ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/Phaser.java
(Generate patch)

Comparing jsr166/src/jsr166y/Phaser.java (file contents):
Revision 1.32 by jsr166, Wed Aug 19 17:44:45 2009 UTC vs.
Revision 1.58 by dl, Wed Nov 24 15:48:01 2010 UTC

# Line 6 | Line 6
6  
7   package jsr166y;
8  
9 < import java.util.concurrent.*;
10 <
9 > import java.util.concurrent.TimeUnit;
10 > import java.util.concurrent.TimeoutException;
11   import java.util.concurrent.atomic.AtomicReference;
12   import java.util.concurrent.locks.LockSupport;
13  
14   /**
15 < * A reusable synchronization barrier, similar in functionality to a
15 > * A reusable synchronization barrier, similar in functionality to
16   * {@link java.util.concurrent.CyclicBarrier CyclicBarrier} and
17   * {@link java.util.concurrent.CountDownLatch CountDownLatch}
18   * but supporting more flexible usage.
19   *
20 < * <ul>
21 < *
22 < * <li> The number of parties synchronizing on a phaser may vary over
23 < * time.  A task may register to be a party at any time, and may
24 < * deregister upon arriving at the barrier.  As is the case with most
25 < * basic synchronization constructs, registration and deregistration
26 < * affect only internal counts; they do not establish any further
27 < * internal bookkeeping, so tasks cannot query whether they are
28 < * registered. (However, you can introduce such bookkeeping by
29 < * subclassing this class.)
30 < *
31 < * <li> Each generation has an associated phase value, starting at
32 < * zero, and advancing when all parties reach the barrier (wrapping
33 < * around to zero after reaching {@code Integer.MAX_VALUE}).
34 < *
35 < * <li> Like a {@code CyclicBarrier}, a phaser may be repeatedly
36 < * awaited.  Method {@link #arriveAndAwaitAdvance} has effect
37 < * analogous to {@link java.util.concurrent.CyclicBarrier#await
38 < * CyclicBarrier.await}.  However, phasers separate two aspects of
39 < * coordination, which may also be invoked independently:
20 > * <p> <b>Registration.</b> Unlike the case for other barriers, the
21 > * number of parties <em>registered</em> to synchronize on a phaser
22 > * may vary over time.  Tasks may be registered at any time (using
23 > * methods {@link #register}, {@link #bulkRegister}, or forms of
24 > * constructors establishing initial numbers of parties), and
25 > * optionally deregistered upon any arrival (using {@link
26 > * #arriveAndDeregister}).  As is the case with most basic
27 > * synchronization constructs, registration and deregistration affect
28 > * only internal counts; they do not establish any further internal
29 > * bookkeeping, so tasks cannot query whether they are registered.
30 > * (However, you can introduce such bookkeeping by subclassing this
31 > * class.)
32 > *
33 > * <p> <b>Synchronization.</b> Like a {@code CyclicBarrier}, a {@code
34 > * Phaser} may be repeatedly awaited.  Method {@link
35 > * #arriveAndAwaitAdvance} has effect analogous to {@link
36 > * java.util.concurrent.CyclicBarrier#await CyclicBarrier.await}. Each
37 > * generation of a {@code Phaser} has an associated phase number. The
38 > * phase number starts at zero, and advances when all parties arrive
39 > * at the barrier, wrapping around to zero after reaching {@code
40 > * Integer.MAX_VALUE}. The use of phase numbers enables independent
41 > * control of actions upon arrival at a barrier and upon awaiting
42 > * others, via two kinds of methods that may be invoked by any
43 > * registered party:
44   *
45   * <ul>
46   *
47 < *   <li> Arriving at a barrier. Methods {@link #arrive} and
48 < *       {@link #arriveAndDeregister} do not block, but return
49 < *       the phase value current upon entry to the method.
50 < *
51 < *   <li> Awaiting others. Method {@link #awaitAdvance} requires an
52 < *       argument indicating the entry phase, and returns when the
53 < *       barrier advances to a new phase.
54 < * </ul>
47 > *   <li> <b>Arrival.</b> Methods {@link #arrive} and
48 > *       {@link #arriveAndDeregister} record arrival at a
49 > *       barrier. These methods do not block, but return an associated
50 > *       <em>arrival phase number</em>; that is, the phase number of
51 > *       the barrier to which the arrival applied. When the final
52 > *       party for a given phase arrives, an optional barrier action
53 > *       is performed and the phase advances.  Barrier actions,
54 > *       performed by the party triggering a phase advance, are
55 > *       arranged by overriding method {@link #onAdvance(int, int)},
56 > *       which also controls termination. Overriding this method is
57 > *       similar to, but more flexible than, providing a barrier
58 > *       action to a {@code CyclicBarrier}.
59 > *
60 > *   <li> <b>Waiting.</b> Method {@link #awaitAdvance} requires an
61 > *       argument indicating an arrival phase number, and returns when
62 > *       the barrier advances to (or is already at) a different phase.
63 > *       Unlike similar constructions using {@code CyclicBarrier},
64 > *       method {@code awaitAdvance} continues to wait even if the
65 > *       waiting thread is interrupted. Interruptible and timeout
66 > *       versions are also available, but exceptions encountered while
67 > *       tasks wait interruptibly or with timeout do not change the
68 > *       state of the barrier. If necessary, you can perform any
69 > *       associated recovery within handlers of those exceptions,
70 > *       often after invoking {@code forceTermination}.  Phasers may
71 > *       also be used by tasks executing in a {@link ForkJoinPool},
72 > *       which will ensure sufficient parallelism to execute tasks
73 > *       when others are blocked waiting for a phase to advance.
74   *
75 + * </ul>
76   *
77 < * <li> Barrier actions, performed by the task triggering a phase
78 < * advance, are arranged by overriding method {@link #onAdvance(int,
79 < * int)}, which also controls termination. Overriding this method is
80 < * similar to, but more flexible than, providing a barrier action to a
81 < * {@code CyclicBarrier}.
82 < *
83 < * <li> Phasers may enter a <em>termination</em> state in which all
60 < * actions immediately return without updating phaser state or waiting
61 < * for advance, and indicating (via a negative phase value) that
62 < * execution is complete.  Termination is triggered when an invocation
63 < * of {@code onAdvance} returns {@code true}.  When a phaser is
64 < * controlling an action with a fixed number of iterations, it is
77 > * <p> <b>Termination.</b> A {@code Phaser} may enter a
78 > * <em>termination</em> state in which all synchronization methods
79 > * immediately return without updating phaser state or waiting for
80 > * advance, and indicating (via a negative phase value) that execution
81 > * is complete.  Termination is triggered when an invocation of {@code
82 > * onAdvance} returns {@code true}.  As illustrated below, when
83 > * phasers control actions with a fixed number of iterations, it is
84   * often convenient to override this method to cause termination when
85   * the current phase number reaches a threshold. Method {@link
86   * #forceTermination} is also available to abruptly release waiting
87   * threads and allow them to terminate.
88   *
89 < * <li> Phasers may be tiered to reduce contention. Phasers with large
90 < * numbers of parties that would otherwise experience heavy
91 < * synchronization contention costs may instead be arranged in trees.
92 < * This will typically greatly increase throughput even though it
93 < * incurs somewhat greater per-operation overhead.
94 < *
95 < * <li> By default, {@code awaitAdvance} continues to wait even if
96 < * the waiting thread is interrupted. And unlike the case in
97 < * {@code CyclicBarrier}, exceptions encountered while tasks wait
98 < * interruptibly or with timeout do not change the state of the
99 < * barrier. If necessary, you can perform any associated recovery
100 < * within handlers of those exceptions, often after invoking
101 < * {@code forceTermination}.
102 < *
103 < * <li>Phasers may be used to coordinate tasks executing in a {@link
104 < * ForkJoinPool}, which will ensure sufficient parallelism to execute
105 < * tasks when others are blocked waiting for a phase to advance.
106 < *
107 < * </ul>
89 > * <p> <b>Tiering.</b> Phasers may be <em>tiered</em> (i.e.,
90 > * constructed in tree structures) to reduce contention. Phasers with
91 > * large numbers of parties that would otherwise experience heavy
92 > * synchronization contention costs may instead be set up so that
93 > * groups of sub-phasers share a common parent.  This may greatly
94 > * increase throughput even though it incurs greater per-operation
95 > * overhead.
96 > *
97 > * <p><b>Monitoring.</b> While synchronization methods may be invoked
98 > * only by registered parties, the current state of a phaser may be
99 > * monitored by any caller.  At any given moment there are {@link
100 > * #getRegisteredParties} parties in total, of which {@link
101 > * #getArrivedParties} have arrived at the current phase ({@link
102 > * #getPhase}).  When the remaining ({@link #getUnarrivedParties})
103 > * parties arrive, the phase advances.  The values returned by these
104 > * methods may reflect transient states and so are not in general
105 > * useful for synchronization control.  Method {@link #toString}
106 > * returns snapshots of these state queries in a form convenient for
107 > * informal monitoring.
108   *
109   * <p><b>Sample usages:</b>
110   *
111   * <p>A {@code Phaser} may be used instead of a {@code CountDownLatch}
112 < * to control a one-shot action serving a variable number of
113 < * parties. The typical idiom is for the method setting this up to
114 < * first register, then start the actions, then deregister, as in:
112 > * to control a one-shot action serving a variable number of parties.
113 > * The typical idiom is for the method setting this up to first
114 > * register, then start the actions, then deregister, as in:
115   *
116   *  <pre> {@code
117 < * void runTasks(List<Runnable> list) {
117 > * void runTasks(List<Runnable> tasks) {
118   *   final Phaser phaser = new Phaser(1); // "1" to register self
119   *   // create and start threads
120 < *   for (Runnable r : list) {
120 > *   for (Runnable task : tasks) {
121   *     phaser.register();
122   *     new Thread() {
123   *       public void run() {
124   *         phaser.arriveAndAwaitAdvance(); // await all creation
125 < *         r.run();
125 > *         task.run();
126   *       }
127   *     }.start();
128   *   }
# Line 116 | Line 135 | import java.util.concurrent.locks.LockSu
135   * for a given number of iterations is to override {@code onAdvance}:
136   *
137   *  <pre> {@code
138 < * void startTasks(List<Runnable> list, final int iterations) {
138 > * void startTasks(List<Runnable> tasks, final int iterations) {
139   *   final Phaser phaser = new Phaser() {
140 < *     public boolean onAdvance(int phase, int registeredParties) {
140 > *     protected boolean onAdvance(int phase, int registeredParties) {
141   *       return phase >= iterations || registeredParties == 0;
142   *     }
143   *   };
144   *   phaser.register();
145 < *   for (Runnable r : list) {
145 > *   for (final Runnable task : tasks) {
146   *     phaser.register();
147   *     new Thread() {
148   *       public void run() {
149   *         do {
150 < *           r.run();
150 > *           task.run();
151   *           phaser.arriveAndAwaitAdvance();
152 < *         } while(!phaser.isTerminated();
152 > *         } while (!phaser.isTerminated());
153   *       }
154   *     }.start();
155   *   }
156   *   phaser.arriveAndDeregister(); // deregister self, don't wait
157   * }}</pre>
158   *
159 + * If the main task must later await termination, it
160 + * may re-register and then execute a similar loop:
161 + *  <pre> {@code
162 + *   // ...
163 + *   phaser.register();
164 + *   while (!phaser.isTerminated())
165 + *     phaser.arriveAndAwaitAdvance();}</pre>
166 + *
167 + * <p>Related constructions may be used to await particular phase numbers
168 + * in contexts where you are sure that the phase will never wrap around
169 + * {@code Integer.MAX_VALUE}. For example:
170 + *
171 + *  <pre> {@code
172 + * void awaitPhase(Phaser phaser, int phase) {
173 + *   int p = phaser.register(); // assumes caller not already registered
174 + *   while (p < phase) {
175 + *     if (phaser.isTerminated())
176 + *       // ... deal with unexpected termination
177 + *     else
178 + *       p = phaser.arriveAndAwaitAdvance();
179 + *   }
180 + *   phaser.arriveAndDeregister();
181 + * }}</pre>
182 + *
183 + *
184   * <p>To create a set of tasks using a tree of phasers,
185   * you could use code of the following form, assuming a
186   * Task class with a constructor accepting a phaser that
187 < * it registers for upon construction:
187 > * it registers with upon construction:
188 > *
189   *  <pre> {@code
190 < * void build(Task[] actions, int lo, int hi, Phaser b) {
191 < *   int step = (hi - lo) / TASKS_PER_PHASER;
192 < *   if (step > 1) {
193 < *     int i = lo;
194 < *     while (i < hi) {
150 < *       int r = Math.min(i + step, hi);
151 < *       build(actions, i, r, new Phaser(b));
152 < *       i = r;
190 > * void build(Task[] actions, int lo, int hi, Phaser ph) {
191 > *   if (hi - lo > TASKS_PER_PHASER) {
192 > *     for (int i = lo; i < hi; i += TASKS_PER_PHASER) {
193 > *       int j = Math.min(i + TASKS_PER_PHASER, hi);
194 > *       build(actions, i, j, new Phaser(ph));
195   *     }
196   *   } else {
197   *     for (int i = lo; i < hi; ++i)
198 < *       actions[i] = new Task(b);
199 < *       // assumes new Task(b) performs b.register()
198 > *       actions[i] = new Task(ph);
199 > *       // assumes new Task(ph) performs ph.register()
200   *   }
201   * }
202   * // .. initially called, for n tasks via
# Line 165 | Line 207 | import java.util.concurrent.locks.LockSu
207   * be appropriate for extremely small per-barrier task bodies (thus
208   * high rates), or up to hundreds for extremely large ones.
209   *
168 * </pre>
169 *
210   * <p><b>Implementation notes</b>: This implementation restricts the
211   * maximum number of parties to 65535. Attempts to register additional
212   * parties result in {@code IllegalStateException}. However, you can and
# Line 187 | Line 227 | public class Phaser {
227       * Barrier state representation. Conceptually, a barrier contains
228       * four values:
229       *
230 <     * * parties -- the number of parties to wait (16 bits)
231 <     * * unarrived -- the number of parties yet to hit barrier (16 bits)
232 <     * * phase -- the generation of the barrier (31 bits)
233 <     * * terminated -- set if barrier is terminated (1 bit)
230 >     * * unarrived -- the number of parties yet to hit barrier (bits  0-15)
231 >     * * parties -- the number of parties to wait              (bits 16-31)
232 >     * * phase -- the generation of the barrier                (bits 32-62)
233 >     * * terminated -- set if barrier is terminated            (bit  63 / sign)
234       *
235       * However, to efficiently maintain atomicity, these values are
236       * packed into a single (atomic) long. Termination uses the sign
237       * bit of 32 bit representation of phase, so phase is set to -1 on
238       * termination. Good performance relies on keeping state decoding
239       * and encoding simple, and keeping race windows short.
200     *
201     * Note: there are some cheats in arrive() that rely on unarrived
202     * count being lowest 16 bits.
240       */
241      private volatile long state;
242  
243 <    private static final int ushortBits = 16;
244 <    private static final int ushortMask = 0xffff;
245 <    private static final int phaseMask  = 0x7fffffff;
243 >    private static final int  MAX_PARTIES    = 0xffff;
244 >    private static final int  MAX_PHASE      = 0x7fffffff;
245 >    private static final int  PARTIES_SHIFT  = 16;
246 >    private static final int  PHASE_SHIFT    = 32;
247 >    private static final int  UNARRIVED_MASK = 0xffff;
248 >    private static final long PARTIES_MASK   = 0xffff0000L; // for masking long
249 >    private static final long ONE_ARRIVAL    = 1L;
250 >    private static final long ONE_PARTY      = 1L << PARTIES_SHIFT;
251 >    private static final long TERMINATION_PHASE  = -1L << PHASE_SHIFT;
252 >
253 >    // The following unpacking methods are usually manually inlined
254  
255      private static int unarrivedOf(long s) {
256 <        return (int) (s & ushortMask);
256 >        return (int)s & UNARRIVED_MASK;
257      }
258  
259      private static int partiesOf(long s) {
260 <        return ((int) s) >>> 16;
260 >        return (int)s >>> PARTIES_SHIFT;
261      }
262  
263      private static int phaseOf(long s) {
264 <        return (int) (s >>> 32);
264 >        return (int) (s >>> PHASE_SHIFT);
265      }
266  
267      private static int arrivedOf(long s) {
268          return partiesOf(s) - unarrivedOf(s);
269      }
270  
226    private static long stateFor(int phase, int parties, int unarrived) {
227        return ((((long) phase) << 32) | (((long) parties) << 16) |
228                (long) unarrived);
229    }
230
231    private static long trippedStateFor(int phase, int parties) {
232        long lp = (long) parties;
233        return (((long) phase) << 32) | (lp << 16) | lp;
234    }
235
236    /**
237     * Returns message string for bad bounds exceptions.
238     */
239    private static String badBounds(int parties, int unarrived) {
240        return ("Attempt to set " + unarrived +
241                " unarrived of " + parties + " parties");
242    }
243
271      /**
272       * The parent of this phaser, or null if none
273       */
# Line 252 | Line 279 | public class Phaser {
279       */
280      private final Phaser root;
281  
255    // Wait queues
256
282      /**
283       * Heads of Treiber stacks for waiting threads. To eliminate
284 <     * contention while releasing some threads while adding others, we
284 >     * contention when releasing some threads while adding others, we
285       * use two of them, alternating across even and odd phases.
286 +     * Subphasers share queues with root to speed up releases.
287       */
288 <    private final AtomicReference<QNode> evenQ = new AtomicReference<QNode>();
289 <    private final AtomicReference<QNode> oddQ  = new AtomicReference<QNode>();
288 >    private final AtomicReference<QNode> evenQ;
289 >    private final AtomicReference<QNode> oddQ;
290  
291      private AtomicReference<QNode> queueFor(int phase) {
292          return ((phase & 1) == 0) ? evenQ : oddQ;
293      }
294  
295      /**
296 <     * Returns current state, first resolving lagged propagation from
297 <     * root if necessary.
296 >     * Main implementation for methods arrive and arriveAndDeregister.
297 >     * Manually tuned to speed up and minimize race windows for the
298 >     * common case of just decrementing unarrived field.
299 >     *
300 >     * @param adj - adjustment to apply to state -- either
301 >     * ONE_ARRIVAL (for arrive) or
302 >     * ONE_ARRIVAL|ONE_PARTY (for arriveAndDeregister)
303 >     */
304 >    private int doArrive(long adj) {
305 >        for (;;) {
306 >            long s = state;
307 >            int phase = (int)(s >>> PHASE_SHIFT);
308 >            if (phase < 0)
309 >                return phase;
310 >            int unarrived = (int)s & UNARRIVED_MASK;
311 >            if (unarrived == 0)
312 >                checkBadArrive(s);
313 >            else if (UNSAFE.compareAndSwapLong(this, stateOffset, s, s-=adj)) {
314 >                if (unarrived == 1) {
315 >                    long p = s & PARTIES_MASK; // unshifted parties field
316 >                    long lu = p >>> PARTIES_SHIFT;
317 >                    int u = (int)lu;
318 >                    int nextPhase = (phase + 1) & MAX_PHASE;
319 >                    long next = ((long)nextPhase << PHASE_SHIFT) | p | lu;
320 >                    final Phaser parent = this.parent;
321 >                    if (parent == null) {
322 >                        if (onAdvance(phase, u))
323 >                            next |= TERMINATION_PHASE; // obliterate phase
324 >                        UNSAFE.compareAndSwapLong(this, stateOffset, s, next);
325 >                        releaseWaiters(phase);
326 >                    }
327 >                    else {
328 >                        parent.doArrive((u == 0) ?
329 >                                        ONE_ARRIVAL|ONE_PARTY : ONE_ARRIVAL);
330 >                        if ((int)(parent.state >>> PHASE_SHIFT) != nextPhase ||
331 >                            ((int)(state >>> PHASE_SHIFT) != nextPhase &&
332 >                             !UNSAFE.compareAndSwapLong(this, stateOffset,
333 >                                                        s, next)))
334 >                            reconcileState();
335 >                    }
336 >                }
337 >                return phase;
338 >            }
339 >        }
340 >    }
341 >
342 >    /**
343 >     * Rechecks state and throws bounds exceptions on arrival -- called
344 >     * only if unarrived is apparently zero.
345 >     */
346 >    private void checkBadArrive(long s) {
347 >        if (reconcileState() == s)
348 >            throw new IllegalStateException
349 >                ("Attempted arrival of unregistered party for " +
350 >                 stateToString(s));
351 >    }
352 >
353 >    /**
354 >     * Implementation of register, bulkRegister
355 >     *
356 >     * @param registrations number to add to both parties and
357 >     * unarrived fields. Must be greater than zero.
358 >     */
359 >    private int doRegister(int registrations) {
360 >        // adjustment to state
361 >        long adj = ((long)registrations << PARTIES_SHIFT) | registrations;
362 >        final Phaser parent = this.parent;
363 >        for (;;) {
364 >            long s = (parent == null) ? state : reconcileState();
365 >            int parties = (int)s >>> PARTIES_SHIFT;
366 >            int phase = (int)(s >>> PHASE_SHIFT);
367 >            if (phase < 0)
368 >                return phase;
369 >            else if (parties != 0 && ((int)s & UNARRIVED_MASK) == 0)
370 >                internalAwaitAdvance(phase, null); // wait for onAdvance
371 >            else if (registrations > MAX_PARTIES - parties)
372 >                throw new IllegalStateException(badRegister(s));
373 >            else if (UNSAFE.compareAndSwapLong(this, stateOffset, s, s + adj))
374 >                return phase;
375 >        }
376 >    }
377 >
378 >    /**
379 >     * Returns message string for out of bounds exceptions on registration.
380       */
381 <    private long getReconciledState() {
382 <        return (parent == null) ? state : reconcileState();
381 >    private String badRegister(long s) {
382 >        return "Attempt to register more than " +
383 >            MAX_PARTIES + " parties for " + stateToString(s);
384      }
385  
386      /**
387 <     * Recursively resolves state.
387 >     * Recursively resolves lagged phase propagation from root if necessary.
388       */
389      private long reconcileState() {
390 <        Phaser p = parent;
390 >        Phaser par = parent;
391          long s = state;
392 <        if (p != null) {
393 <            while (unarrivedOf(s) == 0 && phaseOf(s) != phaseOf(root.state)) {
394 <                long parentState = p.getReconciledState();
395 <                int parentPhase = phaseOf(parentState);
396 <                int phase = phaseOf(s = state);
397 <                if (phase != parentPhase) {
398 <                    long next = trippedStateFor(parentPhase, partiesOf(s));
399 <                    if (casState(s, next)) {
400 <                        releaseWaiters(phase);
401 <                        s = next;
402 <                    }
392 >        if (par != null) {
393 >            Phaser rt = root;
394 >            int phase, rPhase;
395 >            while ((phase = (int)(s >>> PHASE_SHIFT)) >= 0 &&
396 >                   (rPhase = (int)(rt.state >>> PHASE_SHIFT)) != phase) {
397 >                if ((int)(par.state >>> PHASE_SHIFT) != rPhase)
398 >                    par.reconcileState();
399 >                else if (rPhase < 0 || ((int)s & UNARRIVED_MASK) == 0) {
400 >                    long u = s & PARTIES_MASK; // reset unarrived to parties
401 >                    long next = ((((long) rPhase) << PHASE_SHIFT) | u |
402 >                                 (u >>> PARTIES_SHIFT));
403 >                    if (state == s &&
404 >                        UNSAFE.compareAndSwapLong(this, stateOffset,
405 >                                                  s, s = next))
406 >                        break;
407                  }
408 +                s = state;
409              }
410          }
411          return s;
# Line 303 | Line 417 | public class Phaser {
417       * phaser will need to first register for it.
418       */
419      public Phaser() {
420 <        this(null);
420 >        this(null, 0);
421      }
422  
423      /**
424 <     * Creates a new phaser with the given numbers of registered
424 >     * Creates a new phaser with the given number of registered
425       * unarrived parties, initial phase number 0, and no parent.
426       *
427       * @param parties the number of parties required to trip barrier
# Line 319 | Line 433 | public class Phaser {
433      }
434  
435      /**
436 <     * Creates a new phaser with the given parent, without any
323 <     * initially registered parties. If parent is non-null this phaser
324 <     * is registered with the parent and its initial phase number is
325 <     * the same as that of parent phaser.
436 >     * Equivalent to {@link #Phaser(Phaser, int) Phaser(parent, 0)}.
437       *
438       * @param parent the parent phaser
439       */
440      public Phaser(Phaser parent) {
441 <        int phase = 0;
331 <        this.parent = parent;
332 <        if (parent != null) {
333 <            this.root = parent.root;
334 <            phase = parent.register();
335 <        }
336 <        else
337 <            this.root = this;
338 <        this.state = trippedStateFor(phase, 0);
441 >        this(parent, 0);
442      }
443  
444      /**
445 <     * Creates a new phaser with the given parent and numbers of
446 <     * registered unarrived parties. If parent is non-null, this phaser
447 <     * is registered with the parent and its initial phase number is
448 <     * the same as that of parent phaser.
445 >     * Creates a new phaser with the given parent and number of
446 >     * registered unarrived parties. If parent is non-null, this
447 >     * phaser is registered with the parent and its initial phase
448 >     * number is the same as that of parent phaser.  If the number of
449 >     * parties is zero, the parent phaser will not proceed until this
450 >     * child phaser registers parties and advances, or this child
451 >     * phaser deregisters with its parent, or the parent is otherwise
452 >     * terminated.  This child Phaser will be deregistered from its
453 >     * parent automatically upon any invocation of the child's {@link
454 >     * #arriveAndDeregister} method that results in the child's number
455 >     * of registered parties becoming zero. (Although rarely
456 >     * appropriate, this child may also explicity deregister from its
457 >     * parent using {@code getParent().arriveAndDeregister()}.)  After
458 >     * deregistration, the child cannot re-register. (Instead, you can
459 >     * create a new child Phaser.)
460       *
461       * @param parent the parent phaser
462       * @param parties the number of parties required to trip barrier
# Line 350 | Line 464 | public class Phaser {
464       * or greater than the maximum number of parties supported
465       */
466      public Phaser(Phaser parent, int parties) {
467 <        if (parties < 0 || parties > ushortMask)
467 >        if (parties >>> PARTIES_SHIFT != 0)
468              throw new IllegalArgumentException("Illegal number of parties");
469 <        int phase = 0;
469 >        int phase;
470          this.parent = parent;
471          if (parent != null) {
472 <            this.root = parent.root;
473 <            phase = parent.register();
472 >            Phaser r = parent.root;
473 >            this.root = r;
474 >            this.evenQ = r.evenQ;
475 >            this.oddQ = r.oddQ;
476 >            phase = parent.doRegister(1);
477          }
478 <        else
478 >        else {
479              this.root = this;
480 <        this.state = trippedStateFor(phase, parties);
480 >            this.evenQ = new AtomicReference<QNode>();
481 >            this.oddQ = new AtomicReference<QNode>();
482 >            phase = 0;
483 >        }
484 >        long p = (long)parties;
485 >        this.state = (((long)phase) << PHASE_SHIFT) | p | (p << PARTIES_SHIFT);
486      }
487  
488      /**
489       * Adds a new unarrived party to this phaser.
490 +     * If an ongoing invocation of {@link #onAdvance} is in progress,
491 +     * this method may wait until its completion before registering.
492       *
493 <     * @return the current barrier phase number upon registration
493 >     * @return the arrival phase number to which this registration applied
494       * @throws IllegalStateException if attempting to register more
495       * than the maximum supported number of parties
496       */
# Line 376 | Line 500 | public class Phaser {
500  
501      /**
502       * Adds the given number of new unarrived parties to this phaser.
503 +     * If an ongoing invocation of {@link #onAdvance} is in progress,
504 +     * this method may wait until its completion before registering.
505       *
506 <     * @param parties the number of parties required to trip barrier
507 <     * @return the current barrier phase number upon registration
506 >     * @param parties the number of additional parties required to trip barrier
507 >     * @return the arrival phase number to which this registration applied
508       * @throws IllegalStateException if attempting to register more
509       * than the maximum supported number of parties
510 +     * @throws IllegalArgumentException if {@code parties < 0}
511       */
512      public int bulkRegister(int parties) {
513          if (parties < 0)
# Line 391 | Line 518 | public class Phaser {
518      }
519  
520      /**
394     * Shared code for register, bulkRegister
395     */
396    private int doRegister(int registrations) {
397        int phase;
398        for (;;) {
399            long s = getReconciledState();
400            phase = phaseOf(s);
401            int unarrived = unarrivedOf(s) + registrations;
402            int parties = partiesOf(s) + registrations;
403            if (phase < 0)
404                break;
405            if (parties > ushortMask || unarrived > ushortMask)
406                throw new IllegalStateException(badBounds(parties, unarrived));
407            if (phase == phaseOf(root.state) &&
408                casState(s, stateFor(phase, parties, unarrived)))
409                break;
410        }
411        return phase;
412    }
413
414    /**
521       * Arrives at the barrier, but does not wait for others.  (You can
522 <     * in turn wait for others via {@link #awaitAdvance}).
522 >     * in turn wait for others via {@link #awaitAdvance}).  It is an
523 >     * unenforced usage error for an unregistered party to invoke this
524 >     * method.
525       *
526 <     * @return the barrier phase number upon entry to this method, or a
419 <     * negative value if terminated
526 >     * @return the arrival phase number, or a negative value if terminated
527       * @throws IllegalStateException if not terminated and the number
528       * of unarrived parties would become negative
529       */
530      public int arrive() {
531 <        int phase;
425 <        for (;;) {
426 <            long s = state;
427 <            phase = phaseOf(s);
428 <            if (phase < 0)
429 <                break;
430 <            int parties = partiesOf(s);
431 <            int unarrived = unarrivedOf(s) - 1;
432 <            if (unarrived > 0) {        // Not the last arrival
433 <                if (casState(s, s - 1)) // s-1 adds one arrival
434 <                    break;
435 <            }
436 <            else if (unarrived == 0) {  // the last arrival
437 <                Phaser par = parent;
438 <                if (par == null) {      // directly trip
439 <                    if (casState
440 <                        (s,
441 <                         trippedStateFor(onAdvance(phase, parties) ? -1 :
442 <                                         ((phase + 1) & phaseMask), parties))) {
443 <                        releaseWaiters(phase);
444 <                        break;
445 <                    }
446 <                }
447 <                else {                  // cascade to parent
448 <                    if (casState(s, s - 1)) { // zeroes unarrived
449 <                        par.arrive();
450 <                        reconcileState();
451 <                        break;
452 <                    }
453 <                }
454 <            }
455 <            else if (phase != phaseOf(root.state)) // or if unreconciled
456 <                reconcileState();
457 <            else
458 <                throw new IllegalStateException(badBounds(parties, unarrived));
459 <        }
460 <        return phase;
531 >        return doArrive(ONE_ARRIVAL);
532      }
533  
534      /**
# Line 466 | Line 537 | public class Phaser {
537       * required to trip the barrier in future phases.  If this phaser
538       * has a parent, and deregistration causes this phaser to have
539       * zero parties, this phaser also arrives at and is deregistered
540 <     * from its parent.
540 >     * from its parent.  It is an unenforced usage error for an
541 >     * unregistered party to invoke this method.
542       *
543 <     * @return the current barrier phase number upon entry to
472 <     * this method, or a negative value if terminated
543 >     * @return the arrival phase number, or a negative value if terminated
544       * @throws IllegalStateException if not terminated and the number
545       * of registered or unarrived parties would become negative
546       */
547      public int arriveAndDeregister() {
548 <        // similar code to arrive, but too different to merge
478 <        Phaser par = parent;
479 <        int phase;
480 <        for (;;) {
481 <            long s = state;
482 <            phase = phaseOf(s);
483 <            if (phase < 0)
484 <                break;
485 <            int parties = partiesOf(s) - 1;
486 <            int unarrived = unarrivedOf(s) - 1;
487 <            if (parties >= 0) {
488 <                if (unarrived > 0 || (unarrived == 0 && par != null)) {
489 <                    if (casState
490 <                        (s,
491 <                         stateFor(phase, parties, unarrived))) {
492 <                        if (unarrived == 0) {
493 <                            par.arriveAndDeregister();
494 <                            reconcileState();
495 <                        }
496 <                        break;
497 <                    }
498 <                    continue;
499 <                }
500 <                if (unarrived == 0) {
501 <                    if (casState
502 <                        (s,
503 <                         trippedStateFor(onAdvance(phase, parties) ? -1 :
504 <                                         ((phase + 1) & phaseMask), parties))) {
505 <                        releaseWaiters(phase);
506 <                        break;
507 <                    }
508 <                    continue;
509 <                }
510 <                if (par != null && phase != phaseOf(root.state)) {
511 <                    reconcileState();
512 <                    continue;
513 <                }
514 <            }
515 <            throw new IllegalStateException(badBounds(parties, unarrived));
516 <        }
517 <        return phase;
548 >        return doArrive(ONE_ARRIVAL|ONE_PARTY);
549      }
550  
551      /**
552       * Arrives at the barrier and awaits others. Equivalent in effect
553       * to {@code awaitAdvance(arrive())}.  If you need to await with
554       * interruption or timeout, you can arrange this with an analogous
555 <     * construction using one of the other forms of the awaitAdvance
556 <     * method.  If instead you need to deregister upon arrival use
557 <     * {@code arriveAndDeregister}.
555 >     * construction using one of the other forms of the {@code
556 >     * awaitAdvance} method.  If instead you need to deregister upon
557 >     * arrival, use {@link #arriveAndDeregister}. It is an unenforced
558 >     * usage error for an unregistered party to invoke this method.
559       *
560 <     * @return the phase on entry to this method
560 >     * @return the arrival phase number, or a negative number if terminated
561       * @throws IllegalStateException if not terminated and the number
562       * of unarrived parties would become negative
563       */
# Line 539 | Line 571 | public class Phaser {
571       * barrier is not equal to the given phase value or this barrier
572       * is terminated.
573       *
574 <     * @param phase the phase on entry to this method
575 <     * @return the phase on exit from this method
574 >     * @param phase an arrival phase number, or negative value if
575 >     * terminated; this argument is normally the value returned by a
576 >     * previous call to {@code arrive} or its variants
577 >     * @return the next arrival phase number, or a negative value
578 >     * if terminated or argument is negative
579       */
580      public int awaitAdvance(int phase) {
581          if (phase < 0)
582              return phase;
583 <        long s = getReconciledState();
584 <        int p = phaseOf(s);
585 <        if (p != phase)
551 <            return p;
552 <        if (unarrivedOf(s) == 0 && parent != null)
553 <            parent.awaitAdvance(phase);
554 <        // Fall here even if parent waited, to reconcile and help release
555 <        return untimedWait(phase);
583 >        long s = (parent == null) ? state : reconcileState();
584 >        int p = (int)(s >>> PHASE_SHIFT);
585 >        return (p != phase) ? p : internalAwaitAdvance(phase, null);
586      }
587  
588      /**
589       * Awaits the phase of the barrier to advance from the given phase
590 <     * value, throwing {@code InterruptedException} if interrupted while
591 <     * waiting, or returning immediately if the current phase of the
592 <     * barrier is not equal to the given phase value or this barrier
593 <     * is terminated.
594 <     *
595 <     * @param phase the phase on entry to this method
596 <     * @return the phase on exit from this method
590 >     * value, throwing {@code InterruptedException} if interrupted
591 >     * while waiting, or returning immediately if the current phase of
592 >     * the barrier is not equal to the given phase value or this
593 >     * barrier is terminated.
594 >     *
595 >     * @param phase an arrival phase number, or negative value if
596 >     * terminated; this argument is normally the value returned by a
597 >     * previous call to {@code arrive} or its variants
598 >     * @return the next arrival phase number, or a negative value
599 >     * if terminated or argument is negative
600       * @throws InterruptedException if thread interrupted while waiting
601       */
602      public int awaitAdvanceInterruptibly(int phase)
603          throws InterruptedException {
604          if (phase < 0)
605              return phase;
606 <        long s = getReconciledState();
607 <        int p = phaseOf(s);
608 <        if (p != phase)
609 <            return p;
610 <        if (unarrivedOf(s) == 0 && parent != null)
611 <            parent.awaitAdvanceInterruptibly(phase);
612 <        return interruptibleWait(phase);
606 >        long s = (parent == null) ? state : reconcileState();
607 >        int p = (int)(s >>> PHASE_SHIFT);
608 >        if (p == phase) {
609 >            QNode node = new QNode(this, phase, true, false, 0L);
610 >            p = internalAwaitAdvance(phase, node);
611 >            if (node.wasInterrupted)
612 >                throw new InterruptedException();
613 >        }
614 >        return p;
615      }
616  
617      /**
618       * Awaits the phase of the barrier to advance from the given phase
619 <     * value or the given timeout to elapse, throwing
620 <     * {@code InterruptedException} if interrupted while waiting, or
621 <     * returning immediately if the current phase of the barrier is not
622 <     * equal to the given phase value or this barrier is terminated.
623 <     *
624 <     * @param phase the phase on entry to this method
619 >     * value or the given timeout to elapse, throwing {@code
620 >     * InterruptedException} if interrupted while waiting, or
621 >     * returning immediately if the current phase of the barrier is
622 >     * not equal to the given phase value or this barrier is
623 >     * terminated.
624 >     *
625 >     * @param phase an arrival phase number, or negative value if
626 >     * terminated; this argument is normally the value returned by a
627 >     * previous call to {@code arrive} or its variants
628       * @param timeout how long to wait before giving up, in units of
629       *        {@code unit}
630       * @param unit a {@code TimeUnit} determining how to interpret the
631       *        {@code timeout} parameter
632 <     * @return the phase on exit from this method
632 >     * @return the next arrival phase number, or a negative value
633 >     * if terminated or argument is negative
634       * @throws InterruptedException if thread interrupted while waiting
635       * @throws TimeoutException if timed out while waiting
636       */
# Line 600 | Line 639 | public class Phaser {
639          throws InterruptedException, TimeoutException {
640          if (phase < 0)
641              return phase;
642 <        long s = getReconciledState();
643 <        int p = phaseOf(s);
644 <        if (p != phase)
645 <            return p;
646 <        if (unarrivedOf(s) == 0 && parent != null)
647 <            parent.awaitAdvanceInterruptibly(phase, timeout, unit);
648 <        return timedWait(phase, unit.toNanos(timeout));
642 >        long s = (parent == null) ? state : reconcileState();
643 >        int p = (int)(s >>> PHASE_SHIFT);
644 >        if (p == phase) {
645 >            long nanos = unit.toNanos(timeout);
646 >            QNode node = new QNode(this, phase, true, true, nanos);
647 >            p = internalAwaitAdvance(phase, node);
648 >            if (node.wasInterrupted)
649 >                throw new InterruptedException();
650 >            else if (p == phase)
651 >                throw new TimeoutException();
652 >        }
653 >        return p;
654      }
655  
656      /**
657 <     * Forces this barrier to enter termination state. Counts of
658 <     * arrived and registered parties are unaffected. If this phaser
659 <     * has a parent, it too is terminated. This method may be useful
660 <     * for coordinating recovery after one or more tasks encounter
661 <     * unexpected exceptions.
657 >     * Forces this barrier to enter termination state.  Counts of
658 >     * arrived and registered parties are unaffected.  If this phaser
659 >     * is a member of a tiered set of phasers, then all of the phasers
660 >     * in the set are terminated.  If this phaser is already
661 >     * terminated, this method has no effect.  This method may be
662 >     * useful for coordinating recovery after one or more tasks
663 >     * encounter unexpected exceptions.
664       */
665      public void forceTermination() {
666 <        for (;;) {
667 <            long s = getReconciledState();
668 <            int phase = phaseOf(s);
669 <            int parties = partiesOf(s);
670 <            int unarrived = unarrivedOf(s);
671 <            if (phase < 0 ||
672 <                casState(s, stateFor(-1, parties, unarrived))) {
627 <                releaseWaiters(0);
666 >        // Only need to change root state
667 >        final Phaser root = this.root;
668 >        long s;
669 >        while ((s = root.state) >= 0) {
670 >            if (UNSAFE.compareAndSwapLong(root, stateOffset,
671 >                                          s, s | TERMINATION_PHASE)) {
672 >                releaseWaiters(0); // signal all threads
673                  releaseWaiters(1);
629                if (parent != null)
630                    parent.forceTermination();
674                  return;
675              }
676          }
# Line 641 | Line 684 | public class Phaser {
684       * @return the phase number, or a negative value if terminated
685       */
686      public final int getPhase() {
687 <        return phaseOf(getReconciledState());
687 >        return (int)(root.state >>> PHASE_SHIFT);
688      }
689  
690      /**
# Line 654 | Line 697 | public class Phaser {
697      }
698  
699      /**
700 <     * Returns the number of parties that have arrived at the current
701 <     * phase of this barrier.
700 >     * Returns the number of registered parties that have arrived at
701 >     * the current phase of this barrier.
702       *
703       * @return the number of arrived parties
704       */
705      public int getArrivedParties() {
706 <        return arrivedOf(state);
706 >        return arrivedOf(parent==null? state : reconcileState());
707      }
708  
709      /**
# Line 670 | Line 713 | public class Phaser {
713       * @return the number of unarrived parties
714       */
715      public int getUnarrivedParties() {
716 <        return unarrivedOf(state);
716 >        return unarrivedOf(parent==null? state : reconcileState());
717      }
718  
719      /**
# Line 698 | Line 741 | public class Phaser {
741       * @return {@code true} if this barrier has been terminated
742       */
743      public boolean isTerminated() {
744 <        return getPhase() < 0;
744 >        return root.state < 0L;
745      }
746  
747      /**
748 <     * Overridable method to perform an action upon phase advance, and
749 <     * to control termination. This method is invoked whenever the
750 <     * barrier is tripped (and thus all other waiting parties are
751 <     * dormant). If it returns {@code true}, then, rather than advance
752 <     * the phase number, this barrier will be set to a final
753 <     * termination state, and subsequent calls to {@link #isTerminated}
754 <     * will return true.
748 >     * Overridable method to perform an action upon impending phase
749 >     * advance, and to control termination. This method is invoked
750 >     * upon arrival of the party tripping the barrier (when all other
751 >     * waiting parties are dormant).  If this method returns {@code
752 >     * true}, then, rather than advance the phase number, this barrier
753 >     * will be set to a final termination state, and subsequent calls
754 >     * to {@link #isTerminated} will return true. Any (unchecked)
755 >     * Exception or Error thrown by an invocation of this method is
756 >     * propagated to the party attempting to trip the barrier, in
757 >     * which case no advance occurs.
758 >     *
759 >     * <p>The arguments to this method provide the state of the phaser
760 >     * prevailing for the current transition.  The effects of invoking
761 >     * arrival, registration, and waiting methods on this Phaser from
762 >     * within {@code onAdvance} are unspecified and should not be
763 >     * relied on.
764 >     *
765 >     * <p>If this Phaser is a member of a tiered set of Phasers, then
766 >     * {@code onAdvance} is invoked only for its root Phaser on each
767 >     * advance.
768       *
769       * <p>The default version returns {@code true} when the number of
770       * registered parties is zero. Normally, overrides that arrange
771       * termination for other reasons should also preserve this
772       * property.
773       *
718     * <p>You may override this method to perform an action with side
719     * effects visible to participating tasks, but it is in general
720     * only sensible to do so in designs where all parties register
721     * before any arrive, and all {@link #awaitAdvance} at each phase.
722     * Otherwise, you cannot ensure lack of interference from other
723     * parties during the invocation of this method.
724     *
774       * @param phase the phase number on entering the barrier
775       * @param registeredParties the current number of registered parties
776       * @return {@code true} if this barrier should terminate
# Line 740 | Line 789 | public class Phaser {
789       * @return a string identifying this barrier, as well as its state
790       */
791      public String toString() {
792 <        long s = getReconciledState();
792 >        return stateToString(reconcileState());
793 >    }
794 >
795 >    /**
796 >     * Implementation of toString and string-based error messages
797 >     */
798 >    private String stateToString(long s) {
799          return super.toString() +
800              "[phase = " + phaseOf(s) +
801              " parties = " + partiesOf(s) +
802              " arrived = " + arrivedOf(s) + "]";
803      }
804  
805 <    // methods for waiting
805 >    // Waiting mechanics
806 >
807 >    /**
808 >     * Removes and signals threads from queue for phase.
809 >     */
810 >    private void releaseWaiters(int phase) {
811 >        AtomicReference<QNode> head = queueFor(phase);
812 >        QNode q;
813 >        int p;
814 >        while ((q = head.get()) != null &&
815 >               ((p = q.phase) == phase ||
816 >                (int)(root.state >>> PHASE_SHIFT) != p)) {
817 >            if (head.compareAndSet(q, q.next))
818 >                q.signal();
819 >        }
820 >    }
821 >
822 >    /** The number of CPUs, for spin control */
823 >    private static final int NCPU = Runtime.getRuntime().availableProcessors();
824 >
825 >    /**
826 >     * The number of times to spin before blocking while waiting for
827 >     * advance, per arrival while waiting. On multiprocessors, fully
828 >     * blocking and waking up a large number of threads all at once is
829 >     * usually a very slow process, so we use rechargeable spins to
830 >     * avoid it when threads regularly arrive: When a thread in
831 >     * internalAwaitAdvance notices another arrival before blocking,
832 >     * and there appear to be enough CPUs available, it spins
833 >     * SPINS_PER_ARRIVAL more times before blocking. Plus, even on
834 >     * uniprocessors, there is at least one intervening Thread.yield
835 >     * before blocking. The value trades off good-citizenship vs big
836 >     * unnecessary slowdowns.
837 >     */
838 >    static final int SPINS_PER_ARRIVAL = (NCPU < 2) ? 1 : 1 << 8;
839 >
840 >    /**
841 >     * Possibly blocks and waits for phase to advance unless aborted.
842 >     *
843 >     * @param phase current phase
844 >     * @param node if non-null, the wait node to track interrupt and timeout;
845 >     * if null, denotes noninterruptible wait
846 >     * @return current phase
847 >     */
848 >    private int internalAwaitAdvance(int phase, QNode node) {
849 >        Phaser current = this;       // to eventually wait at root if tiered
850 >        boolean queued = false;      // true when node is enqueued
851 >        int lastUnarrived = -1;      // to increase spins upon change
852 >        int spins = SPINS_PER_ARRIVAL;
853 >        long s;
854 >        int p;
855 >        while ((p = (int)((s = current.state) >>> PHASE_SHIFT)) == phase) {
856 >            Phaser par;
857 >            int unarrived = (int)s & UNARRIVED_MASK;
858 >            if (unarrived != lastUnarrived) {
859 >                if (lastUnarrived == -1) // ensure old queue clean
860 >                    releaseWaiters(phase-1);
861 >                if ((lastUnarrived = unarrived) < NCPU)
862 >                    spins += SPINS_PER_ARRIVAL;
863 >            }
864 >            else if (unarrived == 0 && (par = current.parent) != null) {
865 >                current = par;       // if all arrived, use parent
866 >                par = par.parent;
867 >                lastUnarrived = -1;
868 >            }
869 >            else if (spins > 0) {
870 >                if (--spins == (SPINS_PER_ARRIVAL >>> 1))
871 >                    Thread.yield();  // yield midway through spin
872 >            }
873 >            else if (node == null)   // must be noninterruptible
874 >                node = new QNode(this, phase, false, false, 0L);
875 >            else if (node.isReleasable()) {
876 >                if ((p = (int)(root.state >>> PHASE_SHIFT)) != phase)
877 >                    break;
878 >                else
879 >                    return phase;    // aborted
880 >            }
881 >            else if (!queued) {      // push onto queue
882 >                AtomicReference<QNode> head = queueFor(phase);
883 >                QNode q = head.get();
884 >                if (q == null || q.phase == phase) {
885 >                    node.next = q;
886 >                    if ((p = (int)(root.state >>> PHASE_SHIFT)) != phase)
887 >                        break;       // recheck to avoid stale enqueue
888 >                    else
889 >                        queued = head.compareAndSet(q, node);
890 >                }
891 >            }
892 >            else {
893 >                try {
894 >                    ForkJoinPool.managedBlock(node);
895 >                } catch (InterruptedException ie) {
896 >                    node.wasInterrupted = true;
897 >                }
898 >            }
899 >        }
900 >        releaseWaiters(phase);
901 >        if (node != null)
902 >            node.onRelease();
903 >        return p;
904 >    }
905  
906      /**
907       * Wait nodes for Treiber stack representing wait queue
# Line 755 | Line 909 | public class Phaser {
909      static final class QNode implements ForkJoinPool.ManagedBlocker {
910          final Phaser phaser;
911          final int phase;
758        final long startTime;
759        final long nanos;
760        final boolean timed;
912          final boolean interruptible;
913 <        volatile boolean wasInterrupted = false;
913 >        final boolean timed;
914 >        boolean wasInterrupted;
915 >        long nanos;
916 >        long lastTime;
917          volatile Thread thread; // nulled to cancel wait
918          QNode next;
919 +
920          QNode(Phaser phaser, int phase, boolean interruptible,
921 <              boolean timed, long startTime, long nanos) {
921 >              boolean timed, long nanos) {
922              this.phaser = phaser;
923              this.phase = phase;
769            this.timed = timed;
924              this.interruptible = interruptible;
771            this.startTime = startTime;
925              this.nanos = nanos;
926 +            this.timed = timed;
927 +            this.lastTime = timed? System.nanoTime() : 0L;
928              thread = Thread.currentThread();
929          }
930 +
931          public boolean isReleasable() {
932 <            return (thread == null ||
933 <                    phaser.getPhase() != phase ||
934 <                    (interruptible && wasInterrupted) ||
935 <                    (timed && (nanos - (System.nanoTime() - startTime)) <= 0));
932 >            Thread t = thread;
933 >            if (t != null) {
934 >                if (phaser.getPhase() != phase)
935 >                    t = null;
936 >                else {
937 >                    if (Thread.interrupted())
938 >                        wasInterrupted = true;
939 >                    if (interruptible && wasInterrupted)
940 >                        t = null;
941 >                    else if (timed) {
942 >                        if (nanos > 0) {
943 >                            long now = System.nanoTime();
944 >                            nanos -= now - lastTime;
945 >                            lastTime = now;
946 >                        }
947 >                        if (nanos <= 0)
948 >                            t = null;
949 >                    }
950 >                }
951 >                if (t != null)
952 >                    return false;
953 >                thread = null;
954 >            }
955 >            return true;
956          }
957 +
958          public boolean block() {
959 <            if (Thread.interrupted()) {
960 <                wasInterrupted = true;
961 <                if (interruptible)
785 <                    return true;
786 <            }
787 <            if (!timed)
959 >            if (isReleasable())
960 >                return true;
961 >            else if (!timed)
962                  LockSupport.park(this);
963 <            else {
964 <                long waitTime = nanos - (System.nanoTime() - startTime);
791 <                if (waitTime <= 0)
792 <                    return true;
793 <                LockSupport.parkNanos(this, waitTime);
794 <            }
963 >            else if (nanos > 0)
964 >                LockSupport.parkNanos(this, nanos);
965              return isReleasable();
966          }
967 +
968          void signal() {
969              Thread t = thread;
970              if (t != null) {
# Line 801 | Line 972 | public class Phaser {
972                  LockSupport.unpark(t);
973              }
974          }
804        boolean doWait() {
805            if (thread != null) {
806                try {
807                    ForkJoinPool.managedBlock(this, false);
808                } catch (InterruptedException ie) {
809                }
810            }
811            return wasInterrupted;
812        }
813
814    }
815
816    /**
817     * Removes and signals waiting threads from wait queue.
818     */
819    private void releaseWaiters(int phase) {
820        AtomicReference<QNode> head = queueFor(phase);
821        QNode q;
822        while ((q = head.get()) != null) {
823            if (head.compareAndSet(q, q.next))
824                q.signal();
825        }
826    }
827
828    /**
829     * Tries to enqueue given node in the appropriate wait queue.
830     *
831     * @return true if successful
832     */
833    private boolean tryEnqueue(QNode node) {
834        AtomicReference<QNode> head = queueFor(node.phase);
835        return head.compareAndSet(node.next = head.get(), node);
836    }
837
838    /**
839     * Enqueues node and waits unless aborted or signalled.
840     *
841     * @return current phase
842     */
843    private int untimedWait(int phase) {
844        QNode node = null;
845        boolean queued = false;
846        boolean interrupted = false;
847        int p;
848        while ((p = getPhase()) == phase) {
849            if (Thread.interrupted())
850                interrupted = true;
851            else if (node == null)
852                node = new QNode(this, phase, false, false, 0, 0);
853            else if (!queued)
854                queued = tryEnqueue(node);
855            else
856                interrupted = node.doWait();
857        }
858        if (node != null)
859            node.thread = null;
860        releaseWaiters(phase);
861        if (interrupted)
862            Thread.currentThread().interrupt();
863        return p;
864    }
975  
976 <    /**
977 <     * Interruptible version
978 <     * @return current phase
979 <     */
980 <    private int interruptibleWait(int phase) throws InterruptedException {
871 <        QNode node = null;
872 <        boolean queued = false;
873 <        boolean interrupted = false;
874 <        int p;
875 <        while ((p = getPhase()) == phase && !interrupted) {
876 <            if (Thread.interrupted())
877 <                interrupted = true;
878 <            else if (node == null)
879 <                node = new QNode(this, phase, true, false, 0, 0);
880 <            else if (!queued)
881 <                queued = tryEnqueue(node);
882 <            else
883 <                interrupted = node.doWait();
976 >        void onRelease() { // actions upon return from internalAwaitAdvance
977 >            if (!interruptible && wasInterrupted)
978 >                Thread.currentThread().interrupt();
979 >            if (thread != null)
980 >                thread = null;
981          }
885        if (node != null)
886            node.thread = null;
887        if (p != phase || (p = getPhase()) != phase)
888            releaseWaiters(phase);
889        if (interrupted)
890            throw new InterruptedException();
891        return p;
892    }
982  
894    /**
895     * Timeout version.
896     * @return current phase
897     */
898    private int timedWait(int phase, long nanos)
899        throws InterruptedException, TimeoutException {
900        long startTime = System.nanoTime();
901        QNode node = null;
902        boolean queued = false;
903        boolean interrupted = false;
904        int p;
905        while ((p = getPhase()) == phase && !interrupted) {
906            if (Thread.interrupted())
907                interrupted = true;
908            else if (nanos - (System.nanoTime() - startTime) <= 0)
909                break;
910            else if (node == null)
911                node = new QNode(this, phase, true, true, startTime, nanos);
912            else if (!queued)
913                queued = tryEnqueue(node);
914            else
915                interrupted = node.doWait();
916        }
917        if (node != null)
918            node.thread = null;
919        if (p != phase || (p = getPhase()) != phase)
920            releaseWaiters(phase);
921        if (interrupted)
922            throw new InterruptedException();
923        if (p == phase)
924            throw new TimeoutException();
925        return p;
983      }
984  
985      // Unsafe mechanics
# Line 931 | Line 988 | public class Phaser {
988      private static final long stateOffset =
989          objectFieldOffset("state", Phaser.class);
990  
934    private final boolean casState(long cmp, long val) {
935        return UNSAFE.compareAndSwapLong(this, stateOffset, cmp, val);
936    }
937
991      private static long objectFieldOffset(String field, Class<?> klazz) {
992          try {
993              return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines