ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/Phaser.java
(Generate patch)

Comparing jsr166/src/jsr166y/Phaser.java (file contents):
Revision 1.3 by jsr166, Fri Jul 25 18:11:53 2008 UTC vs.
Revision 1.41 by jsr166, Mon Aug 24 15:42:51 2009 UTC

# Line 5 | Line 5
5   */
6  
7   package jsr166y;
8 < import jsr166y.forkjoin.*;
8 >
9   import java.util.concurrent.*;
10 < import java.util.concurrent.atomic.*;
10 >
11 > import java.util.concurrent.atomic.AtomicReference;
12   import java.util.concurrent.locks.LockSupport;
13  
14   /**
15 < * A reusable synchronization barrier, similar in functionality to a
16 < * {@link java.util.concurrent.CyclicBarrier}, but supporting more
17 < * flexible usage.
15 > * A reusable synchronization barrier, similar in functionality to
16 > * {@link java.util.concurrent.CyclicBarrier CyclicBarrier} and
17 > * {@link java.util.concurrent.CountDownLatch CountDownLatch}
18 > * but supporting more flexible usage.
19   *
20 < * <ul>
20 > * <p> <b>Registration.</b> Unlike the case for other barriers, the
21 > * number of parties <em>registered</em> to synchronize on a phaser
22 > * may vary over time.  Tasks may be registered at any time (using
23 > * methods {@link #register}, {@link #bulkRegister}, or forms of
24 > * constructors establishing initial numbers of parties), and
25 > * optionally deregistered upon any arrival (using {@link
26 > * #arriveAndDeregister}).  As is the case with most basic
27 > * synchronization constructs, registration and deregistration affect
28 > * only internal counts; they do not establish any further internal
29 > * bookkeeping, so tasks cannot query whether they are registered.
30 > * (However, you can introduce such bookkeeping by subclassing this
31 > * class.)
32   *
33 < * <li> The number of parties synchronizing on the barrier may vary
34 < * over time.  A task may register to be a party in a barrier at any
35 < * time, and may deregister upon arriving at the barrier.  As is the
36 < * case with most basic synchronization constructs, registration
37 < * and deregistration affect only internal counts; they do not
38 < * establish any further internal bookkeeping, so tasks cannot query
39 < * whether they are registered.
40 < *
41 < * <li> Each generation has an associated phase value, starting at
42 < * zero, and advancing when all parties reach the barrier (wrapping
43 < * around to zero after reaching <tt>Integer.MAX_VALUE</tt>).
31 < *
32 < * <li> Like a CyclicBarrier, a Phaser may be repeatedly awaited.
33 < * Method <tt>arriveAndAwaitAdvance</tt> has effect analogous to
34 < * <tt>CyclicBarrier.await</tt>.  However, Phasers separate two
35 < * aspects of coordination, that may be invoked independently:
33 > * <p> <b>Synchronization.</b> Like a {@code CyclicBarrier}, a {@code
34 > * Phaser} may be repeatedly awaited.  Method {@link
35 > * #arriveAndAwaitAdvance} has effect analogous to {@link
36 > * java.util.concurrent.CyclicBarrier#await CyclicBarrier.await}. Each
37 > * generation of a {@code Phaser} has an associated phase number. The
38 > * phase number starts at zero, and advances when all parties arrive
39 > * at the barrier, wrapping around to zero after reaching {@code
40 > * Integer.MAX_VALUE}. The use of phase numbers enables independent
41 > * control of actions upon arrival at a barrier and upon awaiting
42 > * others, via two kinds of methods that may be invoked by any
43 > * registered party:
44   *
45   * <ul>
46   *
47 < *   <li> Arriving at a barrier. Methods <tt>arrive</tt> and
48 < *       <tt>arriveAndDeregister</tt> do not block, but return
49 < *       the phase value on entry to the method.
50 < *
51 < *   <li> Awaiting others. Method <tt>awaitAdvance</tt> requires an
52 < *       argument indicating the entry phase, and returns when the
53 < *       barrier advances to a new phase.
47 > *   <li> <b>Arrival.</b> Methods {@link #arrive} and
48 > *       {@link #arriveAndDeregister} record arrival at a
49 > *       barrier. These methods do not block, but return an associated
50 > *       <em>arrival phase number</em>; that is, the phase number of
51 > *       the barrier to which the arrival applied. When the final
52 > *       party for a given phase arrives, an optional barrier action
53 > *       is performed and the phase advances.  Barrier actions,
54 > *       performed by the party triggering a phase advance, are
55 > *       arranged by overriding method {@link #onAdvance(int, int)},
56 > *       which also controls termination. Overriding this method is
57 > *       similar to, but more flexible than, providing a barrier
58 > *       action to a {@code CyclicBarrier}.
59 > *
60 > *   <li> <b>Waiting.</b> Method {@link #awaitAdvance} requires an
61 > *       argument indicating an arrival phase number, and returns when
62 > *       the barrier advances to (or is already at) a different phase.
63 > *       Unlike similar constructions using {@code CyclicBarrier},
64 > *       method {@code awaitAdvance} continues to wait even if the
65 > *       waiting thread is interrupted. Interruptible and timeout
66 > *       versions are also available, but exceptions encountered while
67 > *       tasks wait interruptibly or with timeout do not change the
68 > *       state of the barrier. If necessary, you can perform any
69 > *       associated recovery within handlers of those exceptions,
70 > *       often after invoking {@code forceTermination}.  Phasers may
71 > *       also be used by tasks executing in a {@link ForkJoinPool},
72 > *       which will ensure sufficient parallelism to execute tasks
73 > *       when others are blocked waiting for a phase to advance.
74 > *
75   * </ul>
76   *
77 + * <p> <b>Termination.</b> A {@code Phaser} may enter a
78 + * <em>termination</em> state in which all synchronization methods
79 + * immediately return without updating phaser state or waiting for
80 + * advance, and indicating (via a negative phase value) that execution
81 + * is complete.  Termination is triggered when an invocation of {@code
82 + * onAdvance} returns {@code true}.  As illustrated below, when
83 + * phasers control actions with a fixed number of iterations, it is
84 + * often convenient to override this method to cause termination when
85 + * the current phase number reaches a threshold. Method {@link
86 + * #forceTermination} is also available to abruptly release waiting
87 + * threads and allow them to terminate.
88   *
89 < * <li> Barrier actions, performed by the task triggering a phase
90 < * advance while others may be waiting, are arranged by overriding
91 < * method <tt>onAdvance</tt>, that also controls termination.
92 < *
93 < * <li> Phasers may enter a <em>termination</em> state in which all
94 < * await actions immediately return, indicating (via a negative phase
95 < * value) that execution is complete.  Termination is triggered by
56 < * executing the overridable <tt>onAdvance</tt> method that is invoked
57 < * each time the barrier is tripped. When a Phaser is controlling an
58 < * action with a fixed number of iterations, it is often convenient to
59 < * override this method to cause termination when the current phase
60 < * number reaches a threshold.  Method <tt>forceTermination</tt> is
61 < * also available to assist recovery actions upon failure.
62 < *
63 < * <li> Unlike most synchronizers, a Phaser may also be used with
64 < * ForkJoinTasks (as well as plain threads).
65 < *
66 < * <li> By default, <tt>awaitAdvance</tt> continues to wait even if
67 < * the current thread is interrupted. And unlike the case in
68 < * CyclicBarriers, exceptions encountered while tasks wait
69 < * interruptibly or with timeout do not change the state of the
70 < * barrier. If necessary, you can perform any associated recovery
71 < * within handlers of those exceptions.
89 > * <p> <b>Tiering.</b> Phasers may be <em>tiered</em> (i.e., arranged
90 > * in tree structures) to reduce contention. Phasers with large
91 > * numbers of parties that would otherwise experience heavy
92 > * synchronization contention costs may instead be set up so that
93 > * groups of sub-phasers share a common parent.  This may greatly
94 > * increase throughput even though it incurs greater per-operation
95 > * overhead.
96   *
97 < * </ul>
97 > * <p><b>Monitoring.</b> While synchronization methods may be invoked
98 > * only by registered parties, the current state of a phaser may be
99 > * monitored by any caller.  At any given moment there are {@link
100 > * #getRegisteredParties} parties in total, of which {@link
101 > * #getArrivedParties} have arrived at the current phase ({@link
102 > * #getPhase}).  When the remaining ({@link #getUnarrivedParties})
103 > * parties arrive, the phase advances; thus, this value is always
104 > * greater than zero if there are any registered parties.  The values
105 > * returned by these methods may reflect transient states and so are
106 > * not in general useful for synchronization control.  Method {@link
107 > * #toString} returns snapshots of these state queries in a form
108 > * convenient for informal monitoring.
109 > *
110 > * <p><b>Sample usages:</b>
111   *
112 < * <p><b>Sample usage:</b>
112 > * <p>A {@code Phaser} may be used instead of a {@code CountDownLatch}
113 > * to control a one-shot action serving a variable number of
114 > * parties. The typical idiom is for the method setting this up to
115 > * first register, then start the actions, then deregister, as in:
116   *
117 < * <p>[todo: non-FJ example]
117 > *  <pre> {@code
118 > * void runTasks(List<Runnable> tasks) {
119 > *   final Phaser phaser = new Phaser(1); // "1" to register self
120 > *   // create and start threads
121 > *   for (Runnable task : tasks) {
122 > *     phaser.register();
123 > *     new Thread() {
124 > *       public void run() {
125 > *         phaser.arriveAndAwaitAdvance(); // await all creation
126 > *         task.run();
127 > *       }
128 > *     }.start();
129 > *   }
130 > *
131 > *   // allow threads to start and deregister self
132 > *   phaser.arriveAndDeregister();
133 > * }}</pre>
134   *
135 < * <p> A Phaser may be used to support a style of programming in
136 < * which a task waits for others to complete, without otherwise
137 < * needing to keep track of which tasks it is waiting for. This is
138 < * similar to the "sync" construct in Cilk and "clocks" in X10.
139 < * Special constructions based on such barriers are available using
140 < * the <tt>LinkedAsyncAction</tt> and <tt>CyclicAction</tt> classes,
141 < * but they can be useful in other contexts as well.  For a simple
142 < * (but not very useful) example, here is a variant of Fibonacci:
143 < *
144 < * <pre>
145 < * class BarrierFibonacci extends RecursiveAction {
146 < *   int argument, result;
147 < *   final Phaser parentBarrier;
148 < *   BarrierFibonacci(int n, Phaser parentBarrier) {
149 < *     this.argument = n;
150 < *     this.parentBarrier = parentBarrier;
151 < *     parentBarrier.register();
135 > * <p>One way to cause a set of threads to repeatedly perform actions
136 > * for a given number of iterations is to override {@code onAdvance}:
137 > *
138 > *  <pre> {@code
139 > * void startTasks(List<Runnable> tasks, final int iterations) {
140 > *   final Phaser phaser = new Phaser() {
141 > *     protected boolean onAdvance(int phase, int registeredParties) {
142 > *       return phase >= iterations || registeredParties == 0;
143 > *     }
144 > *   };
145 > *   phaser.register();
146 > *   for (Runnable task : tasks) {
147 > *     phaser.register();
148 > *     new Thread() {
149 > *       public void run() {
150 > *         do {
151 > *           task.run();
152 > *           phaser.arriveAndAwaitAdvance();
153 > *         } while(!phaser.isTerminated();
154 > *       }
155 > *     }.start();
156   *   }
157 < *   protected void compute() {
158 < *     int n = argument;
159 < *     if (n &lt;= 1)
160 < *        result = n;
161 < *     else {
162 < *        Phaser childBarrier = new Phaser(1);
163 < *        BarrierFibonacci f1 = new BarrierFibonacci(n - 1, childBarrier);
164 < *        BarrierFibonacci f2 = new BarrierFibonacci(n - 2, childBarrier);
165 < *        f1.fork();
166 < *        f2.fork();
167 < *        childBarrier.arriveAndAwait();
168 < *        result = f1.result + f2.result;
157 > *   phaser.arriveAndDeregister(); // deregister self, don't wait
158 > * }}</pre>
159 > *
160 > * If the main task must later await termination, it
161 > * may re-register and then execute a similar loop:
162 > * <pre> {@code
163 > *   // ...
164 > *   phaser.register();
165 > *   while (!phaser.isTerminated())
166 > *     phaser.arriveAndAwaitAdvance();
167 > * }</pre>
168 > *
169 > * Related constructions may be used to await particular phase numbers
170 > * in contexts where you are sure that the phase will never wrap around
171 > * {@code Integer.MAX_VALUE}. For example:
172 > *
173 > * <pre> {@code
174 > *   void awaitPhase(Phaser phaser, int phase) {
175 > *     int p = phaser.register(); // assumes caller not already registered
176 > *     while (p < phase) {
177 > *       if (phaser.isTerminated())
178 > *         // ... deal with unexpected termination
179 > *       else
180 > *         p = phaser.arriveAndAwaitAdvance();
181   *     }
182 < *     parentBarrier.arriveAndDeregister();
182 > *     phaser.arriveAndDeregister();
183 > *   }
184 > * }</pre>
185 > *
186 > *
187 > * <p>To create a set of tasks using a tree of phasers,
188 > * you could use code of the following form, assuming a
189 > * Task class with a constructor accepting a phaser that
190 > * it registers for upon construction:
191 > *  <pre> {@code
192 > * void build(Task[] actions, int lo, int hi, Phaser b) {
193 > *   int step = (hi - lo) / TASKS_PER_PHASER;
194 > *   if (step > 1) {
195 > *     int i = lo;
196 > *     while (i < hi) {
197 > *       int r = Math.min(i + step, hi);
198 > *       build(actions, i, r, new Phaser(b));
199 > *       i = r;
200 > *     }
201 > *   } else {
202 > *     for (int i = lo; i < hi; ++i)
203 > *       actions[i] = new Task(b);
204 > *       // assumes new Task(b) performs b.register()
205   *   }
206   * }
207 + * // .. initially called, for n tasks via
208 + * build(new Task[n], 0, n, new Phaser());}</pre>
209 + *
210 + * The best value of {@code TASKS_PER_PHASER} depends mainly on
211 + * expected barrier synchronization rates. A value as low as four may
212 + * be appropriate for extremely small per-barrier task bodies (thus
213 + * high rates), or up to hundreds for extremely large ones.
214 + *
215   * </pre>
216   *
217   * <p><b>Implementation notes</b>: This implementation restricts the
218 < * maximum number of parties to 65535. Attempts to register
219 < * additional parties result in IllegalStateExceptions.
218 > * maximum number of parties to 65535. Attempts to register additional
219 > * parties result in {@code IllegalStateException}. However, you can and
220 > * should create tiered phasers to accommodate arbitrarily large sets
221 > * of participants.
222 > *
223 > * @since 1.7
224 > * @author Doug Lea
225   */
226   public class Phaser {
227      /*
228       * This class implements an extension of X10 "clocks".  Thanks to
229 <     * Vijay Saraswat for the idea of applying it to ForkJoinTasks,
230 <     * and to Vivek Sarkar for enhancements to extend functionality.
229 >     * Vijay Saraswat for the idea, and to Vivek Sarkar for
230 >     * enhancements to extend functionality.
231       */
232  
233      /**
# Line 133 | Line 240 | public class Phaser {
240       * * terminated -- set if barrier is terminated (1 bit)
241       *
242       * However, to efficiently maintain atomicity, these values are
243 <     * packed into a single AtomicLong. Termination uses the sign bit
244 <     * of 32 bit representation of phase, so phase is set to -1 on
245 <     * termination.
246 <     */
247 <    private final AtomicLong state;
248 <
249 <    /**
143 <     * Head of Treiber stack for waiting nonFJ threads.
243 >     * packed into a single (atomic) long. Termination uses the sign
244 >     * bit of 32 bit representation of phase, so phase is set to -1 on
245 >     * termination. Good performance relies on keeping state decoding
246 >     * and encoding simple, and keeping race windows short.
247 >     *
248 >     * Note: there are some cheats in arrive() that rely on unarrived
249 >     * count being lowest 16 bits.
250       */
251 <    private final AtomicReference<QNode> head = new AtomicReference<QNode>();
251 >    private volatile long state;
252  
253 <    private static final int ushortBits = 16;
254 <    private static final int ushortMask =  (1 << ushortBits) - 1;
149 <    private static final int phaseMask = 0x7fffffff;
253 >    private static final int ushortMask = 0xffff;
254 >    private static final int phaseMask  = 0x7fffffff;
255  
256      private static int unarrivedOf(long s) {
257 <        return (int)(s & ushortMask);
257 >        return (int) (s & ushortMask);
258      }
259  
260      private static int partiesOf(long s) {
261 <        return (int)(s & (ushortMask << 16)) >>> 16;
261 >        return ((int) s) >>> 16;
262      }
263  
264      private static int phaseOf(long s) {
265 <        return (int)(s >>> 32);
265 >        return (int) (s >>> 32);
266      }
267  
268      private static int arrivedOf(long s) {
# Line 165 | Line 270 | public class Phaser {
270      }
271  
272      private static long stateFor(int phase, int parties, int unarrived) {
273 <        return (((long)phase) << 32) | ((parties << 16) | unarrived);
273 >        return ((((long) phase) << 32) | (((long) parties) << 16) |
274 >                (long) unarrived);
275 >    }
276 >
277 >    private static long trippedStateFor(int phase, int parties) {
278 >        long lp = (long) parties;
279 >        return (((long) phase) << 32) | (lp << 16) | lp;
280      }
281  
282 <    private static IllegalStateException badBounds(int parties, int unarrived) {
283 <        return new IllegalStateException("Attempt to set " + unarrived +
284 <                                         " unarrived of " + parties + " parties");
282 >    /**
283 >     * Returns message string for bad bounds exceptions.
284 >     */
285 >    private static String badBounds(int parties, int unarrived) {
286 >        return ("Attempt to set " + unarrived +
287 >                " unarrived of " + parties + " parties");
288 >    }
289 >
290 >    /**
291 >     * The parent of this phaser, or null if none
292 >     */
293 >    private final Phaser parent;
294 >
295 >    /**
296 >     * The root of phaser tree. Equals this if not in a tree.  Used to
297 >     * support faster state push-down.
298 >     */
299 >    private final Phaser root;
300 >
301 >    // Wait queues
302 >
303 >    /**
304 >     * Heads of Treiber stacks for waiting threads. To eliminate
305 >     * contention while releasing some threads while adding others, we
306 >     * use two of them, alternating across even and odd phases.
307 >     */
308 >    private final AtomicReference<QNode> evenQ = new AtomicReference<QNode>();
309 >    private final AtomicReference<QNode> oddQ  = new AtomicReference<QNode>();
310 >
311 >    private AtomicReference<QNode> queueFor(int phase) {
312 >        return ((phase & 1) == 0) ? evenQ : oddQ;
313      }
314  
315      /**
316 <     * Creates a new Phaser without any initially registered parties,
317 <     * and initial phase number 0.
316 >     * Returns current state, first resolving lagged propagation from
317 >     * root if necessary.
318 >     */
319 >    private long getReconciledState() {
320 >        return (parent == null) ? state : reconcileState();
321 >    }
322 >
323 >    /**
324 >     * Recursively resolves state.
325 >     */
326 >    private long reconcileState() {
327 >        Phaser p = parent;
328 >        long s = state;
329 >        if (p != null) {
330 >            while (unarrivedOf(s) == 0 && phaseOf(s) != phaseOf(root.state)) {
331 >                long parentState = p.getReconciledState();
332 >                int parentPhase = phaseOf(parentState);
333 >                int phase = phaseOf(s = state);
334 >                if (phase != parentPhase) {
335 >                    long next = trippedStateFor(parentPhase, partiesOf(s));
336 >                    if (casState(s, next)) {
337 >                        releaseWaiters(phase);
338 >                        s = next;
339 >                    }
340 >                }
341 >            }
342 >        }
343 >        return s;
344 >    }
345 >
346 >    /**
347 >     * Creates a new phaser without any initially registered parties,
348 >     * initial phase number 0, and no parent. Any thread using this
349 >     * phaser will need to first register for it.
350       */
351      public Phaser() {
352 <        state = new AtomicLong(stateFor(0, 0, 0));
352 >        this(null);
353      }
354  
355      /**
356 <     * Creates a new Phaser with the given numbers of registered
357 <     * unarrived parties and initial phase number 0.
358 <     * @param parties the number of parties required to trip barrier.
356 >     * Creates a new phaser with the given numbers of registered
357 >     * unarrived parties, initial phase number 0, and no parent.
358 >     *
359 >     * @param parties the number of parties required to trip barrier
360       * @throws IllegalArgumentException if parties less than zero
361 <     * or greater than the maximum number of parties supported.
361 >     * or greater than the maximum number of parties supported
362       */
363      public Phaser(int parties) {
364 +        this(null, parties);
365 +    }
366 +
367 +    /**
368 +     * Creates a new phaser with the given parent, without any
369 +     * initially registered parties. If parent is non-null this phaser
370 +     * is registered with the parent and its initial phase number is
371 +     * the same as that of parent phaser.
372 +     *
373 +     * @param parent the parent phaser
374 +     */
375 +    public Phaser(Phaser parent) {
376 +        int phase = 0;
377 +        this.parent = parent;
378 +        if (parent != null) {
379 +            this.root = parent.root;
380 +            phase = parent.register();
381 +        }
382 +        else
383 +            this.root = this;
384 +        this.state = trippedStateFor(phase, 0);
385 +    }
386 +
387 +    /**
388 +     * Creates a new phaser with the given parent and numbers of
389 +     * registered unarrived parties. If parent is non-null, this phaser
390 +     * is registered with the parent and its initial phase number is
391 +     * the same as that of parent phaser.
392 +     *
393 +     * @param parent the parent phaser
394 +     * @param parties the number of parties required to trip barrier
395 +     * @throws IllegalArgumentException if parties less than zero
396 +     * or greater than the maximum number of parties supported
397 +     */
398 +    public Phaser(Phaser parent, int parties) {
399          if (parties < 0 || parties > ushortMask)
400              throw new IllegalArgumentException("Illegal number of parties");
401 <        state = new AtomicLong(stateFor(0, parties, parties));
401 >        int phase = 0;
402 >        this.parent = parent;
403 >        if (parent != null) {
404 >            this.root = parent.root;
405 >            phase = parent.register();
406 >        }
407 >        else
408 >            this.root = this;
409 >        this.state = trippedStateFor(phase, parties);
410      }
411  
412      /**
413       * Adds a new unarrived party to this phaser.
414 <     * @return the current barrier phase number upon registration
414 >     *
415 >     * @return the arrival phase number to which this registration applied
416       * @throws IllegalStateException if attempting to register more
417 <     * than the maximum supported number of parties.
417 >     * than the maximum supported number of parties
418       */
419 <    public int register() { // increment both parties and unarrived
420 <        final AtomicLong state = this.state;
419 >    public int register() {
420 >        return doRegister(1);
421 >    }
422 >
423 >    /**
424 >     * Adds the given number of new unarrived parties to this phaser.
425 >     *
426 >     * @param parties the number of parties required to trip barrier
427 >     * @return the arrival phase number to which this registration applied
428 >     * @throws IllegalStateException if attempting to register more
429 >     * than the maximum supported number of parties
430 >     */
431 >    public int bulkRegister(int parties) {
432 >        if (parties < 0)
433 >            throw new IllegalArgumentException();
434 >        if (parties == 0)
435 >            return getPhase();
436 >        return doRegister(parties);
437 >    }
438 >
439 >    /**
440 >     * Shared code for register, bulkRegister
441 >     */
442 >    private int doRegister(int registrations) {
443 >        int phase;
444          for (;;) {
445 <            long s = state.get();
446 <            int phase = phaseOf(s);
447 <            int parties = partiesOf(s) + 1;
448 <            int unarrived = unarrivedOf(s) + 1;
445 >            long s = getReconciledState();
446 >            phase = phaseOf(s);
447 >            int unarrived = unarrivedOf(s) + registrations;
448 >            int parties = partiesOf(s) + registrations;
449 >            if (phase < 0)
450 >                break;
451              if (parties > ushortMask || unarrived > ushortMask)
452 <                throw badBounds(parties, unarrived);
453 <            if (state.compareAndSet(s, stateFor(phase, parties, unarrived)))
454 <                return phase;
452 >                throw new IllegalStateException(badBounds(parties, unarrived));
453 >            if (phase == phaseOf(root.state) &&
454 >                casState(s, stateFor(phase, parties, unarrived)))
455 >                break;
456          }
457 +        return phase;
458      }
459  
460      /**
461       * Arrives at the barrier, but does not wait for others.  (You can
462 <     * in turn wait for others via {@link #awaitAdvance}).
462 >     * in turn wait for others via {@link #awaitAdvance}).  It is an
463 >     * unenforced usage error for an unregistered party to invoke this
464 >     * method.
465       *
466 <     * @return the current barrier phase number upon entry to
467 <     * this method, or a negative value if terminated;
468 <     * @throws IllegalStateException if the number of unarrived
224 <     * parties would become negative.
466 >     * @return the arrival phase number, or a negative value if terminated
467 >     * @throws IllegalStateException if not terminated and the number
468 >     * of unarrived parties would become negative
469       */
470 <    public int arrive() { // decrement unarrived. If zero, trip
471 <        final AtomicLong state = this.state;
470 >    public int arrive() {
471 >        int phase;
472          for (;;) {
473 <            long s = state.get();
474 <            int phase = phaseOf(s);
473 >            long s = state;
474 >            phase = phaseOf(s);
475 >            if (phase < 0)
476 >                break;
477              int parties = partiesOf(s);
478              int unarrived = unarrivedOf(s) - 1;
479 <            if (unarrived < 0)
480 <                throw badBounds(parties, unarrived);
481 <            if (unarrived == 0 && phase >= 0) {
482 <                trip(phase, parties);
483 <                return phase;
479 >            if (unarrived > 0) {        // Not the last arrival
480 >                if (casState(s, s - 1)) // s-1 adds one arrival
481 >                    break;
482 >            }
483 >            else if (unarrived == 0) {  // the last arrival
484 >                Phaser par = parent;
485 >                if (par == null) {      // directly trip
486 >                    if (casState
487 >                        (s,
488 >                         trippedStateFor(onAdvance(phase, parties) ? -1 :
489 >                                         ((phase + 1) & phaseMask), parties))) {
490 >                        releaseWaiters(phase);
491 >                        break;
492 >                    }
493 >                }
494 >                else {                  // cascade to parent
495 >                    if (casState(s, s - 1)) { // zeroes unarrived
496 >                        par.arrive();
497 >                        reconcileState();
498 >                        break;
499 >                    }
500 >                }
501              }
502 <            if (state.compareAndSet(s, stateFor(phase, parties, unarrived)))
503 <                return phase;
502 >            else if (phase != phaseOf(root.state)) // or if unreconciled
503 >                reconcileState();
504 >            else
505 >                throw new IllegalStateException(badBounds(parties, unarrived));
506          }
507 +        return phase;
508      }
509  
510      /**
511 <     * Arrives at the barrier, and deregisters from it, without
512 <     * waiting for others.
511 >     * Arrives at the barrier and deregisters from it without waiting
512 >     * for others. Deregistration reduces the number of parties
513 >     * required to trip the barrier in future phases.  If this phaser
514 >     * has a parent, and deregistration causes this phaser to have
515 >     * zero parties, this phaser also arrives at and is deregistered
516 >     * from its parent.  It is an unenforced usage error for an
517 >     * unregistered party to invoke this method.
518       *
519 <     * @return the current barrier phase number upon entry to
520 <     * this method, or a negative value if terminated;
521 <     * @throws IllegalStateException if the number of registered or
522 <     * unarrived parties would become negative.
523 <     */
524 <    public int arriveAndDeregister() { // Same as arrive, plus decrement parties
525 <        final AtomicLong state = this.state;
519 >     * @return the arrival phase number, or a negative value if terminated
520 >     * @throws IllegalStateException if not terminated and the number
521 >     * of registered or unarrived parties would become negative
522 >     */
523 >    public int arriveAndDeregister() {
524 >        // similar code to arrive, but too different to merge
525 >        Phaser par = parent;
526 >        int phase;
527          for (;;) {
528 <            long s = state.get();
529 <            int phase = phaseOf(s);
528 >            long s = state;
529 >            phase = phaseOf(s);
530 >            if (phase < 0)
531 >                break;
532              int parties = partiesOf(s) - 1;
533              int unarrived = unarrivedOf(s) - 1;
534 <            if (parties < 0 || unarrived < 0)
535 <                throw badBounds(parties, unarrived);
536 <            if (unarrived == 0 && phase >= 0) {
537 <                trip(phase, parties);
538 <                return phase;
534 >            if (parties >= 0) {
535 >                if (unarrived > 0 || (unarrived == 0 && par != null)) {
536 >                    if (casState
537 >                        (s,
538 >                         stateFor(phase, parties, unarrived))) {
539 >                        if (unarrived == 0) {
540 >                            par.arriveAndDeregister();
541 >                            reconcileState();
542 >                        }
543 >                        break;
544 >                    }
545 >                    continue;
546 >                }
547 >                if (unarrived == 0) {
548 >                    if (casState
549 >                        (s,
550 >                         trippedStateFor(onAdvance(phase, parties) ? -1 :
551 >                                         ((phase + 1) & phaseMask), parties))) {
552 >                        releaseWaiters(phase);
553 >                        break;
554 >                    }
555 >                    continue;
556 >                }
557 >                if (par != null && phase != phaseOf(root.state)) {
558 >                    reconcileState();
559 >                    continue;
560 >                }
561              }
562 <            if (state.compareAndSet(s, stateFor(phase, parties, unarrived)))
267 <                return phase;
562 >            throw new IllegalStateException(badBounds(parties, unarrived));
563          }
564 +        return phase;
565      }
566  
567      /**
568 <     * Arrives at the barrier and awaits others. Unlike other arrival
569 <     * methods, this method returns the arrival index of the
570 <     * caller. The caller tripping the barrier returns zero, the
571 <     * previous caller 1, and so on.
572 <     * @return the arrival index
573 <     * @throws IllegalStateException if the number of unarrived
574 <     * parties would become negative.
568 >     * Arrives at the barrier and awaits others. Equivalent in effect
569 >     * to {@code awaitAdvance(arrive())}.  If you need to await with
570 >     * interruption or timeout, you can arrange this with an analogous
571 >     * construction using one of the other forms of the awaitAdvance
572 >     * method.  If instead you need to deregister upon arrival use
573 >     * {@code arriveAndDeregister}. It is an unenforced usage error
574 >     * for an unregistered party to invoke this method.
575 >     *
576 >     * @return the arrival phase number, or a negative number if terminated
577 >     * @throws IllegalStateException if not terminated and the number
578 >     * of unarrived parties would become negative
579       */
580      public int arriveAndAwaitAdvance() {
581 <        final AtomicLong state = this.state;
282 <        for (;;) {
283 <            long s = state.get();
284 <            int phase = phaseOf(s);
285 <            int parties = partiesOf(s);
286 <            int unarrived = unarrivedOf(s) - 1;
287 <            if (unarrived < 0)
288 <                throw badBounds(parties, unarrived);
289 <            if (unarrived == 0 && phase >= 0) {
290 <                trip(phase, parties);
291 <                return 0;
292 <            }
293 <            if (state.compareAndSet(s, stateFor(phase, parties, unarrived))) {
294 <                awaitAdvance(phase);
295 <                return unarrived;
296 <            }
297 <        }
581 >        return awaitAdvance(arrive());
582      }
583  
584      /**
585 <     * Awaits the phase of the barrier to advance from the given
586 <     * value, or returns immediately if this barrier is terminated.
587 <     * @param phase the phase on entry to this method
588 <     * @return the phase on exit from this method
585 >     * Awaits the phase of the barrier to advance from the given phase
586 >     * value, returning immediately if the current phase of the
587 >     * barrier is not equal to the given phase value or this barrier
588 >     * is terminated.  It is an unenforced usage error for an
589 >     * unregistered party to invoke this method.
590 >     *
591 >     * @param phase an arrival phase number, or negative value if
592 >     * terminated; this argument is normally the value returned by a
593 >     * previous call to {@code arrive} or its variants
594 >     * @return the next arrival phase number, or a negative value
595 >     * if terminated or argument is negative
596       */
597      public int awaitAdvance(int phase) {
598          if (phase < 0)
599              return phase;
600 <        Thread current = Thread.currentThread();
601 <        if (current instanceof ForkJoinWorkerThread)
602 <            return helpingWait(phase);
603 <        if (untimedWait(current, phase, false))
604 <            current.interrupt();
605 <        return phaseOf(state.get());
600 >        long s = getReconciledState();
601 >        int p = phaseOf(s);
602 >        if (p != phase)
603 >            return p;
604 >        if (unarrivedOf(s) == 0 && parent != null)
605 >            parent.awaitAdvance(phase);
606 >        // Fall here even if parent waited, to reconcile and help release
607 >        return untimedWait(phase);
608      }
609  
610      /**
611 <     * Awaits the phase of the barrier to advance from the given
612 <     * value, or returns immediately if this barrier is terminated, or
613 <     * throws InterruptedException if interrupted while waiting.
614 <     * @param phase the phase on entry to this method
615 <     * @return the phase on exit from this method
611 >     * Awaits the phase of the barrier to advance from the given phase
612 >     * value, throwing {@code InterruptedException} if interrupted
613 >     * while waiting, or returning immediately if the current phase of
614 >     * the barrier is not equal to the given phase value or this
615 >     * barrier is terminated. It is an unenforced usage error for an
616 >     * unregistered party to invoke this method.
617 >     *
618 >     * @param phase an arrival phase number, or negative value if
619 >     * terminated; this argument is normally the value returned by a
620 >     * previous call to {@code arrive} or its variants
621 >     * @return the next arrival phase number, or a negative value
622 >     * if terminated or argument is negative
623       * @throws InterruptedException if thread interrupted while waiting
624       */
625 <    public int awaitAdvanceInterruptibly(int phase) throws InterruptedException {
625 >    public int awaitAdvanceInterruptibly(int phase)
626 >        throws InterruptedException {
627          if (phase < 0)
628              return phase;
629 <        Thread current = Thread.currentThread();
630 <        if (current instanceof ForkJoinWorkerThread)
631 <            return helpingWait(phase);
632 <        else if (Thread.interrupted() || untimedWait(current, phase, true))
633 <            throw new InterruptedException();
634 <        else
635 <            return phaseOf(state.get());
629 >        long s = getReconciledState();
630 >        int p = phaseOf(s);
631 >        if (p != phase)
632 >            return p;
633 >        if (unarrivedOf(s) == 0 && parent != null)
634 >            parent.awaitAdvanceInterruptibly(phase);
635 >        return interruptibleWait(phase);
636      }
637  
638      /**
639 <     * Awaits the phase of the barrier to advance from the given value
640 <     * or the given timeout elapses, or returns immediately if this
641 <     * barrier is terminated.
642 <     * @param phase the phase on entry to this method
643 <     * @return the phase on exit from this method
639 >     * Awaits the phase of the barrier to advance from the given phase
640 >     * value or the given timeout to elapse, throwing {@code
641 >     * InterruptedException} if interrupted while waiting, or
642 >     * returning immediately if the current phase of the barrier is
643 >     * not equal to the given phase value or this barrier is
644 >     * terminated.  It is an unenforced usage error for an
645 >     * unregistered party to invoke this method.
646 >     *
647 >     * @param phase an arrival phase number, or negative value if
648 >     * terminated; this argument is normally the value returned by a
649 >     * previous call to {@code arrive} or its variants
650 >     * @param timeout how long to wait before giving up, in units of
651 >     *        {@code unit}
652 >     * @param unit a {@code TimeUnit} determining how to interpret the
653 >     *        {@code timeout} parameter
654 >     * @return the next arrival phase number, or a negative value
655 >     * if terminated or argument is negative
656       * @throws InterruptedException if thread interrupted while waiting
657       * @throws TimeoutException if timed out while waiting
658       */
659 <    public int awaitAdvanceInterruptibly(int phase, long timeout, TimeUnit unit)
659 >    public int awaitAdvanceInterruptibly(int phase,
660 >                                         long timeout, TimeUnit unit)
661          throws InterruptedException, TimeoutException {
662          if (phase < 0)
663              return phase;
664 <        long nanos = unit.toNanos(timeout);
665 <        Thread current = Thread.currentThread();
666 <        if (current instanceof ForkJoinWorkerThread)
667 <            return timedHelpingWait(phase, nanos);
668 <        timedWait(current, phase, nanos);
669 <        return phaseOf(state.get());
664 >        long s = getReconciledState();
665 >        int p = phaseOf(s);
666 >        if (p != phase)
667 >            return p;
668 >        if (unarrivedOf(s) == 0 && parent != null)
669 >            parent.awaitAdvanceInterruptibly(phase, timeout, unit);
670 >        return timedWait(phase, unit.toNanos(timeout));
671      }
672  
673      /**
674       * Forces this barrier to enter termination state. Counts of
675 <     * arrived and registered parties are unaffected. This method may
676 <     * be useful for coordinating recovery after one or more tasks
677 <     * encounter unexpected exceptions.
675 >     * arrived and registered parties are unaffected. If this phaser
676 >     * has a parent, it too is terminated. This method may be useful
677 >     * for coordinating recovery after one or more tasks encounter
678 >     * unexpected exceptions.
679       */
680      public void forceTermination() {
365        final AtomicLong state = this.state;
681          for (;;) {
682 <            long s = state.get();
682 >            long s = getReconciledState();
683              int phase = phaseOf(s);
684              int parties = partiesOf(s);
685              int unarrived = unarrivedOf(s);
686              if (phase < 0 ||
687 <                state.compareAndSet(s, stateFor(-1, parties, unarrived))) {
688 <                if (head.get() != null)
689 <                    releaseWaiters(-1);
687 >                casState(s, stateFor(-1, parties, unarrived))) {
688 >                releaseWaiters(0);
689 >                releaseWaiters(1);
690 >                if (parent != null)
691 >                    parent.forceTermination();
692                  return;
693              }
694          }
695      }
696  
697      /**
381     * Resets the barrier with the given numbers of registered unarrived
382     * parties and phase number 0. This method allows repeated reuse
383     * of this barrier, but only if it is somehow known not to be in
384     * use for other purposes.
385     * @param parties the number of parties required to trip barrier.
386     * @throws IllegalArgumentException if parties less than zero
387     * or greater than the maximum number of parties supported.
388     */
389    public void reset(int parties) {
390        if (parties < 0 || parties > ushortMask)
391            throw new IllegalArgumentException("Illegal number of parties");
392        state.set(stateFor(0, parties, parties));
393        if (head.get() != null)
394            releaseWaiters(0);
395    }
396
397    /**
698       * Returns the current phase number. The maximum phase number is
699 <     * <tt>Integer.MAX_VALUE</tt>, after which it restarts at
699 >     * {@code Integer.MAX_VALUE}, after which it restarts at
700       * zero. Upon termination, the phase number is negative.
701 +     *
702       * @return the phase number, or a negative value if terminated
703       */
704 <    public int getPhase() {
705 <        return phaseOf(state.get());
704 >    public final int getPhase() {
705 >        return phaseOf(getReconciledState());
706      }
707  
708      /**
709       * Returns the number of parties registered at this barrier.
710 +     *
711       * @return the number of parties
712       */
713      public int getRegisteredParties() {
714 <        return partiesOf(state.get());
714 >        return partiesOf(state);
715      }
716  
717      /**
718 <     * Returns the number of parties that have arrived at the current
719 <     * phase of this barrier.
718 >     * Returns the number of registered parties that have arrived at
719 >     * the current phase of this barrier.
720 >     *
721       * @return the number of arrived parties
722       */
723      public int getArrivedParties() {
724 <        return arrivedOf(state.get());
724 >        return arrivedOf(state);
725      }
726  
727      /**
728       * Returns the number of registered parties that have not yet
729       * arrived at the current phase of this barrier.
730 +     *
731       * @return the number of unarrived parties
732       */
733      public int getUnarrivedParties() {
734 <        return unarrivedOf(state.get());
734 >        return unarrivedOf(state);
735      }
736  
737      /**
738 <     * Returns true if this barrier has been terminated.
739 <     * @return true if this barrier has been terminated
738 >     * Returns the parent of this phaser, or {@code null} if none.
739 >     *
740 >     * @return the parent of this phaser, or {@code null} if none
741 >     */
742 >    public Phaser getParent() {
743 >        return parent;
744 >    }
745 >
746 >    /**
747 >     * Returns the root ancestor of this phaser, which is the same as
748 >     * this phaser if it has no parent.
749 >     *
750 >     * @return the root ancestor of this phaser
751 >     */
752 >    public Phaser getRoot() {
753 >        return root;
754 >    }
755 >
756 >    /**
757 >     * Returns {@code true} if this barrier has been terminated.
758 >     *
759 >     * @return {@code true} if this barrier has been terminated
760       */
761      public boolean isTerminated() {
762 <        return phaseOf(state.get()) < 0;
762 >        return getPhase() < 0;
763      }
764  
765      /**
766       * Overridable method to perform an action upon phase advance, and
767       * to control termination. This method is invoked whenever the
768       * barrier is tripped (and thus all other waiting parties are
769 <     * dormant). If it returns true, then, rather than advance the
770 <     * phase number, this barrier will be set to a final termination
771 <     * state, and subsequent calls to <tt>isTerminated</tt> will
772 <     * return true.
769 >     * dormant). If it returns {@code true}, then, rather than advance
770 >     * the phase number, this barrier will be set to a final
771 >     * termination state, and subsequent calls to {@link #isTerminated}
772 >     * will return true.
773       *
774 <     * <p> The default version returns true when the number of
774 >     * <p>The default version returns {@code true} when the number of
775       * registered parties is zero. Normally, overrides that arrange
776       * termination for other reasons should also preserve this
777       * property.
778       *
779 +     * <p>You may override this method to perform an action with side
780 +     * effects visible to participating tasks, but it is in general
781 +     * only sensible to do so in designs where all parties register
782 +     * before any arrive, and all {@link #awaitAdvance} at each phase.
783 +     * Otherwise, you cannot ensure lack of interference from other
784 +     * parties during the invocation of this method.
785 +     *
786       * @param phase the phase number on entering the barrier
787 <     * @param registeredParties the current number of registered
788 <     * parties.
458 <     * @return true if this barrier should terminate
787 >     * @param registeredParties the current number of registered parties
788 >     * @return {@code true} if this barrier should terminate
789       */
790      protected boolean onAdvance(int phase, int registeredParties) {
791          return registeredParties <= 0;
792      }
793  
794      /**
795 <     * Returns a string identifying this barrier, as well as its
795 >     * Returns a string identifying this phaser, as well as its
796       * state.  The state, in brackets, includes the String {@code
797 <     * "phase ="} followed by the phase number, {@code "parties ="}
797 >     * "phase = "} followed by the phase number, {@code "parties = "}
798       * followed by the number of registered parties, and {@code
799 <     * "arrived ="} followed by the number of arrived parties
799 >     * "arrived = "} followed by the number of arrived parties.
800       *
801       * @return a string identifying this barrier, as well as its state
802       */
803      public String toString() {
804 <        long s = state.get();
805 <        return super.toString() + "[phase = " + phaseOf(s) + " parties = " + partiesOf(s) + " arrived = " + arrivedOf(s) + "]";
804 >        long s = getReconciledState();
805 >        return super.toString() +
806 >            "[phase = " + phaseOf(s) +
807 >            " parties = " + partiesOf(s) +
808 >            " arrived = " + arrivedOf(s) + "]";
809      }
810  
811 <    // methods for tripping and waiting
811 >    // methods for waiting
812  
813      /**
814 <     * Advance the current phase (or terminate)
814 >     * Wait nodes for Treiber stack representing wait queue
815       */
816 <    private void trip(int phase, int parties) {
817 <        int next = onAdvance(phase, parties)? -1 : ((phase + 1) & phaseMask);
818 <        state.set(stateFor(next, parties, parties));
819 <        if (head.get() != null)
820 <            releaseWaiters(next);
821 <    }
822 <
823 <    private int helpingWait(int phase) {
824 <        final AtomicLong state = this.state;
825 <        int p;
826 <        while ((p = phaseOf(state.get())) == phase) {
827 <            ForkJoinTask<?> t = ForkJoinWorkerThread.pollTask();
828 <            if (t != null) {
829 <                if ((p = phaseOf(state.get())) == phase)
830 <                    t.exec();
831 <                else {   // push task and exit if barrier advanced
832 <                    t.fork();
833 <                    break;
834 <                }
502 <            }
816 >    static final class QNode implements ForkJoinPool.ManagedBlocker {
817 >        final Phaser phaser;
818 >        final int phase;
819 >        final long startTime;
820 >        final long nanos;
821 >        final boolean timed;
822 >        final boolean interruptible;
823 >        volatile boolean wasInterrupted = false;
824 >        volatile Thread thread; // nulled to cancel wait
825 >        QNode next;
826 >        QNode(Phaser phaser, int phase, boolean interruptible,
827 >              boolean timed, long startTime, long nanos) {
828 >            this.phaser = phaser;
829 >            this.phase = phase;
830 >            this.timed = timed;
831 >            this.interruptible = interruptible;
832 >            this.startTime = startTime;
833 >            this.nanos = nanos;
834 >            thread = Thread.currentThread();
835          }
836 <        return p;
837 <    }
838 <
839 <    private int timedHelpingWait(int phase, long nanos) throws TimeoutException {
840 <        final AtomicLong state = this.state;
841 <        long lastTime = System.nanoTime();
842 <        int p;
843 <        while ((p = phaseOf(state.get())) == phase) {
844 <            long now = System.nanoTime();
845 <            nanos -= now - lastTime;
846 <            lastTime = now;
515 <            if (nanos <= 0) {
516 <                if ((p = phaseOf(state.get())) == phase)
517 <                    throw new TimeoutException();
518 <                else
519 <                    break;
836 >        public boolean isReleasable() {
837 >            return (thread == null ||
838 >                    phaser.getPhase() != phase ||
839 >                    (interruptible && wasInterrupted) ||
840 >                    (timed && (nanos - (System.nanoTime() - startTime)) <= 0));
841 >        }
842 >        public boolean block() {
843 >            if (Thread.interrupted()) {
844 >                wasInterrupted = true;
845 >                if (interruptible)
846 >                    return true;
847              }
848 <            ForkJoinTask<?> t = ForkJoinWorkerThread.pollTask();
848 >            if (!timed)
849 >                LockSupport.park(this);
850 >            else {
851 >                long waitTime = nanos - (System.nanoTime() - startTime);
852 >                if (waitTime <= 0)
853 >                    return true;
854 >                LockSupport.parkNanos(this, waitTime);
855 >            }
856 >            return isReleasable();
857 >        }
858 >        void signal() {
859 >            Thread t = thread;
860              if (t != null) {
861 <                if ((p = phaseOf(state.get())) == phase)
862 <                    t.exec();
863 <                else {   // push task and exit if barrier advanced
864 <                    t.fork();
865 <                    break;
861 >                thread = null;
862 >                LockSupport.unpark(t);
863 >            }
864 >        }
865 >        boolean doWait() {
866 >            if (thread != null) {
867 >                try {
868 >                    ForkJoinPool.managedBlock(this, false);
869 >                } catch (InterruptedException ie) {
870                  }
871              }
872 +            return wasInterrupted;
873          }
874 <        return p;
874 >
875      }
876  
877      /**
878 <     * Wait nodes for Treiber stack representing wait queue for non-FJ
536 <     * tasks. The waiting scheme is an adaptation of the one used in
537 <     * forkjoin.PoolBarrier.
878 >     * Removes and signals waiting threads from wait queue.
879       */
880 <    static final class QNode {
881 <        QNode next;
882 <        volatile Thread thread; // nulled to cancel wait
883 <        final int phase;
884 <        QNode(Thread t, int c) {
885 <            thread = t;
545 <            phase = c;
546 <        }
547 <    }
548 <
549 <    private void releaseWaiters(int currentPhase) {
550 <        final AtomicReference<QNode> head = this.head;
551 <        QNode p;
552 <        while ((p = head.get()) != null && p.phase != currentPhase) {
553 <            if (head.compareAndSet(p, null)) {
554 <                do {
555 <                    Thread t = p.thread;
556 <                    if (t != null) {
557 <                        p.thread = null;
558 <                        LockSupport.unpark(t);
559 <                    }
560 <                } while ((p = p.next) != null);
561 <            }
880 >    private void releaseWaiters(int phase) {
881 >        AtomicReference<QNode> head = queueFor(phase);
882 >        QNode q;
883 >        while ((q = head.get()) != null) {
884 >            if (head.compareAndSet(q, q.next))
885 >                q.signal();
886          }
887      }
888  
565    /** The number of CPUs, for spin control */
566    static final int NCPUS = Runtime.getRuntime().availableProcessors();
567
889      /**
890 <     * The number of times to spin before blocking in timed waits.
891 <     * The value is empirically derived.
892 <     */
572 <    static final int maxTimedSpins = (NCPUS < 2)? 0 : 32;
573 <
574 <    /**
575 <     * The number of times to spin before blocking in untimed waits.
576 <     * This is greater than timed value because untimed waits spin
577 <     * faster since they don't need to check times on each spin.
890 >     * Tries to enqueue given node in the appropriate wait queue.
891 >     *
892 >     * @return true if successful
893       */
894 <    static final int maxUntimedSpins = maxTimedSpins * 32;
894 >    private boolean tryEnqueue(QNode node) {
895 >        AtomicReference<QNode> head = queueFor(node.phase);
896 >        return head.compareAndSet(node.next = head.get(), node);
897 >    }
898  
899      /**
900 <     * The number of nanoseconds for which it is faster to spin
901 <     * rather than to use timed park. A rough estimate suffices.
900 >     * Enqueues node and waits unless aborted or signalled.
901 >     *
902 >     * @return current phase
903       */
904 <    static final long spinForTimeoutThreshold = 1000L;
904 >    private int untimedWait(int phase) {
905 >        QNode node = null;
906 >        boolean queued = false;
907 >        boolean interrupted = false;
908 >        int p;
909 >        while ((p = getPhase()) == phase) {
910 >            if (Thread.interrupted())
911 >                interrupted = true;
912 >            else if (node == null)
913 >                node = new QNode(this, phase, false, false, 0, 0);
914 >            else if (!queued)
915 >                queued = tryEnqueue(node);
916 >            else
917 >                interrupted = node.doWait();
918 >        }
919 >        if (node != null)
920 >            node.thread = null;
921 >        releaseWaiters(phase);
922 >        if (interrupted)
923 >            Thread.currentThread().interrupt();
924 >        return p;
925 >    }
926  
927      /**
928 <     * Enqueues node and waits unless aborted or signalled.
928 >     * Interruptible version
929 >     * @return current phase
930       */
931 <    private boolean untimedWait(Thread thread, int currentPhase,
591 <                               boolean abortOnInterrupt) {
592 <        final AtomicReference<QNode> head = this.head;
593 <        final AtomicLong state = this.state;
594 <        boolean wasInterrupted = false;
931 >    private int interruptibleWait(int phase) throws InterruptedException {
932          QNode node = null;
933          boolean queued = false;
934 <        int spins = maxUntimedSpins;
935 <        while (phaseOf(state.get()) == currentPhase) {
936 <            QNode h;
937 <            if (node != null && queued) {
938 <                if (node.thread != null) {
939 <                    LockSupport.park();
940 <                    if (Thread.interrupted()) {
941 <                        wasInterrupted = true;
942 <                        if (abortOnInterrupt)
606 <                            break;
607 <                    }
608 <                }
609 <            }
610 <            else if ((h = head.get()) != null && h.phase != currentPhase) {
611 <                if (phaseOf(state.get()) == currentPhase) { // must recheck
612 <                    if (head.compareAndSet(h, h.next)) {
613 <                        Thread t = h.thread; // help clear out old waiters
614 <                        if (t != null) {
615 <                            h.thread = null;
616 <                            LockSupport.unpark(t);
617 <                        }
618 <                    }
619 <                }
620 <                else
621 <                    break;
622 <            }
623 <            else if (node != null)
624 <                queued = head.compareAndSet(node.next = h, node);
625 <            else if (spins <= 0)
626 <                node = new QNode(thread, currentPhase);
934 >        boolean interrupted = false;
935 >        int p;
936 >        while ((p = getPhase()) == phase && !interrupted) {
937 >            if (Thread.interrupted())
938 >                interrupted = true;
939 >            else if (node == null)
940 >                node = new QNode(this, phase, true, false, 0, 0);
941 >            else if (!queued)
942 >                queued = tryEnqueue(node);
943              else
944 <                --spins;
944 >                interrupted = node.doWait();
945          }
946          if (node != null)
947              node.thread = null;
948 <        return wasInterrupted;
948 >        if (p != phase || (p = getPhase()) != phase)
949 >            releaseWaiters(phase);
950 >        if (interrupted)
951 >            throw new InterruptedException();
952 >        return p;
953      }
954  
955      /**
956 <     * Messier timeout version
956 >     * Timeout version.
957 >     * @return current phase
958       */
959 <    private void timedWait(Thread thread, int currentPhase, long nanos)
959 >    private int timedWait(int phase, long nanos)
960          throws InterruptedException, TimeoutException {
961 <        final AtomicReference<QNode> head = this.head;
641 <        final AtomicLong state = this.state;
642 <        long lastTime = System.nanoTime();
961 >        long startTime = System.nanoTime();
962          QNode node = null;
963          boolean queued = false;
964 <        int spins = maxTimedSpins;
965 <        while (phaseOf(state.get()) == currentPhase) {
966 <            QNode h;
967 <            long now = System.nanoTime();
968 <            nanos -= now - lastTime;
969 <            lastTime = now;
970 <            if (nanos <= 0) {
971 <                if (node != null)
972 <                    node.thread = null;
973 <                if (phaseOf(state.get()) == currentPhase)
974 <                    throw new TimeoutException();
656 <                else
657 <                    break;
658 <            }
659 <            else if (node != null && queued) {
660 <                if (node.thread != null &&
661 <                    nanos > spinForTimeoutThreshold) {
662 <                    //                LockSupport.parkNanos(this, nanos);
663 <                    LockSupport.parkNanos(nanos);
664 <                    if (Thread.interrupted()) {
665 <                        node.thread = null;
666 <                        throw new InterruptedException();
667 <                    }
668 <                }
669 <            }
670 <            else if ((h = head.get()) != null && h.phase != currentPhase) {
671 <                if (phaseOf(state.get()) == currentPhase) { // must recheck
672 <                    if (head.compareAndSet(h, h.next)) {
673 <                        Thread t = h.thread; // help clear out old waiters
674 <                        if (t != null) {
675 <                            h.thread = null;
676 <                            LockSupport.unpark(t);
677 <                        }
678 <                    }
679 <                }
680 <                else
681 <                    break;
682 <            }
683 <            else if (node != null)
684 <                queued = head.compareAndSet(node.next = h, node);
685 <            else if (spins <= 0)
686 <                node = new QNode(thread, currentPhase);
964 >        boolean interrupted = false;
965 >        int p;
966 >        while ((p = getPhase()) == phase && !interrupted) {
967 >            if (Thread.interrupted())
968 >                interrupted = true;
969 >            else if (nanos - (System.nanoTime() - startTime) <= 0)
970 >                break;
971 >            else if (node == null)
972 >                node = new QNode(this, phase, true, true, startTime, nanos);
973 >            else if (!queued)
974 >                queued = tryEnqueue(node);
975              else
976 <                --spins;
976 >                interrupted = node.doWait();
977          }
978          if (node != null)
979              node.thread = null;
980 +        if (p != phase || (p = getPhase()) != phase)
981 +            releaseWaiters(phase);
982 +        if (interrupted)
983 +            throw new InterruptedException();
984 +        if (p == phase)
985 +            throw new TimeoutException();
986 +        return p;
987 +    }
988 +
989 +    // Unsafe mechanics
990 +
991 +    private static final sun.misc.Unsafe UNSAFE = getUnsafe();
992 +    private static final long stateOffset =
993 +        objectFieldOffset("state", Phaser.class);
994 +
995 +    private final boolean casState(long cmp, long val) {
996 +        return UNSAFE.compareAndSwapLong(this, stateOffset, cmp, val);
997 +    }
998 +
999 +    private static long objectFieldOffset(String field, Class<?> klazz) {
1000 +        try {
1001 +            return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
1002 +        } catch (NoSuchFieldException e) {
1003 +            // Convert Exception to corresponding Error
1004 +            NoSuchFieldError error = new NoSuchFieldError(field);
1005 +            error.initCause(e);
1006 +            throw error;
1007 +        }
1008      }
1009  
1010 +    /**
1011 +     * Returns a sun.misc.Unsafe.  Suitable for use in a 3rd party package.
1012 +     * Replace with a simple call to Unsafe.getUnsafe when integrating
1013 +     * into a jdk.
1014 +     *
1015 +     * @return a sun.misc.Unsafe
1016 +     */
1017 +    private static sun.misc.Unsafe getUnsafe() {
1018 +        try {
1019 +            return sun.misc.Unsafe.getUnsafe();
1020 +        } catch (SecurityException se) {
1021 +            try {
1022 +                return java.security.AccessController.doPrivileged
1023 +                    (new java.security
1024 +                     .PrivilegedExceptionAction<sun.misc.Unsafe>() {
1025 +                        public sun.misc.Unsafe run() throws Exception {
1026 +                            java.lang.reflect.Field f = sun.misc
1027 +                                .Unsafe.class.getDeclaredField("theUnsafe");
1028 +                            f.setAccessible(true);
1029 +                            return (sun.misc.Unsafe) f.get(null);
1030 +                        }});
1031 +            } catch (java.security.PrivilegedActionException e) {
1032 +                throw new RuntimeException("Could not initialize intrinsics",
1033 +                                           e.getCause());
1034 +            }
1035 +        }
1036 +    }
1037   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines