) to reduce contention. Phasers with large
90 > * numbers of parties that would otherwise experience heavy
91 > * synchronization contention costs may instead be set up so that
92 > * groups of sub-phasers share a common parent.  This may greatly
93 > * increase throughput even though it incurs greater per-operation
94 > * overhead.
95   *
96 < * </ul>
96 > * <p><b>Monitoring.</b> While synchronization methods may be invoked
97 > * only by registered parties, the current state of a phaser may be
98 > * monitored by any caller.  At any given moment there are {@link
99 > * #getRegisteredParties} parties in total, of which {@link
100 > * #getArrivedParties} have arrived at the current phase ({@link
101 > * #getPhase}).  When the remaining ({@link #getUnarrivedParties})
102 > * parties arrive, the phase advances.  The values returned by these
103 > * methods may reflect transient states and so are not in general
104 > * useful for synchronization control.  Method {@link #toString}
105 > * returns snapshots of these state queries in a form convenient for
106 > * informal monitoring.
107 > *
108 > * <p><b>Sample usages:</b>
109 > *
110 > * <p>A {@code Phaser} may be used instead of a {@code CountDownLatch}
111 > * to control a one-shot action serving a variable number of parties.
112 > * The typical idiom is for the method setting this up to first
113 > * register, then start the actions, then deregister, as in:
114 > *
115 > *  <pre> {@code
116 > * void runTasks(List<Runnable> tasks) {
117 > *   final Phaser phaser = new Phaser(1); // "1" to register self
118 > *   // create and start threads
119 > *   for (Runnable task : tasks) {
120 > *     phaser.register();
121 > *     new Thread() {
122 > *       public void run() {
123 > *         phaser.arriveAndAwaitAdvance(); // await all creation
124 > *         task.run();
125 > *       }
126 > *     }.start();
127 > *   }
128 > *
129 > *   // allow threads to start and deregister self
130 > *   phaser.arriveAndDeregister();
131 > * }}</pre>
132 > *
133 > * <p>One way to cause a set of threads to repeatedly perform actions
134 > * for a given number of iterations is to override {@code onAdvance}:
135 > *
136 > *  <pre> {@code
137 > * void startTasks(List<Runnable> tasks, final int iterations) {
138 > *   final Phaser phaser = new Phaser() {
139 > *     protected boolean onAdvance(int phase, int registeredParties) {
140 > *       return phase >= iterations || registeredParties == 0;
141 > *     }
142 > *   };
143 > *   phaser.register();
144 > *   for (final Runnable task : tasks) {
145 > *     phaser.register();
146 > *     new Thread() {
147 > *       public void run() {
148 > *         do {
149 > *           task.run();
150 > *           phaser.arriveAndAwaitAdvance();
151 > *         } while (!phaser.isTerminated());
152 > *       }
153 > *     }.start();
154 > *   }
155 > *   phaser.arriveAndDeregister(); // deregister self, don't wait
156 > * }}</pre>
157   *
158 < * <p><b>Sample usage:</b>
158 > * If the main task must later await termination, it
159 > * may re-register and then execute a similar loop:
160 > *  <pre> {@code
161 > *   // ...
162 > *   phaser.register();
163 > *   while (!phaser.isTerminated())
164 > *     phaser.arriveAndAwaitAdvance();}</pre>
165   *
166 < * <p>[todo: non-FJ example]
166 > * <p>Related constructions may be used to await particular phase numbers
167 > * in contexts where you are sure that the phase will never wrap around
168 > * {@code Integer.MAX_VALUE}. For example:
169   *
170 < * <p> A Phaser may be used to support a style of programming in
171 < * which a task waits for others to complete, without otherwise
172 < * needing to keep track of which tasks it is waiting for. This is
173 < * similar to the "sync" construct in Cilk and "clocks" in X10.
174 < * Special constructions based on such barriers are available using
175 < * the <tt>LinkedAsyncAction</tt> and <tt>CyclicAction</tt> classes,
176 < * but they can be useful in other contexts as well.  For a simple
177 < * (but not very useful) example, here is a variant of Fibonacci:
87 < *
88 < * <pre>
89 < * class BarrierFibonacci extends RecursiveAction {
90 < *   int argument, result;
91 < *   final Phaser parentBarrier;
92 < *   BarrierFibonacci(int n, Phaser parentBarrier) {
93 < *     this.argument = n;
94 < *     this.parentBarrier = parentBarrier;
95 < *     parentBarrier.register();
170 > *  <pre> {@code
171 > * void awaitPhase(Phaser phaser, int phase) {
172 > *   int p = phaser.register(); // assumes caller not already registered
173 > *   while (p < phase) {
174 > *     if (phaser.isTerminated())
175 > *       // ... deal with unexpected termination
176 > *     else
177 > *       p = phaser.arriveAndAwaitAdvance();
178   *   }
179 < *   protected void compute() {
180 < *     int n = argument;
181 < *     if (n &lt;= 1)
182 < *        result = n;
183 < *     else {
184 < *        Phaser childBarrier = new Phaser(1);
185 < *        BarrierFibonacci f1 = new BarrierFibonacci(n - 1, childBarrier);
186 < *        BarrierFibonacci f2 = new BarrierFibonacci(n - 2, childBarrier);
187 < *        f1.fork();
188 < *        f2.fork();
189 < *        childBarrier.arriveAndAwait();
190 < *        result = f1.result + f2.result;
179 > *   phaser.arriveAndDeregister();
180 > * }}</pre>
181 > *
182 > *
183 > * <p>To create a set of tasks using a tree of phasers,
184 > * you could use code of the following form, assuming a
185 > * Task class with a constructor accepting a phaser that
186 > * it registers with upon construction:
187 > *
188 > *  <pre> {@code
189 > * void build(Task[] actions, int lo, int hi, Phaser ph) {
190 > *   if (hi - lo > TASKS_PER_PHASER) {
191 > *     for (int i = lo; i < hi; i += TASKS_PER_PHASER) {
192 > *       int j = Math.min(i + TASKS_PER_PHASER, hi);
193 > *       build(actions, i, j, new Phaser(ph));
194   *     }
195 < *     parentBarrier.arriveAndDeregister();
195 > *   } else {
196 > *     for (int i = lo; i < hi; ++i)
197 > *       actions[i] = new Task(ph);
198 > *       // assumes new Task(ph) performs ph.register()
199   *   }
200   * }
201 < * </pre>
201 > * // .. initially called, for n tasks via
202 > * build(new Task[n], 0, n, new Phaser());}</pre>
203 > *
204 > * The best value of {@code TASKS_PER_PHASER} depends mainly on
205 > * expected barrier synchronization rates. A value as low as four may
206 > * be appropriate for extremely small per-barrier task bodies (thus
207 > * high rates), or up to hundreds for extremely large ones.
208   *
209   * <p><b>Implementation notes</b>: This implementation restricts the
210 < * maximum number of parties to 65535. Attempts to register
211 < * additional parties result in IllegalStateExceptions.  
210 > * maximum number of parties to 65535. Attempts to register additional
211 > * parties result in {@code IllegalStateException}. However, you can and
212 > * should create tiered phasers to accommodate arbitrarily large sets
213 > * of participants.
214 > *
215 > * @since 1.7
216 > * @author Doug Lea
217   */
218   public class Phaser {
219      /*
220       * This class implements an extension of X10 "clocks".  Thanks to
221 <     * Vijay Saraswat for the idea of applying it to ForkJoinTasks,
222 <     * and to Vivek Sarkar for enhancements to extend functionality.
221 >     * Vijay Saraswat for the idea, and to Vivek Sarkar for
222 >     * enhancements to extend functionality.
223       */
224  
225      /**
226       * Barrier state representation. Conceptually, a barrier contains
227       * four values:
228 <     *
228 >     *
229       * * parties -- the number of parties to wait (16 bits)
230       * * unarrived -- the number of parties yet to hit barrier (16 bits)
231       * * phase -- the generation of the barrier (31 bits)
232       * * terminated -- set if barrier is terminated (1 bit)
233       *
234       * However, to efficiently maintain atomicity, these values are
235 <     * packed into a single AtomicLong. Termination uses the sign bit
236 <     * of 32 bit representation of phase, so phase is set to -1 on
237 <     * termination.
238 <     */
239 <    private final AtomicLong state;
240 <
241 <    /**
143 <     * Head of Treiber stack for waiting nonFJ threads.
235 >     * packed into a single (atomic) long. Termination uses the sign
236 >     * bit of 32 bit representation of phase, so phase is set to -1 on
237 >     * termination. Good performance relies on keeping state decoding
238 >     * and encoding simple, and keeping race windows short.
239 >     *
240 >     * Note: there are some cheats in arrive() that rely on unarrived
241 >     * count being lowest 16 bits.
242       */
243 <    private final AtomicReference<QNode> head = new AtomicReference<QNode>();
243 >    private volatile long state;
244  
245 <    private static final int ushortBits = 16;
246 <    private static final int ushortMask =  (1 << ushortBits) - 1;
149 <    private static final int phaseMask = 0x7fffffff;
245 >    private static final int ushortMask = 0xffff;
246 >    private static final int phaseMask  = 0x7fffffff;
247  
248      private static int unarrivedOf(long s) {
249 <        return (int)(s & ushortMask);
249 >        return (int) (s & ushortMask);
250      }
251  
252      private static int partiesOf(long s) {
253 <        return (int)(s & (ushortMask << 16)) >>> 16;
253 >        return ((int) s) >>> 16;
254      }
255  
256      private static int phaseOf(long s) {
257 <        return (int)(s >>> 32);
257 >        return (int) (s >>> 32);
258      }
259  
260      private static int arrivedOf(long s) {
# Line 165 | Line 262 | public class Phaser {
262      }
263  
264      private static long stateFor(int phase, int parties, int unarrived) {
265 <        return (((long)phase) << 32) | ((parties << 16) | unarrived);
265 >        return ((((long) phase) << 32) | (((long) parties) << 16) |
266 >                (long) unarrived);
267 >    }
268 >
269 >    private static long trippedStateFor(int phase, int parties) {
270 >        long lp = (long) parties;
271 >        return (((long) phase) << 32) | (lp << 16) | lp;
272      }
273  
274 <    private static IllegalStateException badBounds(int parties, int unarrived) {
275 <        return new IllegalStateException("Attempt to set " + unarrived +
276 <                                         " unarrived of " + parties + " parties");
274 >    /**
275 >     * Returns message string for bad bounds exceptions.
276 >     */
277 >    private static String badBounds(int parties, int unarrived) {
278 >        return ("Attempt to set " + unarrived +
279 >                " unarrived of " + parties + " parties");
280 >    }
281 >
282 >    /**
283 >     * The parent of this phaser, or null if none
284 >     */
285 >    private final Phaser parent;
286 >
287 >    /**
288 >     * The root of phaser tree. Equals this if not in a tree.  Used to
289 >     * support faster state push-down.
290 >     */
291 >    private final Phaser root;
292 >
293 >    // Wait queues
294 >
295 >    /**
296 >     * Heads of Treiber stacks for waiting threads. To eliminate
297 >     * contention when releasing some threads while adding others, we
298 >     * use two of them, alternating across even and odd phases.
299 >     * Subphasers share queues with root to speed up releases.
300 >     */
301 >    private final AtomicReference<QNode> evenQ;
302 >    private final AtomicReference<QNode> oddQ;
303 >
304 >    private AtomicReference<QNode> queueFor(int phase) {
305 >        return ((phase & 1) == 0) ? evenQ : oddQ;
306 >    }
307 >
308 >    /**
309 >     * Returns current state, first resolving lagged propagation from
310 >     * root if necessary.
311 >     */
312 >    private long getReconciledState() {
313 >        return (parent == null) ? state : reconcileState();
314 >    }
315 >
316 >    /**
317 >     * Recursively resolves state.
318 >     */
319 >    private long reconcileState() {
320 >        Phaser par = parent;
321 >        long s = state;
322 >        if (par != null) {
323 >            int phase, rootPhase;
324 >            while ((phase = phaseOf(s)) >= 0 &&
325 >                   (rootPhase = phaseOf(root.state)) != phase &&
326 >                   (rootPhase < 0 || unarrivedOf(s) == 0)) {
327 >                int parentPhase = phaseOf(par.getReconciledState());
328 >                if (parentPhase != phase) {
329 >                    long next = trippedStateFor(parentPhase, partiesOf(s));
330 >                    if (state == s)
331 >                        UNSAFE.compareAndSwapLong(this, stateOffset, s, next);
332 >                }
333 >                s = state;
334 >            }
335 >        }
336 >        return s;
337      }
338  
339      /**
340 <     * Creates a new Phaser without any initially registered parties,
341 <     * and initial phase number 0.
340 >     * Creates a new phaser without any initially registered parties,
341 >     * initial phase number 0, and no parent. Any thread using this
342 >     * phaser will need to first register for it.
343       */
344      public Phaser() {
345 <        state = new AtomicLong(stateFor(0, 0, 0));
345 >        this(null, 0);
346      }
347  
348      /**
349 <     * Creates a new Phaser with the given numbers of registered
350 <     * unarrived parties and initial phase number 0.
351 <     * @param parties the number of parties required to trip barrier.
349 >     * Creates a new phaser with the given number of registered
350 >     * unarrived parties, initial phase number 0, and no parent.
351 >     *
352 >     * @param parties the number of parties required to trip barrier
353       * @throws IllegalArgumentException if parties less than zero
354 <     * or greater than the maximum number of parties supported.
354 >     * or greater than the maximum number of parties supported
355       */
356      public Phaser(int parties) {
357 +        this(null, parties);
358 +    }
359 +
360 +    /**
361 +     * Creates a new phaser with the given parent, without any
362 +     * initially registered parties. If parent is non-null this phaser
363 +     * is registered with the parent and its initial phase number is
364 +     * the same as that of parent phaser.
365 +     *
366 +     * @param parent the parent phaser
367 +     */
368 +    public Phaser(Phaser parent) {
369 +        this(parent, 0);
370 +    }
371 +
372 +    /**
373 +     * Creates a new phaser with the given parent and number of
374 +     * registered unarrived parties. If parent is non-null, this phaser
375 +     * is registered with the parent and its initial phase number is
376 +     * the same as that of parent phaser.
377 +     *
378 +     * @param parent the parent phaser
379 +     * @param parties the number of parties required to trip barrier
380 +     * @throws IllegalArgumentException if parties less than zero
381 +     * or greater than the maximum number of parties supported
382 +     */
383 +    public Phaser(Phaser parent, int parties) {
384          if (parties < 0 || parties > ushortMask)
385              throw new IllegalArgumentException("Illegal number of parties");
386 <        state = new AtomicLong(stateFor(0, parties, parties));
386 >        int phase;
387 >        this.parent = parent;
388 >        if (parent != null) {
389 >            Phaser r = parent.root;
390 >            this.root = r;
391 >            this.evenQ = r.evenQ;
392 >            this.oddQ = r.oddQ;
393 >            phase = parent.register();
394 >        }
395 >        else {
396 >            this.root = this;
397 >            this.evenQ = new AtomicReference<QNode>();
398 >            this.oddQ = new AtomicReference<QNode>();
399 >            phase = 0;
400 >        }
401 >        this.state = trippedStateFor(phase, parties);
402      }
403  
404      /**
405       * Adds a new unarrived party to this phaser.
406 <     * @return the current barrier phase number upon registration
406 >     * If an ongoing invocation of {@link #onAdvance} is in progress,
407 >     * this method may wait until its completion before registering.
408 >     *
409 >     * @return the arrival phase number to which this registration applied
410 >     * @throws IllegalStateException if attempting to register more
411 >     * than the maximum supported number of parties
412 >     */
413 >    public int register() {
414 >        return doRegister(1);
415 >    }
416 >
417 >    /**
418 >     * Adds the given number of new unarrived parties to this phaser.
419 >     * If an ongoing invocation of {@link #onAdvance} is in progress,
420 >     * this method may wait until its completion before registering.
421 >     *
422 >     * @param parties the number of additional parties required to trip barrier
423 >     * @return the arrival phase number to which this registration applied
424       * @throws IllegalStateException if attempting to register more
425 <     * than the maximum supported number of parties.
425 >     * than the maximum supported number of parties
426 >     * @throws IllegalArgumentException if {@code parties < 0}
427       */
428 <    public int register() { // increment both parties and unarrived
429 <        final AtomicLong state = this.state;
430 <        for (;;) {
431 <            long s = state.get();
432 <            int phase = phaseOf(s);
433 <            int parties = partiesOf(s) + 1;
434 <            int unarrived = unarrivedOf(s) + 1;
435 <            if (parties > ushortMask || unarrived > ushortMask)
436 <                throw badBounds(parties, unarrived);
437 <            if (state.compareAndSet(s, stateFor(phase, parties, unarrived)))
438 <                return phase;
428 >    public int bulkRegister(int parties) {
429 >        if (parties < 0)
430 >            throw new IllegalArgumentException();
431 >        if (parties == 0)
432 >            return getPhase();
433 >        return doRegister(parties);
434 >    }
435 >
436 >    /**
437 >     * Shared code for register, bulkRegister
438 >     */
439 >    private int doRegister(int registrations) {
440 >        Phaser par = parent;
441 >        long s;
442 >        int phase;
443 >        while ((phase = phaseOf(s = par==null? state:reconcileState())) >= 0) {
444 >            int p = partiesOf(s);
445 >            int u = unarrivedOf(s);
446 >            int unarrived = u + registrations;
447 >            int parties = p + registrations;
448 >            if (u == 0 && p != 0)  // if tripped, wait for advance
449 >                untimedWait(phase);
450 >            else if (parties > ushortMask)
451 >                throw new IllegalStateException(badBounds(parties, unarrived));
452 >            else if (par == null || phaseOf(root.state) == phase) {
453 >                long next = stateFor(phase, parties, unarrived);
454 >                if (UNSAFE.compareAndSwapLong(this, stateOffset, s, next))
455 >                    break;
456 >            }
457          }
458 +        return phase;
459      }
460  
461      /**
462       * Arrives at the barrier, but does not wait for others.  (You can
463 <     * in turn wait for others via {@link #awaitAdvance}).
463 >     * in turn wait for others via {@link #awaitAdvance}).  It is an
464 >     * unenforced usage error for an unregistered party to invoke this
465 >     * method.
466       *
467 <     * @return the current barrier phase number upon entry to
468 <     * this method, or a negative value if terminated;
469 <     * @throws IllegalStateException if the number of unarrived
470 <     * parties would become negative.
471 <     */
472 <    public int arrive() { // decrement unarrived. If zero, trip
473 <        final AtomicLong state = this.state;
474 <        for (;;) {
475 <            long s = state.get();
230 <            int phase = phaseOf(s);
467 >     * @return the arrival phase number, or a negative value if terminated
468 >     * @throws IllegalStateException if not terminated and the number
469 >     * of unarrived parties would become negative
470 >     */
471 >    public int arrive() {
472 >        Phaser par = parent;
473 >        long s;
474 >        int phase;
475 >        while ((phase = phaseOf(s = par==null? state:reconcileState())) >= 0) {
476              int parties = partiesOf(s);
477              int unarrived = unarrivedOf(s) - 1;
478 <            if (unarrived < 0)
479 <                throw badBounds(parties, unarrived);
480 <            if (unarrived == 0 && phase >= 0) {
481 <                trip(phase, parties);
482 <                return phase;
478 >            if (unarrived > 0) {                // Not the last arrival
479 >                if (UNSAFE.compareAndSwapLong(this, stateOffset, s, s - 1))
480 >                    break;                      // s-1 adds one arrival
481 >            }
482 >            else if (unarrived < 0)
483 >                throw new IllegalStateException(badBounds(parties, unarrived));
484 >            else if (par == null) {             // directly trip
485 >                long next = trippedStateFor(onAdvance(phase, parties) ? -1 :
486 >                                            ((phase + 1) & phaseMask),
487 >                                            parties);
488 >                if (UNSAFE.compareAndSwapLong(this, stateOffset, s, next)) {
489 >                    releaseWaiters(phase);
490 >                    break;
491 >                }
492 >            }
493 >            else if (phaseOf(root.state) == phase &&
494 >                     UNSAFE.compareAndSwapLong(this, stateOffset, s, s - 1)) {
495 >                par.arrive();                   // cascade to parent
496 >                reconcileState();
497 >                break;
498              }
239            if (state.compareAndSet(s, stateFor(phase, parties, unarrived)))
240                return phase;
499          }
500 +        return phase;
501      }
502  
503      /**
504 <     * Arrives at the barrier, and deregisters from it, without
505 <     * waiting for others.
504 >     * Arrives at the barrier and deregisters from it without waiting
505 >     * for others. Deregistration reduces the number of parties
506 >     * required to trip the barrier in future phases.  If this phaser
507 >     * has a parent, and deregistration causes this phaser to have
508 >     * zero parties, this phaser also arrives at and is deregistered
509 >     * from its parent.  It is an unenforced usage error for an
510 >     * unregistered party to invoke this method.
511       *
512 <     * @return the current barrier phase number upon entry to
513 <     * this method, or a negative value if terminated;
514 <     * @throws IllegalStateException if the number of registered or
515 <     * unarrived parties would become negative.
516 <     */
517 <    public int arriveAndDeregister() { // Same as arrive, plus decrement parties
518 <        final AtomicLong state = this.state;
519 <        for (;;) {
520 <            long s = state.get();
521 <            int phase = phaseOf(s);
512 >     * @return the arrival phase number, or a negative value if terminated
513 >     * @throws IllegalStateException if not terminated and the number
514 >     * of registered or unarrived parties would become negative
515 >     */
516 >    public int arriveAndDeregister() {
517 >        // similar to arrive, but too different to merge
518 >        Phaser par = parent;
519 >        long s;
520 >        int phase;
521 >        while ((phase = phaseOf(s = par==null? state:reconcileState())) >= 0) {
522              int parties = partiesOf(s) - 1;
523              int unarrived = unarrivedOf(s) - 1;
524 <            if (parties < 0 || unarrived < 0)
525 <                throw badBounds(parties, unarrived);
526 <            if (unarrived == 0 && phase >= 0) {
527 <                trip(phase, parties);
528 <                return phase;
524 >            if (unarrived > 0) {
525 >                long next = stateFor(phase, parties, unarrived);
526 >                if (UNSAFE.compareAndSwapLong(this, stateOffset, s, next))
527 >                    break;
528 >            }
529 >            else if (unarrived < 0)
530 >                throw new IllegalStateException(badBounds(parties, unarrived));
531 >            else if (par == null) {
532 >                long next = trippedStateFor(onAdvance(phase, parties)? -1:
533 >                                            (phase + 1) & phaseMask,
534 >                                            parties);
535 >                if (UNSAFE.compareAndSwapLong(this, stateOffset, s, next)) {
536 >                    releaseWaiters(phase);
537 >                    break;
538 >                }
539 >            }
540 >            else if (phaseOf(root.state) == phase) {
541 >                long next = stateFor(phase, parties, 0);
542 >                if (UNSAFE.compareAndSwapLong(this, stateOffset, s, next)) {
543 >                    if (parties == 0)
544 >                        par.arriveAndDeregister();
545 >                    else
546 >                        par.arrive();
547 >                    reconcileState();
548 >                    break;
549 >                }
550              }
266            if (state.compareAndSet(s, stateFor(phase, parties, unarrived)))
267                return phase;
551          }
552 +        return phase;
553      }
554  
555      /**
556 <     * Arrives at the barrier and awaits others. Unlike other arrival
557 <     * methods, this method returns the arrival index of the
558 <     * caller. The caller tripping the barrier returns zero, the
559 <     * previous caller 1, and so on.
560 <     * @return the arrival index
561 <     * @throws IllegalStateException if the number of unarrived
562 <     * parties would become negative.
556 >     * Arrives at the barrier and awaits others. Equivalent in effect
557 >     * to {@code awaitAdvance(arrive())}.  If you need to await with
558 >     * interruption or timeout, you can arrange this with an analogous
559 >     * construction using one of the other forms of the {@code
560 >     * awaitAdvance} method.  If instead you need to deregister upon
561 >     * arrival, use {@link #arriveAndDeregister}. It is an unenforced
562 >     * usage error for an unregistered party to invoke this method.
563 >     *
564 >     * @return the arrival phase number, or a negative number if terminated
565 >     * @throws IllegalStateException if not terminated and the number
566 >     * of unarrived parties would become negative
567       */
568      public int arriveAndAwaitAdvance() {
569 <        final AtomicLong state = this.state;
282 <        for (;;) {
283 <            long s = state.get();
284 <            int phase = phaseOf(s);
285 <            int parties = partiesOf(s);
286 <            int unarrived = unarrivedOf(s) - 1;
287 <            if (unarrived < 0)
288 <                throw badBounds(parties, unarrived);
289 <            if (unarrived == 0 && phase >= 0) {
290 <                trip(phase, parties);
291 <                return 0;
292 <            }
293 <            if (state.compareAndSet(s, stateFor(phase, parties, unarrived))) {
294 <                awaitAdvance(phase);
295 <                return unarrived;
296 <            }
297 <        }
569 >        return awaitAdvance(arrive());
570      }
571  
572      /**
573 <     * Awaits the phase of the barrier to advance from the given
574 <     * value, or returns immediately if this barrier is terminated.
575 <     * @param phase the phase on entry to this method
576 <     * @return the phase on exit from this method
573 >     * Awaits the phase of the barrier to advance from the given phase
574 >     * value, returning immediately if the current phase of the
575 >     * barrier is not equal to the given phase value or this barrier
576 >     * is terminated.
577 >     *
578 >     * @param phase an arrival phase number, or negative value if
579 >     * terminated; this argument is normally the value returned by a
580 >     * previous call to {@code arrive} or its variants
581 >     * @return the next arrival phase number, or a negative value
582 >     * if terminated or argument is negative
583       */
584      public int awaitAdvance(int phase) {
585          if (phase < 0)
586              return phase;
587 <        Thread current = Thread.currentThread();
588 <        if (current instanceof ForkJoinWorkerThread)
589 <            return helpingWait(phase);
590 <        if (untimedWait(current, phase, false))
313 <            current.interrupt();
314 <        return phaseOf(state.get());
587 >        int p = getPhase();
588 >        if (p != phase)
589 >            return p;
590 >        return untimedWait(phase);
591      }
592  
593      /**
594 <     * Awaits the phase of the barrier to advance from the given
595 <     * value, or returns immediately if this barrier is terminated, or
596 <     * throws InterruptedException if interrupted while waiting.
597 <     * @param phase the phase on entry to this method
598 <     * @return the phase on exit from this method
594 >     * Awaits the phase of the barrier to advance from the given phase
595 >     * value, throwing {@code InterruptedException} if interrupted
596 >     * while waiting, or returning immediately if the current phase of
597 >     * the barrier is not equal to the given phase value or this
598 >     * barrier is terminated.
599 >     *
600 >     * @param phase an arrival phase number, or negative value if
601 >     * terminated; this argument is normally the value returned by a
602 >     * previous call to {@code arrive} or its variants
603 >     * @return the next arrival phase number, or a negative value
604 >     * if terminated or argument is negative
605       * @throws InterruptedException if thread interrupted while waiting
606       */
607 <    public int awaitAdvanceInterruptibly(int phase) throws InterruptedException {
607 >    public int awaitAdvanceInterruptibly(int phase)
608 >        throws InterruptedException {
609          if (phase < 0)
610              return phase;
611 <        Thread current = Thread.currentThread();
612 <        if (current instanceof ForkJoinWorkerThread)
613 <            return helpingWait(phase);
614 <        else if (Thread.interrupted() || untimedWait(current, phase, true))
332 <            throw new InterruptedException();
333 <        else
334 <            return phaseOf(state.get());
611 >        int p = getPhase();
612 >        if (p != phase)
613 >            return p;
614 >        return interruptibleWait(phase);
615      }
616  
617      /**
618 <     * Awaits the phase of the barrier to advance from the given value
619 <     * or the given timeout elapses, or returns immediately if this
620 <     * barrier is terminated.
621 <     * @param phase the phase on entry to this method
622 <     * @return the phase on exit from this method
618 >     * Awaits the phase of the barrier to advance from the given phase
619 >     * value or the given timeout to elapse, throwing {@code
620 >     * InterruptedException} if interrupted while waiting, or
621 >     * returning immediately if the current phase of the barrier is
622 >     * not equal to the given phase value or this barrier is
623 >     * terminated.
624 >     *
625 >     * @param phase an arrival phase number, or negative value if
626 >     * terminated; this argument is normally the value returned by a
627 >     * previous call to {@code arrive} or its variants
628 >     * @param timeout how long to wait before giving up, in units of
629 >     *        {@code unit}
630 >     * @param unit a {@code TimeUnit} determining how to interpret the
631 >     *        {@code timeout} parameter
632 >     * @return the next arrival phase number, or a negative value
633 >     * if terminated or argument is negative
634       * @throws InterruptedException if thread interrupted while waiting
635       * @throws TimeoutException if timed out while waiting
636       */
637 <    public int awaitAdvanceInterruptibly(int phase, long timeout, TimeUnit unit)
637 >    public int awaitAdvanceInterruptibly(int phase,
638 >                                         long timeout, TimeUnit unit)
639          throws InterruptedException, TimeoutException {
640 +        long nanos = unit.toNanos(timeout);
641          if (phase < 0)
642              return phase;
643 <        long nanos = unit.toNanos(timeout);
644 <        Thread current = Thread.currentThread();
645 <        if (current instanceof ForkJoinWorkerThread)
646 <            return timedHelpingWait(phase, nanos);
354 <        timedWait(current, phase, nanos);
355 <        return phaseOf(state.get());
643 >        int p = getPhase();
644 >        if (p != phase)
645 >            return p;
646 >        return timedWait(phase, nanos);
647      }
648  
649      /**
650       * Forces this barrier to enter termination state. Counts of
651 <     * arrived and registered parties are unaffected. This method may
652 <     * be useful for coordinating recovery after one or more tasks
653 <     * encounter unexpected exceptions.
651 >     * arrived and registered parties are unaffected. If this phaser
652 >     * has a parent, it too is terminated. This method may be useful
653 >     * for coordinating recovery after one or more tasks encounter
654 >     * unexpected exceptions.
655       */
656      public void forceTermination() {
657 <        final AtomicLong state = this.state;
658 <        for (;;) {
659 <            long s = state.get();
660 <            int phase = phaseOf(s);
661 <            int parties = partiesOf(s);
662 <            int unarrived = unarrivedOf(s);
663 <            if (phase < 0 ||
664 <                state.compareAndSet(s, stateFor(-1, parties, unarrived))) {
665 <                if (head.get() != null)
374 <                    releaseWaiters(-1);
375 <                return;
376 <            }
377 <        }
378 <    }
379 <
380 <    /**
381 <     * Resets the barrier with the given numbers of registered unarrived
382 <     * parties and phase number 0. This method allows repeated reuse
383 <     * of this barrier, but only if it is somehow known not to be in
384 <     * use for other purposes.
385 <     * @param parties the number of parties required to trip barrier.
386 <     * @throws IllegalArgumentException if parties less than zero
387 <     * or greater than the maximum number of parties supported.
388 <     */
389 <    public void reset(int parties) {
390 <        if (parties < 0 || parties > ushortMask)
391 <            throw new IllegalArgumentException("Illegal number of parties");
392 <        state.set(stateFor(0, parties, parties));
393 <        if (head.get() != null)
394 <            releaseWaiters(0);
657 >        Phaser r = root;    // force at root then reconcile
658 >        long s;
659 >        while (phaseOf(s = r.state) >= 0)
660 >            UNSAFE.compareAndSwapLong(r, stateOffset, s,
661 >                                      stateFor(-1, partiesOf(s),
662 >                                               unarrivedOf(s)));
663 >        reconcileState();
664 >        releaseWaiters(0);  // ensure wakeups on both queues
665 >        releaseWaiters(1);
666      }
667  
668      /**
669       * Returns the current phase number. The maximum phase number is
670 <     * <tt>Integer.MAX_VALUE</tt>, after which it restarts at
670 >     * {@code Integer.MAX_VALUE}, after which it restarts at
671       * zero. Upon termination, the phase number is negative.
672 +     *
673       * @return the phase number, or a negative value if terminated
674       */
675 <    public int getPhase() {
676 <        return phaseOf(state.get());
675 >    public final int getPhase() {
676 >        return phaseOf(getReconciledState());
677      }
678  
679      /**
680       * Returns the number of parties registered at this barrier.
681 +     *
682       * @return the number of parties
683       */
684      public int getRegisteredParties() {
685 <        return partiesOf(state.get());
685 >        return partiesOf(getReconciledState());
686      }
687  
688      /**
689 <     * Returns the number of parties that have arrived at the current
690 <     * phase of this barrier.
689 >     * Returns the number of registered parties that have arrived at
690 >     * the current phase of this barrier.
691 >     *
692       * @return the number of arrived parties
693       */
694      public int getArrivedParties() {
695 <        return arrivedOf(state.get());
695 >        return arrivedOf(getReconciledState());
696      }
697  
698      /**
699       * Returns the number of registered parties that have not yet
700       * arrived at the current phase of this barrier.
701 +     *
702       * @return the number of unarrived parties
703       */
704      public int getUnarrivedParties() {
705 <        return unarrivedOf(state.get());
705 >        return unarrivedOf(getReconciledState());
706      }
707  
708      /**
709 <     * Returns true if this barrier has been terminated.
710 <     * @return true if this barrier has been terminated
709 >     * Returns the parent of this phaser, or {@code null} if none.
710 >     *
711 >     * @return the parent of this phaser, or {@code null} if none
712 >     */
713 >    public Phaser getParent() {
714 >        return parent;
715 >    }
716 >
717 >    /**
718 >     * Returns the root ancestor of this phaser, which is the same as
719 >     * this phaser if it has no parent.
720 >     *
721 >     * @return the root ancestor of this phaser
722 >     */
723 >    public Phaser getRoot() {
724 >        return root;
725 >    }
726 >
727 >    /**
728 >     * Returns {@code true} if this barrier has been terminated.
729 >     *
730 >     * @return {@code true} if this barrier has been terminated
731       */
732      public boolean isTerminated() {
733 <        return phaseOf(state.get()) < 0;
733 >        return getPhase() < 0;
734      }
735  
736      /**
737 <     * Overridable method to perform an action upon phase advance, and
738 <     * to control termination. This method is invoked whenever the
739 <     * barrier is tripped (and thus all other waiting parties are
740 <     * dormant). If it returns true, then, rather than advance the
741 <     * phase number, this barrier will be set to a final termination
742 <     * state, and subsequent calls to <tt>isTerminated</tt> will
743 <     * return true.
744 <     *
745 <     * <p> The default version returns true when the number of
737 >     * Overridable method to perform an action upon impending phase
738 >     * advance, and to control termination. This method is invoked
739 >     * upon arrival of the party tripping the barrier (when all other
740 >     * waiting parties are dormant).  If this method returns {@code
741 >     * true}, then, rather than advance the phase number, this barrier
742 >     * will be set to a final termination state, and subsequent calls
743 >     * to {@link #isTerminated} will return true. Any (unchecked)
744 >     * Exception or Error thrown by an invocation of this method is
745 >     * propagated to the party attempting to trip the barrier, in
746 >     * which case no advance occurs.
747 >     *
748 >     * <p>The arguments to this method provide the state of the phaser
749 >     * prevailing for the current transition.  The results and effects
750 >     * of invoking phase-related methods (including {@code getPhase}
751 >     * as well as arrival, registration, and waiting methods) from
752 >     * within {@code onAdvance} are unspecified and should not be
753 >     * relied on. Similarly, while it is possible to override this
754 >     * method to produce side-effects visible to participating tasks,
755 >     * it is in general safe to do so only in designs in which all
756 >     * parties register before any arrive, and all {@link
757 >     * #awaitAdvance} at each phase.
758 >     *
759 >     * <p>The default version returns {@code true} when the number of
760       * registered parties is zero. Normally, overrides that arrange
761       * termination for other reasons should also preserve this
762       * property.
763       *
764       * @param phase the phase number on entering the barrier
765 <     * @param registeredParties the current number of registered
766 <     * parties.
458 <     * @return true if this barrier should terminate
765 >     * @param registeredParties the current number of registered parties
766 >     * @return {@code true} if this barrier should terminate
767       */
768      protected boolean onAdvance(int phase, int registeredParties) {
769          return registeredParties <= 0;
770      }
771  
772      /**
773 <     * Returns a string identifying this barrier, as well as its
773 >     * Returns a string identifying this phaser, as well as its
774       * state.  The state, in brackets, includes the String {@code
775 <     * "phase ="} followed by the phase number, {@code "parties ="}
775 >     * "phase = "} followed by the phase number, {@code "parties = "}
776       * followed by the number of registered parties, and {@code
777 <     * "arrived ="} followed by the number of arrived parties
777 >     * "arrived = "} followed by the number of arrived parties.
778       *
779       * @return a string identifying this barrier, as well as its state
780       */
781      public String toString() {
782 <        long s = state.get();
783 <        return super.toString() + "[phase = " + phaseOf(s) + " parties = " + partiesOf(s) + " arrived = " + arrivedOf(s) + "]";
782 >        long s = getReconciledState();
783 >        return super.toString() +
784 >            "[phase = " + phaseOf(s) +
785 >            " parties = " + partiesOf(s) +
786 >            " arrived = " + arrivedOf(s) + "]";
787      }
788  
789 <    // methods for tripping and waiting
789 >    // methods for waiting
790  
791      /**
792 <     * Advance the current phase (or terminate)
792 >     * Wait nodes for Treiber stack representing wait queue
793       */
794 <    private void trip(int phase, int parties) {
795 <        int next = onAdvance(phase, parties)? -1 : ((phase + 1) & phaseMask);
796 <        state.set(stateFor(next, parties, parties));
797 <        if (head.get() != null)
798 <            releaseWaiters(next);
799 <    }
794 >    static final class QNode implements ForkJoinPool.ManagedBlocker {
795 >        final Phaser phaser;
796 >        final int phase;
797 >        final long startTime;
798 >        final long nanos;
799 >        final boolean timed;
800 >        final boolean interruptible;
801 >        volatile boolean wasInterrupted = false;
802 >        volatile Thread thread; // nulled to cancel wait
803 >        QNode next;
804  
805 <    private int helpingWait(int phase) {
806 <        final AtomicLong state = this.state;
807 <        int p;
808 <        while ((p = phaseOf(state.get())) == phase) {
809 <            ForkJoinTask<?> t = ForkJoinWorkerThread.pollTask();
810 <            if (t != null) {
811 <                if ((p = phaseOf(state.get())) == phase)
812 <                    t.exec();
813 <                else {   // push task and exit if barrier advanced
499 <                    t.fork();
500 <                    break;
501 <                }
502 <            }
805 >        QNode(Phaser phaser, int phase, boolean interruptible,
806 >              boolean timed, long startTime, long nanos) {
807 >            this.phaser = phaser;
808 >            this.phase = phase;
809 >            this.timed = timed;
810 >            this.interruptible = interruptible;
811 >            this.startTime = startTime;
812 >            this.nanos = nanos;
813 >            thread = Thread.currentThread();
814          }
504        return p;
505    }
815  
816 <    private int timedHelpingWait(int phase, long nanos) throws TimeoutException {
817 <        final AtomicLong state = this.state;
818 <        long lastTime = System.nanoTime();
819 <        int p;
820 <        while ((p = phaseOf(state.get())) == phase) {
821 <            long now = System.nanoTime();
822 <            nanos -= now - lastTime;
823 <            lastTime = now;
824 <            if (nanos <= 0) {
825 <                if ((p = phaseOf(state.get())) == phase)
826 <                    throw new TimeoutException();
827 <                else
519 <                    break;
816 >        public boolean isReleasable() {
817 >            return (thread == null ||
818 >                    phaser.getPhase() != phase ||
819 >                    (interruptible && wasInterrupted) ||
820 >                    (timed && (nanos - (System.nanoTime() - startTime)) <= 0));
821 >        }
822 >
823 >        public boolean block() {
824 >            if (Thread.interrupted()) {
825 >                wasInterrupted = true;
826 >                if (interruptible)
827 >                    return true;
828              }
829 <            ForkJoinTask<?> t = ForkJoinWorkerThread.pollTask();
830 <            if (t != null) {
831 <                if ((p = phaseOf(state.get())) == phase)
832 <                    t.exec();
833 <                else {   // push task and exit if barrier advanced
834 <                    t.fork();
835 <                    break;
528 <                }
829 >            if (!timed)
830 >                LockSupport.park(this);
831 >            else {
832 >                long waitTime = nanos - (System.nanoTime() - startTime);
833 >                if (waitTime <= 0)
834 >                    return true;
835 >                LockSupport.parkNanos(this, waitTime);
836              }
837 +            return isReleasable();
838          }
531        return p;
532    }
839  
840 <    /**
841 <     * Wait nodes for Treiber stack representing wait queue for non-FJ
842 <     * tasks. The waiting scheme is an adaptation of the one used in
843 <     * forkjoin.PoolBarrier.
844 <     */
845 <    static final class QNode {
540 <        QNode next;
541 <        volatile Thread thread; // nulled to cancel wait
542 <        final int phase;
543 <        QNode(Thread t, int c) {
544 <            thread = t;
545 <            phase = c;
840 >        void signal() {
841 >            Thread t = thread;
842 >            if (t != null) {
843 >                thread = null;
844 >                LockSupport.unpark(t);
845 >            }
846          }
547    }
847  
848 <    private void releaseWaiters(int currentPhase) {
849 <        final AtomicReference<QNode> head = this.head;
850 <        QNode p;
851 <        while ((p = head.get()) != null && p.phase != currentPhase) {
852 <            if (head.compareAndSet(p, null)) {
853 <                do {
854 <                    Thread t = p.thread;
556 <                    if (t != null) {
557 <                        p.thread = null;
558 <                        LockSupport.unpark(t);
559 <                    }
560 <                } while ((p = p.next) != null);
848 >        boolean doWait() {
849 >            if (thread != null) {
850 >                try {
851 >                    ForkJoinPool.managedBlock(this);
852 >                } catch (InterruptedException ie) {
853 >                    wasInterrupted = true; // can't currently happen
854 >                }
855              }
856 +            return wasInterrupted;
857          }
858      }
859  
565    /** The number of CPUs, for spin control */
566    static final int NCPUS = Runtime.getRuntime().availableProcessors();
567
860      /**
861 <     * The number of times to spin before blocking in timed waits.
570 <     * The value is empirically derived.
861 >     * Removes and signals waiting threads from wait queue.
862       */
863 <    static final int maxTimedSpins = (NCPUS < 2)? 0 : 32;
863 >    private void releaseWaiters(int phase) {
864 >        AtomicReference<QNode> head = queueFor(phase);
865 >        QNode q;
866 >        while ((q = head.get()) != null) {
867 >            if (head.compareAndSet(q, q.next))
868 >                q.signal();
869 >        }
870 >    }
871  
872      /**
873 <     * The number of times to spin before blocking in untimed waits.
874 <     * This is greater than timed value because untimed waits spin
875 <     * faster since they don't need to check times on each spin.
873 >     * Tries to enqueue given node in the appropriate wait queue.
874 >     *
875 >     * @return true if successful
876       */
877 <    static final int maxUntimedSpins = maxTimedSpins * 32;
877 >    private boolean tryEnqueue(QNode node) {
878 >        AtomicReference<QNode> head = queueFor(node.phase);
879 >        return head.compareAndSet(node.next = head.get(), node);
880 >    }
881  
882      /**
883 <     * The number of nanoseconds for which it is faster to spin
583 <     * rather than to use timed park. A rough estimate suffices.
883 >     * The number of times to spin before blocking waiting for advance.
884       */
885 <    static final long spinForTimeoutThreshold = 1000L;
885 >    static final int MAX_SPINS =
886 >        Runtime.getRuntime().availableProcessors() == 1 ? 0 : 1 << 8;
887  
888      /**
889       * Enqueues node and waits unless aborted or signalled.
890 +     *
891 +     * @return current phase
892       */
893 <    private boolean untimedWait(Thread thread, int currentPhase,
591 <                               boolean abortOnInterrupt) {
592 <        final AtomicReference<QNode> head = this.head;
593 <        final AtomicLong state = this.state;
594 <        boolean wasInterrupted = false;
893 >    private int untimedWait(int phase) {
894          QNode node = null;
895          boolean queued = false;
896 <        int spins = maxUntimedSpins;
897 <        while (phaseOf(state.get()) == currentPhase) {
898 <            QNode h;
899 <            if (node != null && queued) {
900 <                if (node.thread != null) {
901 <                    LockSupport.park();
902 <                    if (Thread.interrupted()) {
903 <                        wasInterrupted = true;
904 <                        if (abortOnInterrupt)
606 <                            break;
607 <                    }
608 <                }
896 >        boolean interrupted = false;
897 >        int spins = MAX_SPINS;
898 >        int p;
899 >        while ((p = getPhase()) == phase) {
900 >            if (Thread.interrupted())
901 >                interrupted = true;
902 >            else if (spins > 0) {
903 >                if (--spins == 0)
904 >                    Thread.yield();
905              }
906 <            else if ((h = head.get()) != null && h.phase != currentPhase) {
907 <                if (phaseOf(state.get()) == currentPhase) { // must recheck
908 <                    if (head.compareAndSet(h, h.next)) {
909 <                        Thread t = h.thread; // help clear out old waiters
910 <                        if (t != null) {
911 <                            h.thread = null;
912 <                            LockSupport.unpark(t);
913 <                        }
914 <                    }
915 <                }
916 <                else
917 <                    break;
906 >            else if (node == null)
907 >                node = new QNode(this, phase, false, false, 0, 0);
908 >            else if (!queued)
909 >                queued = tryEnqueue(node);
910 >            else if (node.doWait())
911 >                interrupted = true;
912 >        }
913 >        if (node != null)
914 >            node.thread = null;
915 >        releaseWaiters(phase);
916 >        if (interrupted)
917 >            Thread.currentThread().interrupt();
918 >        return p;
919 >    }
920 >
921 >    /**
922 >     * Interruptible version
923 >     * @return current phase
924 >     */
925 >    private int interruptibleWait(int phase) throws InterruptedException {
926 >        QNode node = null;
927 >        boolean queued = false;
928 >        boolean interrupted = false;
929 >        int spins = MAX_SPINS;
930 >        int p;
931 >        while ((p = getPhase()) == phase && !interrupted) {
932 >            if (Thread.interrupted())
933 >                interrupted = true;
934 >            else if (spins > 0) {
935 >                if (--spins == 0)
936 >                    Thread.yield();
937              }
938 <            else if (node != null)
939 <                queued = head.compareAndSet(node.next = h, node);
940 <            else if (spins <= 0)
941 <                node = new QNode(thread, currentPhase);
942 <            else
943 <                --spins;
938 >            else if (node == null)
939 >                node = new QNode(this, phase, true, false, 0, 0);
940 >            else if (!queued)
941 >                queued = tryEnqueue(node);
942 >            else if (node.doWait())
943 >                interrupted = true;
944          }
945          if (node != null)
946              node.thread = null;
947 <        return wasInterrupted;
947 >        if (p != phase || (p = getPhase()) != phase)
948 >            releaseWaiters(phase);
949 >        if (interrupted)
950 >            throw new InterruptedException();
951 >        return p;
952      }
953  
954      /**
955 <     * Messier timeout version
955 >     * Timeout version.
956 >     * @return current phase
957       */
958 <    private void timedWait(Thread thread, int currentPhase, long nanos)
958 >    private int timedWait(int phase, long nanos)
959          throws InterruptedException, TimeoutException {
960 <        final AtomicReference<QNode> head = this.head;
641 <        final AtomicLong state = this.state;
642 <        long lastTime = System.nanoTime();
960 >        long startTime = System.nanoTime();
961          QNode node = null;
962          boolean queued = false;
963 <        int spins = maxTimedSpins;
964 <        while (phaseOf(state.get()) == currentPhase) {
965 <            QNode h;
966 <            long now = System.nanoTime();
967 <            nanos -= now - lastTime;
968 <            lastTime = now;
969 <            if (nanos <= 0) {
970 <                if (node != null)
971 <                    node.thread = null;
972 <                if (phaseOf(state.get()) == currentPhase)
973 <                    throw new TimeoutException();
656 <                else
657 <                    break;
658 <            }
659 <            else if (node != null && queued) {
660 <                if (node.thread != null &&
661 <                    nanos > spinForTimeoutThreshold) {
662 <                    //                LockSupport.parkNanos(this, nanos);
663 <                    LockSupport.parkNanos(nanos);
664 <                    if (Thread.interrupted()) {
665 <                        node.thread = null;
666 <                        throw new InterruptedException();
667 <                    }
668 <                }
669 <            }
670 <            else if ((h = head.get()) != null && h.phase != currentPhase) {
671 <                if (phaseOf(state.get()) == currentPhase) { // must recheck
672 <                    if (head.compareAndSet(h, h.next)) {
673 <                        Thread t = h.thread; // help clear out old waiters
674 <                        if (t != null) {
675 <                            h.thread = null;
676 <                            LockSupport.unpark(t);
677 <                        }
678 <                    }
679 <                }
680 <                else
681 <                    break;
963 >        boolean interrupted = false;
964 >        int spins = MAX_SPINS;
965 >        int p;
966 >        while ((p = getPhase()) == phase && !interrupted) {
967 >            if (Thread.interrupted())
968 >                interrupted = true;
969 >            else if (nanos - (System.nanoTime() - startTime) <= 0)
970 >                break;
971 >            else if (spins > 0) {
972 >                if (--spins == 0)
973 >                    Thread.yield();
974              }
975 <            else if (node != null)
976 <                queued = head.compareAndSet(node.next = h, node);
977 <            else if (spins <= 0)
978 <                node = new QNode(thread, currentPhase);
979 <            else
980 <                --spins;
975 >            else if (node == null)
976 >                node = new QNode(this, phase, true, true, startTime, nanos);
977 >            else if (!queued)
978 >                queued = tryEnqueue(node);
979 >            else if (node.doWait())
980 >                interrupted = true;
981          }
982          if (node != null)
983              node.thread = null;
984 +        if (p != phase || (p = getPhase()) != phase)
985 +            releaseWaiters(phase);
986 +        if (interrupted)
987 +            throw new InterruptedException();
988 +        if (p == phase)
989 +            throw new TimeoutException();
990 +        return p;
991      }
992  
993 < }
993 >    // Unsafe mechanics
994 >
995 >    private static final sun.misc.Unsafe UNSAFE = getUnsafe();
996 >    private static final long stateOffset =
997 >        objectFieldOffset("state", Phaser.class);
998 >
999 >    private static long objectFieldOffset(String field, Class<?> klazz) {
1000 >        try {
1001 >            return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
1002 >        } catch (NoSuchFieldException e) {
1003 >            // Convert Exception to corresponding Error
1004 >            NoSuchFieldError error = new NoSuchFieldError(field);
1005 >            error.initCause(e);
1006 >            throw error;
1007 >        }
1008 >    }
1009  
1010 +    /**
1011 +     * Returns a sun.misc.Unsafe.  Suitable for use in a 3rd party package.
1012 +     * Replace with a simple call to Unsafe.getUnsafe when integrating
1013 +     * into a jdk.
1014 +     *
1015 +     * @return a sun.misc.Unsafe
1016 +     */
1017 +    private static sun.misc.Unsafe getUnsafe() {
1018 +        try {
1019 +            return sun.misc.Unsafe.getUnsafe();
1020 +        } catch (SecurityException se) {
1021 +            try {
1022 +                return java.security.AccessController.doPrivileged
1023 +                    (new java.security
1024 +                     .PrivilegedExceptionAction<sun.misc.Unsafe>() {
1025 +                        public sun.misc.Unsafe run() throws Exception {
1026 +                            java.lang.reflect.Field f = sun.misc
1027 +                                .Unsafe.class.getDeclaredField("theUnsafe");
1028 +                            f.setAccessible(true);
1029 +                            return (sun.misc.Unsafe) f.get(null);
1030 +                        }});
1031 +            } catch (java.security.PrivilegedActionException e) {
1032 +                throw new RuntimeException("Could not initialize intrinsics",
1033 +                                           e.getCause());
1034 +            }
1035 +        }
1036 +    }
1037 + }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines