ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/Phaser.java
(Generate patch)

Comparing jsr166/src/jsr166y/Phaser.java (file contents):
Revision 1.8 by jsr166, Mon Jan 5 05:50:47 2009 UTC vs.
Revision 1.31 by dl, Wed Aug 19 15:50:04 2009 UTC

# Line 5 | Line 5
5   */
6  
7   package jsr166y;
8 +
9   import java.util.concurrent.*;
10 < import java.util.concurrent.atomic.*;
10 >
11 > import java.util.concurrent.atomic.AtomicReference;
12   import java.util.concurrent.locks.LockSupport;
11 import sun.misc.Unsafe;
12 import java.lang.reflect.*;
13  
14   /**
15   * A reusable synchronization barrier, similar in functionality to a
16 < * {@link java.util.concurrent.CyclicBarrier} and {@link
17 < * java.util.concurrent.CountDownLatch} but supporting more flexible
18 < * usage.
16 > * {@link java.util.concurrent.CyclicBarrier CyclicBarrier} and
17 > * {@link java.util.concurrent.CountDownLatch CountDownLatch}
18 > * but supporting more flexible usage.
19   *
20   * <ul>
21   *
# Line 25 | Line 25 | import java.lang.reflect.*;
25   * basic synchronization constructs, registration and deregistration
26   * affect only internal counts; they do not establish any further
27   * internal bookkeeping, so tasks cannot query whether they are
28 < * registered. (However, you can introduce such bookkeeping in by
28 > * registered. (However, you can introduce such bookkeeping by
29   * subclassing this class.)
30   *
31   * <li> Each generation has an associated phase value, starting at
32   * zero, and advancing when all parties reach the barrier (wrapping
33   * around to zero after reaching {@code Integer.MAX_VALUE}).
34   *
35 < * <li> Like a CyclicBarrier, a Phaser may be repeatedly awaited.
36 < * Method {@code arriveAndAwaitAdvance} has effect analogous to
37 < * {@code CyclicBarrier.await}.  However, Phasers separate two
38 < * aspects of coordination, that may also be invoked independently:
35 > * <li> Like a {@code CyclicBarrier}, a phaser may be repeatedly
36 > * awaited.  Method {@link #arriveAndAwaitAdvance} has effect
37 > * analogous to {@link java.util.concurrent.CyclicBarrier#await
38 > * CyclicBarrier.await}.  However, phasers separate two aspects of
39 > * coordination, which may also be invoked independently:
40   *
41   * <ul>
42   *
43 < *   <li> Arriving at a barrier. Methods {@code arrive} and
44 < *       {@code arriveAndDeregister} do not block, but return
43 > *   <li> Arriving at a barrier. Methods {@link #arrive} and
44 > *       {@link #arriveAndDeregister} do not block, but return
45   *       the phase value current upon entry to the method.
46   *
47 < *   <li> Awaiting others. Method {@code awaitAdvance} requires an
47 > *   <li> Awaiting others. Method {@link #awaitAdvance} requires an
48   *       argument indicating the entry phase, and returns when the
49   *       barrier advances to a new phase.
50   * </ul>
51   *
52   *
53   * <li> Barrier actions, performed by the task triggering a phase
54 < * advance while others may be waiting, are arranged by overriding
55 < * method {@code onAdvance}, that also controls termination.
56 < * Overriding this method may be used to similar but more flexible
57 < * effect as providing a barrier action to a CyclicBarrier.
54 > * advance, are arranged by overriding method {@link #onAdvance(int,
55 > * int)}, which also controls termination. Overriding this method is
56 > * similar to, but more flexible than, providing a barrier action to a
57 > * {@code CyclicBarrier}.
58   *
59   * <li> Phasers may enter a <em>termination</em> state in which all
60 < * await actions immediately return, indicating (via a negative phase
61 < * value) that execution is complete.  Termination is triggered by
62 < * executing the overridable {@code onAdvance} method that is invoked
63 < * each time the barrier is about to be tripped. When a Phaser is
60 > * actions immediately return without updating phaser state or waiting
61 > * for advance, and indicating (via a negative phase value) that
62 > * execution is complete.  Termination is triggered when an invocation
63 > * of {@code onAdvance} returns {@code true}.  When a phaser is
64   * controlling an action with a fixed number of iterations, it is
65   * often convenient to override this method to cause termination when
66 < * the current phase number reaches a threshold. Method
67 < * {@code forceTermination} is also available to abruptly release
68 < * waiting threads and allow them to terminate.
66 > * the current phase number reaches a threshold. Method {@link
67 > * #forceTermination} is also available to abruptly release waiting
68 > * threads and allow them to terminate.
69   *
70   * <li> Phasers may be tiered to reduce contention. Phasers with large
71   * numbers of parties that would otherwise experience heavy
# Line 74 | Line 75 | import java.lang.reflect.*;
75   *
76   * <li> By default, {@code awaitAdvance} continues to wait even if
77   * the waiting thread is interrupted. And unlike the case in
78 < * CyclicBarriers, exceptions encountered while tasks wait
78 > * {@code CyclicBarrier}, exceptions encountered while tasks wait
79   * interruptibly or with timeout do not change the state of the
80   * barrier. If necessary, you can perform any associated recovery
81   * within handlers of those exceptions, often after invoking
82   * {@code forceTermination}.
83   *
84 + * <li>Phasers may be used to coordinate tasks executing in a {@link
85 + * ForkJoinPool}, which will ensure sufficient parallelism to execute
86 + * tasks when others are blocked waiting for a phase to advance.
87 + *
88   * </ul>
89   *
90   * <p><b>Sample usages:</b>
91   *
92 < * <p>A Phaser may be used instead of a {@code CountDownLatch} to control
93 < * a one-shot action serving a variable number of parties. The typical
94 < * idiom is for the method setting this up to first register, then
95 < * start the actions, then deregister, as in:
96 < *
97 < * <pre>
98 < *  void runTasks(List&lt;Runnable&gt; list) {
99 < *    final Phaser phaser = new Phaser(1); // "1" to register self
100 < *    for (Runnable r : list) {
101 < *      phaser.register();
102 < *      new Thread() {
103 < *        public void run() {
104 < *          phaser.arriveAndAwaitAdvance(); // await all creation
105 < *          r.run();
106 < *          phaser.arriveAndDeregister();   // signal completion
107 < *        }
108 < *      }.start();
92 > * <p>A {@code Phaser} may be used instead of a {@code CountDownLatch}
93 > * to control a one-shot action serving a variable number of
94 > * parties. The typical idiom is for the method setting this up to
95 > * first register, then start the actions, then deregister, as in:
96 > *
97 > *  <pre> {@code
98 > * void runTasks(List<Runnable> list) {
99 > *   final Phaser phaser = new Phaser(1); // "1" to register self
100 > *   // create and start threads
101 > *   for (Runnable r : list) {
102 > *     phaser.register();
103 > *     new Thread() {
104 > *       public void run() {
105 > *         phaser.arriveAndAwaitAdvance(); // await all creation
106 > *         r.run();
107 > *       }
108 > *     }.start();
109   *   }
110   *
111 < *   doSomethingOnBehalfOfWorkers();
112 < *   phaser.arrive(); // allow threads to start
113 < *   int p = phaser.arriveAndDeregister(); // deregister self  ...
109 < *   p = phaser.awaitAdvance(p); // ... and await arrival
110 < *   otherActions(); // do other things while tasks execute
111 < *   phaser.awaitAdvance(p); // await final completion
112 < * }
113 < * </pre>
111 > *   // allow threads to start and deregister self
112 > *   phaser.arriveAndDeregister();
113 > * }}</pre>
114   *
115   * <p>One way to cause a set of threads to repeatedly perform actions
116   * for a given number of iterations is to override {@code onAdvance}:
117   *
118 < * <pre>
119 < *  void startTasks(List&lt;Runnable&gt; list, final int iterations) {
120 < *    final Phaser phaser = new Phaser() {
121 < *       public boolean onAdvance(int phase, int registeredParties) {
122 < *         return phase &gt;= iterations || registeredParties == 0;
118 > *  <pre> {@code
119 > * void startTasks(List<Runnable> list, final int iterations) {
120 > *   final Phaser phaser = new Phaser() {
121 > *     public boolean onAdvance(int phase, int registeredParties) {
122 > *       return phase >= iterations || registeredParties == 0;
123 > *     }
124 > *   };
125 > *   phaser.register();
126 > *   for (Runnable r : list) {
127 > *     phaser.register();
128 > *     new Thread() {
129 > *       public void run() {
130 > *         do {
131 > *           r.run();
132 > *           phaser.arriveAndAwaitAdvance();
133 > *         } while(!phaser.isTerminated();
134   *       }
135 < *    };
125 < *    phaser.register();
126 < *    for (Runnable r : list) {
127 < *      phaser.register();
128 < *      new Thread() {
129 < *        public void run() {
130 < *           do {
131 < *             r.run();
132 < *             phaser.arriveAndAwaitAdvance();
133 < *           } while(!phaser.isTerminated();
134 < *        }
135 < *      }.start();
135 > *     }.start();
136   *   }
137   *   phaser.arriveAndDeregister(); // deregister self, don't wait
138 < * }
139 < * </pre>
138 > * }}</pre>
139   *
140 < * <p> To create a set of tasks using a tree of Phasers,
140 > * <p>To create a set of tasks using a tree of phasers,
141   * you could use code of the following form, assuming a
142 < * Task class with a constructor accepting a Phaser that
142 > * Task class with a constructor accepting a phaser that
143   * it registers for upon construction:
144 < * <pre>
145 < *  void build(Task[] actions, int lo, int hi, Phaser b) {
146 < *    int step = (hi - lo) / TASKS_PER_PHASER;
147 < *    if (step &gt; 1) {
148 < *       int i = lo;
149 < *       while (i &lt; hi) {
150 < *         int r = Math.min(i + step, hi);
151 < *         build(actions, i, r, new Phaser(b));
152 < *         i = r;
153 < *       }
154 < *    }
155 < *    else {
156 < *      for (int i = lo; i &lt; hi; ++i)
157 < *        actions[i] = new Task(b);
158 < *        // assumes new Task(b) performs b.register()
159 < *    }
160 < *  }
161 < *  // .. initially called, for n tasks via
163 < *  build(new Task[n], 0, n, new Phaser());
164 < * </pre>
144 > *  <pre> {@code
145 > * void build(Task[] actions, int lo, int hi, Phaser b) {
146 > *   int step = (hi - lo) / TASKS_PER_PHASER;
147 > *   if (step > 1) {
148 > *     int i = lo;
149 > *     while (i < hi) {
150 > *       int r = Math.min(i + step, hi);
151 > *       build(actions, i, r, new Phaser(b));
152 > *       i = r;
153 > *     }
154 > *   } else {
155 > *     for (int i = lo; i < hi; ++i)
156 > *       actions[i] = new Task(b);
157 > *       // assumes new Task(b) performs b.register()
158 > *   }
159 > * }
160 > * // .. initially called, for n tasks via
161 > * build(new Task[n], 0, n, new Phaser());}</pre>
162   *
163   * The best value of {@code TASKS_PER_PHASER} depends mainly on
164   * expected barrier synchronization rates. A value as low as four may
# Line 175 | Line 172 | import java.lang.reflect.*;
172   * parties result in IllegalStateExceptions. However, you can and
173   * should create tiered phasers to accommodate arbitrarily large sets
174   * of participants.
175 + *
176 + * @since 1.7
177 + * @author Doug Lea
178   */
179   public class Phaser {
180      /*
# Line 199 | Line 199 | public class Phaser {
199       * and encoding simple, and keeping race windows short.
200       *
201       * Note: there are some cheats in arrive() that rely on unarrived
202 <     * being lowest 16 bits.
202 >     * count being lowest 16 bits.
203       */
204      private volatile long state;
205  
206      private static final int ushortBits = 16;
207 <    private static final int ushortMask =  (1 << ushortBits) - 1;
208 <    private static final int phaseMask = 0x7fffffff;
207 >    private static final int ushortMask = 0xffff;
208 >    private static final int phaseMask  = 0x7fffffff;
209  
210      private static int unarrivedOf(long s) {
211 <        return (int)(s & ushortMask);
211 >        return (int) (s & ushortMask);
212      }
213  
214      private static int partiesOf(long s) {
215 <        return (int)(s & (ushortMask << 16)) >>> 16;
215 >        return ((int) s) >>> 16;
216      }
217  
218      private static int phaseOf(long s) {
219 <        return (int)(s >>> 32);
219 >        return (int) (s >>> 32);
220      }
221  
222      private static int arrivedOf(long s) {
# Line 224 | Line 224 | public class Phaser {
224      }
225  
226      private static long stateFor(int phase, int parties, int unarrived) {
227 <        return (((long)phase) << 32) | ((parties << 16) | unarrived);
227 >        return ((((long) phase) << 32) | (((long) parties) << 16) |
228 >                (long) unarrived);
229      }
230  
231      private static long trippedStateFor(int phase, int parties) {
232 <        return (((long)phase) << 32) | ((parties << 16) | parties);
232 >        long lp = (long) parties;
233 >        return (((long) phase) << 32) | (lp << 16) | lp;
234      }
235  
236 <    private static IllegalStateException badBounds(int parties, int unarrived) {
237 <        return new IllegalStateException
238 <            ("Attempt to set " + unarrived +
239 <             " unarrived of " + parties + " parties");
236 >    /**
237 >     * Returns message string for bad bounds exceptions.
238 >     */
239 >    private static String badBounds(int parties, int unarrived) {
240 >        return ("Attempt to set " + unarrived +
241 >                " unarrived of " + parties + " parties");
242      }
243  
244      /**
# Line 243 | Line 247 | public class Phaser {
247      private final Phaser parent;
248  
249      /**
250 <     * The root of Phaser tree. Equals this if not in a tree.  Used to
250 >     * The root of phaser tree. Equals this if not in a tree.  Used to
251       * support faster state push-down.
252       */
253      private final Phaser root;
# Line 251 | Line 255 | public class Phaser {
255      // Wait queues
256  
257      /**
258 <     * Heads of Treiber stacks waiting for nonFJ threads. To eliminate
258 >     * Heads of Treiber stacks for waiting threads. To eliminate
259       * contention while releasing some threads while adding others, we
260       * use two of them, alternating across even and odd phases.
261       */
# Line 259 | Line 263 | public class Phaser {
263      private final AtomicReference<QNode> oddQ  = new AtomicReference<QNode>();
264  
265      private AtomicReference<QNode> queueFor(int phase) {
266 <        return (phase & 1) == 0? evenQ : oddQ;
266 >        return ((phase & 1) == 0) ? evenQ : oddQ;
267      }
268  
269      /**
# Line 267 | Line 271 | public class Phaser {
271       * root if necessary.
272       */
273      private long getReconciledState() {
274 <        return parent == null? state : reconcileState();
274 >        return (parent == null) ? state : reconcileState();
275      }
276  
277      /**
# Line 294 | Line 298 | public class Phaser {
298      }
299  
300      /**
301 <     * Creates a new Phaser without any initially registered parties,
302 <     * initial phase number 0, and no parent.
301 >     * Creates a new phaser without any initially registered parties,
302 >     * initial phase number 0, and no parent. Any thread using this
303 >     * phaser will need to first register for it.
304       */
305      public Phaser() {
306          this(null);
307      }
308  
309      /**
310 <     * Creates a new Phaser with the given numbers of registered
310 >     * Creates a new phaser with the given numbers of registered
311       * unarrived parties, initial phase number 0, and no parent.
312 <     * @param parties the number of parties required to trip barrier.
312 >     *
313 >     * @param parties the number of parties required to trip barrier
314       * @throws IllegalArgumentException if parties less than zero
315 <     * or greater than the maximum number of parties supported.
315 >     * or greater than the maximum number of parties supported
316       */
317      public Phaser(int parties) {
318          this(null, parties);
319      }
320  
321      /**
322 <     * Creates a new Phaser with the given parent, without any
322 >     * Creates a new phaser with the given parent, without any
323       * initially registered parties. If parent is non-null this phaser
324       * is registered with the parent and its initial phase number is
325       * the same as that of parent phaser.
326 <     * @param parent the parent phaser.
326 >     *
327 >     * @param parent the parent phaser
328       */
329      public Phaser(Phaser parent) {
330          int phase = 0;
# Line 332 | Line 339 | public class Phaser {
339      }
340  
341      /**
342 <     * Creates a new Phaser with the given parent and numbers of
343 <     * registered unarrived parties. If parent is non-null this phaser
342 >     * Creates a new phaser with the given parent and numbers of
343 >     * registered unarrived parties. If parent is non-null, this phaser
344       * is registered with the parent and its initial phase number is
345       * the same as that of parent phaser.
346 <     * @param parent the parent phaser.
347 <     * @param parties the number of parties required to trip barrier.
346 >     *
347 >     * @param parent the parent phaser
348 >     * @param parties the number of parties required to trip barrier
349       * @throws IllegalArgumentException if parties less than zero
350 <     * or greater than the maximum number of parties supported.
350 >     * or greater than the maximum number of parties supported
351       */
352      public Phaser(Phaser parent, int parties) {
353          if (parties < 0 || parties > ushortMask)
# Line 357 | Line 365 | public class Phaser {
365  
366      /**
367       * Adds a new unarrived party to this phaser.
368 +     *
369       * @return the current barrier phase number upon registration
370       * @throws IllegalStateException if attempting to register more
371 <     * than the maximum supported number of parties.
371 >     * than the maximum supported number of parties
372       */
373      public int register() {
374          return doRegister(1);
# Line 367 | Line 376 | public class Phaser {
376  
377      /**
378       * Adds the given number of new unarrived parties to this phaser.
379 <     * @param parties the number of parties required to trip barrier.
379 >     *
380 >     * @param parties the number of parties required to trip barrier
381       * @return the current barrier phase number upon registration
382       * @throws IllegalStateException if attempting to register more
383 <     * than the maximum supported number of parties.
383 >     * than the maximum supported number of parties
384       */
385      public int bulkRegister(int parties) {
386          if (parties < 0)
# Line 393 | Line 403 | public class Phaser {
403              if (phase < 0)
404                  break;
405              if (parties > ushortMask || unarrived > ushortMask)
406 <                throw badBounds(parties, unarrived);
406 >                throw new IllegalStateException(badBounds(parties, unarrived));
407              if (phase == phaseOf(root.state) &&
408                  casState(s, stateFor(phase, parties, unarrived)))
409                  break;
# Line 406 | Line 416 | public class Phaser {
416       * in turn wait for others via {@link #awaitAdvance}).
417       *
418       * @return the barrier phase number upon entry to this method, or a
419 <     * negative value if terminated;
419 >     * negative value if terminated
420       * @throws IllegalStateException if not terminated and the number
421 <     * of unarrived parties would become negative.
421 >     * of unarrived parties would become negative
422       */
423      public int arrive() {
424          int phase;
425          for (;;) {
426              long s = state;
427              phase = phaseOf(s);
428 +            if (phase < 0)
429 +                break;
430              int parties = partiesOf(s);
431              int unarrived = unarrivedOf(s) - 1;
432              if (unarrived > 0) {        // Not the last arrival
# Line 426 | Line 438 | public class Phaser {
438                  if (par == null) {      // directly trip
439                      if (casState
440                          (s,
441 <                         trippedStateFor(onAdvance(phase, parties)? -1 :
441 >                         trippedStateFor(onAdvance(phase, parties) ? -1 :
442                                           ((phase + 1) & phaseMask), parties))) {
443                          releaseWaiters(phase);
444                          break;
# Line 440 | Line 452 | public class Phaser {
452                      }
453                  }
454              }
443            else if (phase < 0) // Don't throw exception if terminated
444                break;
455              else if (phase != phaseOf(root.state)) // or if unreconciled
456                  reconcileState();
457              else
458 <                throw badBounds(parties, unarrived);
458 >                throw new IllegalStateException(badBounds(parties, unarrived));
459          }
460          return phase;
461      }
462  
463      /**
464 <     * Arrives at the barrier, and deregisters from it, without
465 <     * waiting for others. Deregistration reduces number of parties
464 >     * Arrives at the barrier and deregisters from it without waiting
465 >     * for others. Deregistration reduces the number of parties
466       * required to trip the barrier in future phases.  If this phaser
467       * has a parent, and deregistration causes this phaser to have
468 <     * zero parties, this phaser is also deregistered from its parent.
468 >     * zero parties, this phaser also arrives at and is deregistered
469 >     * from its parent.
470       *
471       * @return the current barrier phase number upon entry to
472 <     * this method, or a negative value if terminated;
472 >     * this method, or a negative value if terminated
473       * @throws IllegalStateException if not terminated and the number
474 <     * of registered or unarrived parties would become negative.
474 >     * of registered or unarrived parties would become negative
475       */
476      public int arriveAndDeregister() {
477          // similar code to arrive, but too different to merge
# Line 469 | Line 480 | public class Phaser {
480          for (;;) {
481              long s = state;
482              phase = phaseOf(s);
483 +            if (phase < 0)
484 +                break;
485              int parties = partiesOf(s) - 1;
486              int unarrived = unarrivedOf(s) - 1;
487              if (parties >= 0) {
# Line 487 | Line 500 | public class Phaser {
500                  if (unarrived == 0) {
501                      if (casState
502                          (s,
503 <                         trippedStateFor(onAdvance(phase, parties)? -1 :
503 >                         trippedStateFor(onAdvance(phase, parties) ? -1 :
504                                           ((phase + 1) & phaseMask), parties))) {
505                          releaseWaiters(phase);
506                          break;
507                      }
508                      continue;
509                  }
497                if (phase < 0)
498                    break;
510                  if (par != null && phase != phaseOf(root.state)) {
511                      reconcileState();
512                      continue;
513                  }
514              }
515 <            throw badBounds(parties, unarrived);
515 >            throw new IllegalStateException(badBounds(parties, unarrived));
516          }
517          return phase;
518      }
519  
520      /**
521       * Arrives at the barrier and awaits others. Equivalent in effect
522 <     * to {@code awaitAdvance(arrive())}.  If you instead need to
523 <     * await with interruption of timeout, and/or deregister upon
524 <     * arrival, you can arrange them using analogous constructions.
522 >     * to {@code awaitAdvance(arrive())}.  If you need to await with
523 >     * interruption or timeout, you can arrange this with an analogous
524 >     * construction using one of the other forms of the awaitAdvance
525 >     * method.  If instead you need to deregister upon arrival use
526 >     * {@code arriveAndDeregister}.
527 >     *
528       * @return the phase on entry to this method
529       * @throws IllegalStateException if not terminated and the number
530 <     * of unarrived parties would become negative.
530 >     * of unarrived parties would become negative
531       */
532      public int arriveAndAwaitAdvance() {
533          return awaitAdvance(arrive());
534      }
535  
536      /**
537 <     * Awaits the phase of the barrier to advance from the given
538 <     * value, or returns immediately if argument is negative or this
539 <     * barrier is terminated.
537 >     * Awaits the phase of the barrier to advance from the given phase
538 >     * value, returning immediately if the current phase of the
539 >     * barrier is not equal to the given phase value or this barrier
540 >     * is terminated.
541 >     *
542       * @param phase the phase on entry to this method
543       * @return the phase on exit from this method
544       */
# Line 533 | Line 549 | public class Phaser {
549          int p = phaseOf(s);
550          if (p != phase)
551              return p;
552 <        if (unarrivedOf(s) == 0)
552 >        if (unarrivedOf(s) == 0 && parent != null)
553              parent.awaitAdvance(phase);
554          // Fall here even if parent waited, to reconcile and help release
555          return untimedWait(phase);
556      }
557  
558      /**
559 <     * Awaits the phase of the barrier to advance from the given
560 <     * value, or returns immediately if argument is negative or this
561 <     * barrier is terminated, or throws InterruptedException if
562 <     * interrupted while waiting.
559 >     * Awaits the phase of the barrier to advance from the given phase
560 >     * value, throwing InterruptedException if interrupted while
561 >     * waiting, or returning immediately if the current phase of the
562 >     * barrier is not equal to the given phase value or this barrier
563 >     * is terminated
564 >     *
565       * @param phase the phase on entry to this method
566       * @return the phase on exit from this method
567       * @throws InterruptedException if thread interrupted while waiting
568       */
569 <    public int awaitAdvanceInterruptibly(int phase) throws InterruptedException {
569 >    public int awaitAdvanceInterruptibly(int phase)
570 >        throws InterruptedException {
571          if (phase < 0)
572              return phase;
573          long s = getReconciledState();
574          int p = phaseOf(s);
575          if (p != phase)
576              return p;
577 <        if (unarrivedOf(s) != 0)
577 >        if (unarrivedOf(s) == 0 && parent != null)
578              parent.awaitAdvanceInterruptibly(phase);
579          return interruptibleWait(phase);
580      }
581  
582      /**
583 <     * Awaits the phase of the barrier to advance from the given value
584 <     * or the given timeout elapses, or returns immediately if
585 <     * argument is negative or this barrier is terminated.
583 >     * Awaits the phase of the barrier to advance from the given phase
584 >     * value or the given timeout elapses, throwing
585 >     * InterruptedException if interrupted while waiting, or returning
586 >     * immediately if the current phase of the barrier is not equal to
587 >     * the given phase value or this barrier is terminated.
588 >     *
589       * @param phase the phase on entry to this method
590 +     * @param timeout how long to wait before giving up, in units of
591 +     *        {@code unit}
592 +     * @param unit a {@code TimeUnit} determining how to interpret the
593 +     *        {@code timeout} parameter
594       * @return the phase on exit from this method
595       * @throws InterruptedException if thread interrupted while waiting
596       * @throws TimeoutException if timed out while waiting
597       */
598 <    public int awaitAdvanceInterruptibly(int phase, long timeout, TimeUnit unit)
598 >    public int awaitAdvanceInterruptibly(int phase,
599 >                                         long timeout, TimeUnit unit)
600          throws InterruptedException, TimeoutException {
601          if (phase < 0)
602              return phase;
# Line 577 | Line 604 | public class Phaser {
604          int p = phaseOf(s);
605          if (p != phase)
606              return p;
607 <        if (unarrivedOf(s) == 0)
607 >        if (unarrivedOf(s) == 0 && parent != null)
608              parent.awaitAdvanceInterruptibly(phase, timeout, unit);
609          return timedWait(phase, unit.toNanos(timeout));
610      }
# Line 610 | Line 637 | public class Phaser {
637       * Returns the current phase number. The maximum phase number is
638       * {@code Integer.MAX_VALUE}, after which it restarts at
639       * zero. Upon termination, the phase number is negative.
640 +     *
641       * @return the phase number, or a negative value if terminated
642       */
643      public final int getPhase() {
# Line 617 | Line 645 | public class Phaser {
645      }
646  
647      /**
620     * Returns true if the current phase number equals the given phase.
621     * @param phase the phase
622     * @return true if the current phase number equals the given phase.
623     */
624    public final boolean hasPhase(int phase) {
625        return phaseOf(getReconciledState()) == phase;
626    }
627
628    /**
648       * Returns the number of parties registered at this barrier.
649 +     *
650       * @return the number of parties
651       */
652      public int getRegisteredParties() {
# Line 636 | Line 656 | public class Phaser {
656      /**
657       * Returns the number of parties that have arrived at the current
658       * phase of this barrier.
659 +     *
660       * @return the number of arrived parties
661       */
662      public int getArrivedParties() {
# Line 645 | Line 666 | public class Phaser {
666      /**
667       * Returns the number of registered parties that have not yet
668       * arrived at the current phase of this barrier.
669 +     *
670       * @return the number of unarrived parties
671       */
672      public int getUnarrivedParties() {
# Line 652 | Line 674 | public class Phaser {
674      }
675  
676      /**
677 <     * Returns the parent of this phaser, or null if none.
678 <     * @return the parent of this phaser, or null if none.
677 >     * Returns the parent of this phaser, or {@code null} if none.
678 >     *
679 >     * @return the parent of this phaser, or {@code null} if none
680       */
681      public Phaser getParent() {
682          return parent;
# Line 662 | Line 685 | public class Phaser {
685      /**
686       * Returns the root ancestor of this phaser, which is the same as
687       * this phaser if it has no parent.
688 <     * @return the root ancestor of this phaser.
688 >     *
689 >     * @return the root ancestor of this phaser
690       */
691      public Phaser getRoot() {
692          return root;
693      }
694  
695      /**
696 <     * Returns true if this barrier has been terminated.
697 <     * @return true if this barrier has been terminated
696 >     * Returns {@code true} if this barrier has been terminated.
697 >     *
698 >     * @return {@code true} if this barrier has been terminated
699       */
700      public boolean isTerminated() {
701          return getPhase() < 0;
# Line 680 | Line 705 | public class Phaser {
705       * Overridable method to perform an action upon phase advance, and
706       * to control termination. This method is invoked whenever the
707       * barrier is tripped (and thus all other waiting parties are
708 <     * dormant). If it returns true, then, rather than advance the
709 <     * phase number, this barrier will be set to a final termination
710 <     * state, and subsequent calls to {@code isTerminated} will
711 <     * return true.
708 >     * dormant). If it returns {@code true}, then, rather than advance
709 >     * the phase number, this barrier will be set to a final
710 >     * termination state, and subsequent calls to {@link #isTerminated}
711 >     * will return true.
712       *
713 <     * <p> The default version returns true when the number of
713 >     * <p>The default version returns {@code true} when the number of
714       * registered parties is zero. Normally, overrides that arrange
715       * termination for other reasons should also preserve this
716       * property.
717       *
718 <     * <p> You may override this method to perform an action with side
718 >     * <p>You may override this method to perform an action with side
719       * effects visible to participating tasks, but it is in general
720       * only sensible to do so in designs where all parties register
721 <     * before any arrive, and all {@code awaitAdvance} at each phase.
722 <     * Otherwise, you cannot ensure lack of interference. In
723 <     * particular, this method may be invoked more than once per
699 <     * transition if other parties successfully register while the
700 <     * invocation of this method is in progress, thus postponing the
701 <     * transition until those parties also arrive, re-triggering this
702 <     * method.
721 >     * before any arrive, and all {@link #awaitAdvance} at each phase.
722 >     * Otherwise, you cannot ensure lack of interference from other
723 >     * parties during the invocation of this method.
724       *
725       * @param phase the phase number on entering the barrier
726 <     * @param registeredParties the current number of registered
727 <     * parties.
707 <     * @return true if this barrier should terminate
726 >     * @param registeredParties the current number of registered parties
727 >     * @return {@code true} if this barrier should terminate
728       */
729      protected boolean onAdvance(int phase, int registeredParties) {
730          return registeredParties <= 0;
# Line 713 | Line 733 | public class Phaser {
733      /**
734       * Returns a string identifying this phaser, as well as its
735       * state.  The state, in brackets, includes the String {@code
736 <     * "phase ="} followed by the phase number, {@code "parties ="}
736 >     * "phase = "} followed by the phase number, {@code "parties = "}
737       * followed by the number of registered parties, and {@code
738 <     * "arrived ="} followed by the number of arrived parties
738 >     * "arrived = "} followed by the number of arrived parties.
739       *
740       * @return a string identifying this barrier, as well as its state
741       */
742      public String toString() {
743          long s = getReconciledState();
744 <        return super.toString() + "[phase = " + phaseOf(s) + " parties = " + partiesOf(s) + " arrived = " + arrivedOf(s) + "]";
744 >        return super.toString() +
745 >            "[phase = " + phaseOf(s) +
746 >            " parties = " + partiesOf(s) +
747 >            " arrived = " + arrivedOf(s) + "]";
748      }
749  
750      // methods for waiting
751  
729    /** The number of CPUs, for spin control */
730    static final int NCPUS = Runtime.getRuntime().availableProcessors();
731
752      /**
753 <     * The number of times to spin before blocking in timed waits.
734 <     * The value is empirically derived.
753 >     * Wait nodes for Treiber stack representing wait queue
754       */
755 <    static final int maxTimedSpins = (NCPUS < 2)? 0 : 32;
756 <
757 <    /**
758 <     * The number of times to spin before blocking in untimed waits.
759 <     * This is greater than timed value because untimed waits spin
760 <     * faster since they don't need to check times on each spin.
761 <     */
762 <    static final int maxUntimedSpins = maxTimedSpins * 32;
744 <
745 <    /**
746 <     * The number of nanoseconds for which it is faster to spin
747 <     * rather than to use timed park. A rough estimate suffices.
748 <     */
749 <    static final long spinForTimeoutThreshold = 1000L;
750 <
751 <    /**
752 <     * Wait nodes for Treiber stack representing wait queue for non-FJ
753 <     * tasks.
754 <     */
755 <    static final class QNode {
756 <        QNode next;
755 >    static final class QNode implements ForkJoinPool.ManagedBlocker {
756 >        final Phaser phaser;
757 >        final int phase;
758 >        final long startTime;
759 >        final long nanos;
760 >        final boolean timed;
761 >        final boolean interruptible;
762 >        volatile boolean wasInterrupted = false;
763          volatile Thread thread; // nulled to cancel wait
764 <        QNode() {
764 >        QNode next;
765 >        QNode(Phaser phaser, int phase, boolean interruptible,
766 >              boolean timed, long startTime, long nanos) {
767 >            this.phaser = phaser;
768 >            this.phase = phase;
769 >            this.timed = timed;
770 >            this.interruptible = interruptible;
771 >            this.startTime = startTime;
772 >            this.nanos = nanos;
773              thread = Thread.currentThread();
774          }
775 +        public boolean isReleasable() {
776 +            return (thread == null ||
777 +                    phaser.getPhase() != phase ||
778 +                    (interruptible && wasInterrupted) ||
779 +                    (timed && (nanos - (System.nanoTime() - startTime)) <= 0));
780 +        }
781 +        public boolean block() {
782 +            if (Thread.interrupted()) {
783 +                wasInterrupted = true;
784 +                if (interruptible)
785 +                    return true;
786 +            }
787 +            if (!timed)
788 +                LockSupport.park(this);
789 +            else {
790 +                long waitTime = nanos - (System.nanoTime() - startTime);
791 +                if (waitTime <= 0)
792 +                    return true;
793 +                LockSupport.parkNanos(this, waitTime);
794 +            }
795 +            return isReleasable();
796 +        }
797          void signal() {
798              Thread t = thread;
799              if (t != null) {
# Line 765 | Line 801 | public class Phaser {
801                  LockSupport.unpark(t);
802              }
803          }
804 +        boolean doWait() {
805 +            if (thread != null) {
806 +                try {
807 +                    ForkJoinPool.managedBlock(this, false);
808 +                } catch (InterruptedException ie) {
809 +                }
810 +            }
811 +            return wasInterrupted;
812 +        }
813 +
814      }
815  
816      /**
817 <     * Removes and signals waiting threads from wait queue
817 >     * Removes and signals waiting threads from wait queue.
818       */
819      private void releaseWaiters(int phase) {
820          AtomicReference<QNode> head = queueFor(phase);
# Line 780 | Line 826 | public class Phaser {
826      }
827  
828      /**
829 +     * Tries to enqueue given node in the appropriate wait queue.
830 +     *
831 +     * @return true if successful
832 +     */
833 +    private boolean tryEnqueue(QNode node) {
834 +        AtomicReference<QNode> head = queueFor(node.phase);
835 +        return head.compareAndSet(node.next = head.get(), node);
836 +    }
837 +
838 +    /**
839       * Enqueues node and waits unless aborted or signalled.
840 +     *
841 +     * @return current phase
842       */
843      private int untimedWait(int phase) {
786        int spins = maxUntimedSpins;
844          QNode node = null;
788        boolean interrupted = false;
845          boolean queued = false;
846 +        boolean interrupted = false;
847          int p;
848          while ((p = getPhase()) == phase) {
849 <            interrupted = Thread.interrupted();
850 <            if (node != null) {
851 <                if (!queued) {
852 <                    AtomicReference<QNode> head = queueFor(phase);
853 <                    queued = head.compareAndSet(node.next = head.get(), node);
854 <                }
798 <                else if (node.thread != null)
799 <                    LockSupport.park(this);
800 <            }
801 <            else if (spins <= 0)
802 <                node = new QNode();
849 >            if (Thread.interrupted())
850 >                interrupted = true;
851 >            else if (node == null)
852 >                node = new QNode(this, phase, false, false, 0, 0);
853 >            else if (!queued)
854 >                queued = tryEnqueue(node);
855              else
856 <                --spins;
856 >                interrupted = node.doWait();
857          }
858          if (node != null)
859              node.thread = null;
860 +        releaseWaiters(phase);
861          if (interrupted)
862              Thread.currentThread().interrupt();
810        releaseWaiters(phase);
863          return p;
864      }
865  
866      /**
867 <     * Messier interruptible version
867 >     * Interruptible version
868 >     * @return current phase
869       */
870      private int interruptibleWait(int phase) throws InterruptedException {
818        int spins = maxUntimedSpins;
871          QNode node = null;
872          boolean queued = false;
873          boolean interrupted = false;
874          int p;
875 <        while ((p = getPhase()) == phase) {
876 <            if (interrupted = Thread.interrupted())
877 <                break;
878 <            if (node != null) {
879 <                if (!queued) {
880 <                    AtomicReference<QNode> head = queueFor(phase);
881 <                    queued = head.compareAndSet(node.next = head.get(), node);
830 <                }
831 <                else if (node.thread != null)
832 <                    LockSupport.park(this);
833 <            }
834 <            else if (spins <= 0)
835 <                node = new QNode();
875 >        while ((p = getPhase()) == phase && !interrupted) {
876 >            if (Thread.interrupted())
877 >                interrupted = true;
878 >            else if (node == null)
879 >                node = new QNode(this, phase, true, false, 0, 0);
880 >            else if (!queued)
881 >                queued = tryEnqueue(node);
882              else
883 <                --spins;
883 >                interrupted = node.doWait();
884          }
885          if (node != null)
886              node.thread = null;
887 +        if (p != phase || (p = getPhase()) != phase)
888 +            releaseWaiters(phase);
889          if (interrupted)
890              throw new InterruptedException();
843        releaseWaiters(phase);
891          return p;
892      }
893  
894      /**
895 <     * Even messier timeout version.
895 >     * Timeout version.
896 >     * @return current phase
897       */
898      private int timedWait(int phase, long nanos)
899          throws InterruptedException, TimeoutException {
900 +        long startTime = System.nanoTime();
901 +        QNode node = null;
902 +        boolean queued = false;
903 +        boolean interrupted = false;
904          int p;
905 <        if ((p = getPhase()) == phase) {
906 <            long lastTime = System.nanoTime();
907 <            int spins = maxTimedSpins;
908 <            QNode node = null;
909 <            boolean queued = false;
910 <            boolean interrupted = false;
911 <            while ((p = getPhase()) == phase) {
912 <                if (interrupted = Thread.interrupted())
913 <                    break;
914 <                long now = System.nanoTime();
915 <                if ((nanos -= now - lastTime) <= 0)
864 <                    break;
865 <                lastTime = now;
866 <                if (node != null) {
867 <                    if (!queued) {
868 <                        AtomicReference<QNode> head = queueFor(phase);
869 <                        queued = head.compareAndSet(node.next = head.get(), node);
870 <                    }
871 <                    else if (node.thread != null &&
872 <                             nanos > spinForTimeoutThreshold) {
873 <                        LockSupport.parkNanos(this, nanos);
874 <                    }
875 <                }
876 <                else if (spins <= 0)
877 <                    node = new QNode();
878 <                else
879 <                    --spins;
880 <            }
881 <            if (node != null)
882 <                node.thread = null;
883 <            if (interrupted)
884 <                throw new InterruptedException();
885 <            if (p == phase && (p = getPhase()) == phase)
886 <                throw new TimeoutException();
905 >        while ((p = getPhase()) == phase && !interrupted) {
906 >            if (Thread.interrupted())
907 >                interrupted = true;
908 >            else if (nanos - (System.nanoTime() - startTime) <= 0)
909 >                break;
910 >            else if (node == null)
911 >                node = new QNode(this, phase, true, true, startTime, nanos);
912 >            else if (!queued)
913 >                queued = tryEnqueue(node);
914 >            else
915 >                interrupted = node.doWait();
916          }
917 <        releaseWaiters(phase);
917 >        if (node != null)
918 >            node.thread = null;
919 >        if (p != phase || (p = getPhase()) != phase)
920 >            releaseWaiters(phase);
921 >        if (interrupted)
922 >            throw new InterruptedException();
923 >        if (p == phase)
924 >            throw new TimeoutException();
925          return p;
926      }
927  
928 <    // Temporary Unsafe mechanics for preliminary release
928 >    // Unsafe mechanics
929 >
930 >    private static final sun.misc.Unsafe UNSAFE = getUnsafe();
931 >    private static final long stateOffset =
932 >        objectFieldOffset("state", Phaser.class);
933  
934 <    static final Unsafe _unsafe;
935 <    static final long stateOffset;
934 >    private final boolean casState(long cmp, long val) {
935 >        return UNSAFE.compareAndSwapLong(this, stateOffset, cmp, val);
936 >    }
937  
938 <    static {
938 >    private static long objectFieldOffset(String field, Class<?> klazz) {
939          try {
940 <            if (Phaser.class.getClassLoader() != null) {
941 <                Field f = Unsafe.class.getDeclaredField("theUnsafe");
942 <                f.setAccessible(true);
943 <                _unsafe = (Unsafe)f.get(null);
944 <            }
945 <            else
905 <                _unsafe = Unsafe.getUnsafe();
906 <            stateOffset = _unsafe.objectFieldOffset
907 <                (Phaser.class.getDeclaredField("state"));
908 <        } catch (Exception e) {
909 <            throw new RuntimeException("Could not initialize intrinsics", e);
940 >            return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
941 >        } catch (NoSuchFieldException e) {
942 >            // Convert Exception to corresponding Error
943 >            NoSuchFieldError error = new NoSuchFieldError(field);
944 >            error.initCause(e);
945 >            throw error;
946          }
947      }
948  
949 <    final boolean casState(long cmp, long val) {
950 <        return _unsafe.compareAndSwapLong(this, stateOffset, cmp, val);
949 >    /**
950 >     * Returns a sun.misc.Unsafe.  Suitable for use in a 3rd party package.
951 >     * Replace with a simple call to Unsafe.getUnsafe when integrating
952 >     * into a jdk.
953 >     *
954 >     * @return a sun.misc.Unsafe
955 >     */
956 >    private static sun.misc.Unsafe getUnsafe() {
957 >        try {
958 >            return sun.misc.Unsafe.getUnsafe();
959 >        } catch (SecurityException se) {
960 >            try {
961 >                return java.security.AccessController.doPrivileged
962 >                    (new java.security
963 >                     .PrivilegedExceptionAction<sun.misc.Unsafe>() {
964 >                        public sun.misc.Unsafe run() throws Exception {
965 >                            java.lang.reflect.Field f = sun.misc
966 >                                .Unsafe.class.getDeclaredField("theUnsafe");
967 >                            f.setAccessible(true);
968 >                            return (sun.misc.Unsafe) f.get(null);
969 >                        }});
970 >            } catch (java.security.PrivilegedActionException e) {
971 >                throw new RuntimeException("Could not initialize intrinsics",
972 >                                           e.getCause());
973 >            }
974 >        }
975      }
976   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines