ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/Phaser.java
(Generate patch)

Comparing jsr166/src/jsr166y/Phaser.java (file contents):
Revision 1.9 by jsr166, Mon Jan 5 09:11:26 2009 UTC vs.
Revision 1.34 by dl, Wed Aug 19 23:05:32 2009 UTC

# Line 7 | Line 7
7   package jsr166y;
8  
9   import java.util.concurrent.*;
10 < import java.util.concurrent.atomic.*;
10 >
11 > import java.util.concurrent.atomic.AtomicReference;
12   import java.util.concurrent.locks.LockSupport;
12 import sun.misc.Unsafe;
13 import java.lang.reflect.*;
13  
14   /**
15   * A reusable synchronization barrier, similar in functionality to a
# Line 33 | Line 32 | import java.lang.reflect.*;
32   * zero, and advancing when all parties reach the barrier (wrapping
33   * around to zero after reaching {@code Integer.MAX_VALUE}).
34   *
35 < * <li> Like a CyclicBarrier, a Phaser may be repeatedly awaited.
36 < * Method {@code arriveAndAwaitAdvance} has effect analogous to
37 < * {@code CyclicBarrier.await}.  However, Phasers separate two
38 < * aspects of coordination, that may also be invoked independently:
35 > * <li> Like a {@code CyclicBarrier}, a phaser may be repeatedly
36 > * awaited.  Method {@link #arriveAndAwaitAdvance} has effect
37 > * analogous to {@link java.util.concurrent.CyclicBarrier#await
38 > * CyclicBarrier.await}.  However, phasers separate two aspects of
39 > * coordination, which may also be invoked independently:
40   *
41   * <ul>
42   *
43 < *   <li> Arriving at a barrier. Methods {@code arrive} and
44 < *       {@code arriveAndDeregister} do not block, but return
43 > *   <li> Arriving at a barrier. Methods {@link #arrive} and
44 > *       {@link #arriveAndDeregister} do not block, but return
45   *       the phase value current upon entry to the method.
46   *
47 < *   <li> Awaiting others. Method {@code awaitAdvance} requires an
47 > *   <li> Awaiting others. Method {@link #awaitAdvance} requires an
48   *       argument indicating the entry phase, and returns when the
49   *       barrier advances to a new phase.
50   * </ul>
51   *
52   *
53   * <li> Barrier actions, performed by the task triggering a phase
54 < * advance while others may be waiting, are arranged by overriding
55 < * method {@code onAdvance}, that also controls termination.
56 < * Overriding this method may be used to similar but more flexible
57 < * effect as providing a barrier action to a CyclicBarrier.
54 > * advance, are arranged by overriding method {@link #onAdvance(int,
55 > * int)}, which also controls termination. Overriding this method is
56 > * similar to, but more flexible than, providing a barrier action to a
57 > * {@code CyclicBarrier}.
58   *
59   * <li> Phasers may enter a <em>termination</em> state in which all
60 < * await actions immediately return, indicating (via a negative phase
61 < * value) that execution is complete.  Termination is triggered by
62 < * executing the overridable {@code onAdvance} method that is invoked
63 < * each time the barrier is about to be tripped. When a Phaser is
60 > * actions immediately return without updating phaser state or waiting
61 > * for advance, and indicating (via a negative phase value) that
62 > * execution is complete.  Termination is triggered when an invocation
63 > * of {@code onAdvance} returns {@code true}.  When a phaser is
64   * controlling an action with a fixed number of iterations, it is
65   * often convenient to override this method to cause termination when
66 < * the current phase number reaches a threshold. Method
67 < * {@code forceTermination} is also available to abruptly release
68 < * waiting threads and allow them to terminate.
66 > * the current phase number reaches a threshold. Method {@link
67 > * #forceTermination} is also available to abruptly release waiting
68 > * threads and allow them to terminate.
69   *
70   * <li> Phasers may be tiered to reduce contention. Phasers with large
71   * numbers of parties that would otherwise experience heavy
# Line 75 | Line 75 | import java.lang.reflect.*;
75   *
76   * <li> By default, {@code awaitAdvance} continues to wait even if
77   * the waiting thread is interrupted. And unlike the case in
78 < * CyclicBarriers, exceptions encountered while tasks wait
78 > * {@code CyclicBarrier}, exceptions encountered while tasks wait
79   * interruptibly or with timeout do not change the state of the
80   * barrier. If necessary, you can perform any associated recovery
81   * within handlers of those exceptions, often after invoking
82   * {@code forceTermination}.
83   *
84 + * <li>Phasers may be used to coordinate tasks executing in a {@link
85 + * ForkJoinPool}, which will ensure sufficient parallelism to execute
86 + * tasks when others are blocked waiting for a phase to advance.
87 + *
88   * </ul>
89   *
90   * <p><b>Sample usages:</b>
91   *
92 < * <p>A Phaser may be used instead of a {@code CountDownLatch} to control
93 < * a one-shot action serving a variable number of parties. The typical
94 < * idiom is for the method setting this up to first register, then
95 < * start the actions, then deregister, as in:
96 < *
97 < * <pre>
98 < *  void runTasks(List&lt;Runnable&gt; list) {
99 < *    final Phaser phaser = new Phaser(1); // "1" to register self
100 < *    for (Runnable r : list) {
101 < *      phaser.register();
102 < *      new Thread() {
103 < *        public void run() {
104 < *          phaser.arriveAndAwaitAdvance(); // await all creation
105 < *          r.run();
106 < *          phaser.arriveAndDeregister();   // signal completion
107 < *        }
108 < *      }.start();
92 > * <p>A {@code Phaser} may be used instead of a {@code CountDownLatch}
93 > * to control a one-shot action serving a variable number of
94 > * parties. The typical idiom is for the method setting this up to
95 > * first register, then start the actions, then deregister, as in:
96 > *
97 > *  <pre> {@code
98 > * void runTasks(List<Runnable> tasks) {
99 > *   final Phaser phaser = new Phaser(1); // "1" to register self
100 > *   // create and start threads
101 > *   for (Runnable task : tasks) {
102 > *     phaser.register();
103 > *     new Thread() {
104 > *       public void run() {
105 > *         phaser.arriveAndAwaitAdvance(); // await all creation
106 > *         task.run();
107 > *       }
108 > *     }.start();
109   *   }
110   *
111 < *   doSomethingOnBehalfOfWorkers();
112 < *   phaser.arrive(); // allow threads to start
113 < *   int p = phaser.arriveAndDeregister(); // deregister self  ...
110 < *   p = phaser.awaitAdvance(p); // ... and await arrival
111 < *   otherActions(); // do other things while tasks execute
112 < *   phaser.awaitAdvance(p); // await final completion
113 < * }
114 < * </pre>
111 > *   // allow threads to start and deregister self
112 > *   phaser.arriveAndDeregister();
113 > * }}</pre>
114   *
115   * <p>One way to cause a set of threads to repeatedly perform actions
116   * for a given number of iterations is to override {@code onAdvance}:
117   *
118 < * <pre>
119 < *  void startTasks(List&lt;Runnable&gt; list, final int iterations) {
120 < *    final Phaser phaser = new Phaser() {
121 < *       public boolean onAdvance(int phase, int registeredParties) {
122 < *         return phase &gt;= iterations || registeredParties == 0;
118 > *  <pre> {@code
119 > * void startTasks(List<Runnable> tasks, final int iterations) {
120 > *   final Phaser phaser = new Phaser() {
121 > *     public boolean onAdvance(int phase, int registeredParties) {
122 > *       return phase >= iterations || registeredParties == 0;
123 > *     }
124 > *   };
125 > *   phaser.register();
126 > *   for (Runnable task : tasks) {
127 > *     phaser.register();
128 > *     new Thread() {
129 > *       public void run() {
130 > *         do {
131 > *           task.run();
132 > *           phaser.arriveAndAwaitAdvance();
133 > *         } while(!phaser.isTerminated();
134   *       }
135 < *    };
126 < *    phaser.register();
127 < *    for (Runnable r : list) {
128 < *      phaser.register();
129 < *      new Thread() {
130 < *        public void run() {
131 < *           do {
132 < *             r.run();
133 < *             phaser.arriveAndAwaitAdvance();
134 < *           } while(!phaser.isTerminated();
135 < *        }
136 < *      }.start();
135 > *     }.start();
136   *   }
137   *   phaser.arriveAndDeregister(); // deregister self, don't wait
138 < * }
140 < * </pre>
138 > * }}</pre>
139   *
140 < * <p> To create a set of tasks using a tree of Phasers,
140 > * <p>To create a set of tasks using a tree of phasers,
141   * you could use code of the following form, assuming a
142 < * Task class with a constructor accepting a Phaser that
142 > * Task class with a constructor accepting a phaser that
143   * it registers for upon construction:
144 < * <pre>
145 < *  void build(Task[] actions, int lo, int hi, Phaser b) {
146 < *    int step = (hi - lo) / TASKS_PER_PHASER;
147 < *    if (step &gt; 1) {
148 < *       int i = lo;
149 < *       while (i &lt; hi) {
150 < *         int r = Math.min(i + step, hi);
151 < *         build(actions, i, r, new Phaser(b));
152 < *         i = r;
153 < *       }
154 < *    }
155 < *    else {
156 < *      for (int i = lo; i &lt; hi; ++i)
157 < *        actions[i] = new Task(b);
158 < *        // assumes new Task(b) performs b.register()
159 < *    }
160 < *  }
161 < *  // .. initially called, for n tasks via
164 < *  build(new Task[n], 0, n, new Phaser());
165 < * </pre>
144 > *  <pre> {@code
145 > * void build(Task[] actions, int lo, int hi, Phaser b) {
146 > *   int step = (hi - lo) / TASKS_PER_PHASER;
147 > *   if (step > 1) {
148 > *     int i = lo;
149 > *     while (i < hi) {
150 > *       int r = Math.min(i + step, hi);
151 > *       build(actions, i, r, new Phaser(b));
152 > *       i = r;
153 > *     }
154 > *   } else {
155 > *     for (int i = lo; i < hi; ++i)
156 > *       actions[i] = new Task(b);
157 > *       // assumes new Task(b) performs b.register()
158 > *   }
159 > * }
160 > * // .. initially called, for n tasks via
161 > * build(new Task[n], 0, n, new Phaser());}</pre>
162   *
163   * The best value of {@code TASKS_PER_PHASER} depends mainly on
164   * expected barrier synchronization rates. A value as low as four may
# Line 173 | Line 169 | import java.lang.reflect.*;
169   *
170   * <p><b>Implementation notes</b>: This implementation restricts the
171   * maximum number of parties to 65535. Attempts to register additional
172 < * parties result in IllegalStateExceptions. However, you can and
172 > * parties result in {@code IllegalStateException}. However, you can and
173   * should create tiered phasers to accommodate arbitrarily large sets
174   * of participants.
175 + *
176 + * @since 1.7
177 + * @author Doug Lea
178   */
179   public class Phaser {
180      /*
# Line 200 | Line 199 | public class Phaser {
199       * and encoding simple, and keeping race windows short.
200       *
201       * Note: there are some cheats in arrive() that rely on unarrived
202 <     * being lowest 16 bits.
202 >     * count being lowest 16 bits.
203       */
204      private volatile long state;
205  
206      private static final int ushortBits = 16;
207 <    private static final int ushortMask =  (1 << ushortBits) - 1;
208 <    private static final int phaseMask = 0x7fffffff;
207 >    private static final int ushortMask = 0xffff;
208 >    private static final int phaseMask  = 0x7fffffff;
209  
210      private static int unarrivedOf(long s) {
211 <        return (int)(s & ushortMask);
211 >        return (int) (s & ushortMask);
212      }
213  
214      private static int partiesOf(long s) {
215 <        return (int)(s & (ushortMask << 16)) >>> 16;
215 >        return ((int) s) >>> 16;
216      }
217  
218      private static int phaseOf(long s) {
219 <        return (int)(s >>> 32);
219 >        return (int) (s >>> 32);
220      }
221  
222      private static int arrivedOf(long s) {
# Line 225 | Line 224 | public class Phaser {
224      }
225  
226      private static long stateFor(int phase, int parties, int unarrived) {
227 <        return (((long)phase) << 32) | ((parties << 16) | unarrived);
227 >        return ((((long) phase) << 32) | (((long) parties) << 16) |
228 >                (long) unarrived);
229      }
230  
231      private static long trippedStateFor(int phase, int parties) {
232 <        return (((long)phase) << 32) | ((parties << 16) | parties);
232 >        long lp = (long) parties;
233 >        return (((long) phase) << 32) | (lp << 16) | lp;
234      }
235  
236 <    private static IllegalStateException badBounds(int parties, int unarrived) {
237 <        return new IllegalStateException
238 <            ("Attempt to set " + unarrived +
239 <             " unarrived of " + parties + " parties");
236 >    /**
237 >     * Returns message string for bad bounds exceptions.
238 >     */
239 >    private static String badBounds(int parties, int unarrived) {
240 >        return ("Attempt to set " + unarrived +
241 >                " unarrived of " + parties + " parties");
242      }
243  
244      /**
# Line 244 | Line 247 | public class Phaser {
247      private final Phaser parent;
248  
249      /**
250 <     * The root of Phaser tree. Equals this if not in a tree.  Used to
250 >     * The root of phaser tree. Equals this if not in a tree.  Used to
251       * support faster state push-down.
252       */
253      private final Phaser root;
# Line 252 | Line 255 | public class Phaser {
255      // Wait queues
256  
257      /**
258 <     * Heads of Treiber stacks waiting for nonFJ threads. To eliminate
258 >     * Heads of Treiber stacks for waiting threads. To eliminate
259       * contention while releasing some threads while adding others, we
260       * use two of them, alternating across even and odd phases.
261       */
# Line 260 | Line 263 | public class Phaser {
263      private final AtomicReference<QNode> oddQ  = new AtomicReference<QNode>();
264  
265      private AtomicReference<QNode> queueFor(int phase) {
266 <        return (phase & 1) == 0? evenQ : oddQ;
266 >        return ((phase & 1) == 0) ? evenQ : oddQ;
267      }
268  
269      /**
# Line 268 | Line 271 | public class Phaser {
271       * root if necessary.
272       */
273      private long getReconciledState() {
274 <        return parent == null? state : reconcileState();
274 >        return (parent == null) ? state : reconcileState();
275      }
276  
277      /**
# Line 295 | Line 298 | public class Phaser {
298      }
299  
300      /**
301 <     * Creates a new Phaser without any initially registered parties,
302 <     * initial phase number 0, and no parent.
301 >     * Creates a new phaser without any initially registered parties,
302 >     * initial phase number 0, and no parent. Any thread using this
303 >     * phaser will need to first register for it.
304       */
305      public Phaser() {
306          this(null);
307      }
308  
309      /**
310 <     * Creates a new Phaser with the given numbers of registered
310 >     * Creates a new phaser with the given numbers of registered
311       * unarrived parties, initial phase number 0, and no parent.
312 <     * @param parties the number of parties required to trip barrier.
312 >     *
313 >     * @param parties the number of parties required to trip barrier
314       * @throws IllegalArgumentException if parties less than zero
315 <     * or greater than the maximum number of parties supported.
315 >     * or greater than the maximum number of parties supported
316       */
317      public Phaser(int parties) {
318          this(null, parties);
319      }
320  
321      /**
322 <     * Creates a new Phaser with the given parent, without any
322 >     * Creates a new phaser with the given parent, without any
323       * initially registered parties. If parent is non-null this phaser
324       * is registered with the parent and its initial phase number is
325       * the same as that of parent phaser.
326 <     * @param parent the parent phaser.
326 >     *
327 >     * @param parent the parent phaser
328       */
329      public Phaser(Phaser parent) {
330          int phase = 0;
# Line 333 | Line 339 | public class Phaser {
339      }
340  
341      /**
342 <     * Creates a new Phaser with the given parent and numbers of
343 <     * registered unarrived parties. If parent is non-null this phaser
342 >     * Creates a new phaser with the given parent and numbers of
343 >     * registered unarrived parties. If parent is non-null, this phaser
344       * is registered with the parent and its initial phase number is
345       * the same as that of parent phaser.
346 <     * @param parent the parent phaser.
347 <     * @param parties the number of parties required to trip barrier.
346 >     *
347 >     * @param parent the parent phaser
348 >     * @param parties the number of parties required to trip barrier
349       * @throws IllegalArgumentException if parties less than zero
350 <     * or greater than the maximum number of parties supported.
350 >     * or greater than the maximum number of parties supported
351       */
352      public Phaser(Phaser parent, int parties) {
353          if (parties < 0 || parties > ushortMask)
# Line 358 | Line 365 | public class Phaser {
365  
366      /**
367       * Adds a new unarrived party to this phaser.
368 +     *
369       * @return the current barrier phase number upon registration
370       * @throws IllegalStateException if attempting to register more
371 <     * than the maximum supported number of parties.
371 >     * than the maximum supported number of parties
372       */
373      public int register() {
374          return doRegister(1);
# Line 368 | Line 376 | public class Phaser {
376  
377      /**
378       * Adds the given number of new unarrived parties to this phaser.
379 <     * @param parties the number of parties required to trip barrier.
379 >     *
380 >     * @param parties the number of parties required to trip barrier
381       * @return the current barrier phase number upon registration
382       * @throws IllegalStateException if attempting to register more
383 <     * than the maximum supported number of parties.
383 >     * than the maximum supported number of parties
384       */
385      public int bulkRegister(int parties) {
386          if (parties < 0)
# Line 394 | Line 403 | public class Phaser {
403              if (phase < 0)
404                  break;
405              if (parties > ushortMask || unarrived > ushortMask)
406 <                throw badBounds(parties, unarrived);
406 >                throw new IllegalStateException(badBounds(parties, unarrived));
407              if (phase == phaseOf(root.state) &&
408                  casState(s, stateFor(phase, parties, unarrived)))
409                  break;
# Line 407 | Line 416 | public class Phaser {
416       * in turn wait for others via {@link #awaitAdvance}).
417       *
418       * @return the barrier phase number upon entry to this method, or a
419 <     * negative value if terminated;
419 >     * negative value if terminated
420       * @throws IllegalStateException if not terminated and the number
421 <     * of unarrived parties would become negative.
421 >     * of unarrived parties would become negative
422       */
423      public int arrive() {
424          int phase;
425          for (;;) {
426              long s = state;
427              phase = phaseOf(s);
428 +            if (phase < 0)
429 +                break;
430              int parties = partiesOf(s);
431              int unarrived = unarrivedOf(s) - 1;
432              if (unarrived > 0) {        // Not the last arrival
# Line 427 | Line 438 | public class Phaser {
438                  if (par == null) {      // directly trip
439                      if (casState
440                          (s,
441 <                         trippedStateFor(onAdvance(phase, parties)? -1 :
441 >                         trippedStateFor(onAdvance(phase, parties) ? -1 :
442                                           ((phase + 1) & phaseMask), parties))) {
443                          releaseWaiters(phase);
444                          break;
# Line 441 | Line 452 | public class Phaser {
452                      }
453                  }
454              }
444            else if (phase < 0) // Don't throw exception if terminated
445                break;
455              else if (phase != phaseOf(root.state)) // or if unreconciled
456                  reconcileState();
457              else
458 <                throw badBounds(parties, unarrived);
458 >                throw new IllegalStateException(badBounds(parties, unarrived));
459          }
460          return phase;
461      }
462  
463      /**
464 <     * Arrives at the barrier, and deregisters from it, without
465 <     * waiting for others. Deregistration reduces number of parties
464 >     * Arrives at the barrier and deregisters from it without waiting
465 >     * for others. Deregistration reduces the number of parties
466       * required to trip the barrier in future phases.  If this phaser
467       * has a parent, and deregistration causes this phaser to have
468 <     * zero parties, this phaser is also deregistered from its parent.
468 >     * zero parties, this phaser also arrives at and is deregistered
469 >     * from its parent.
470       *
471       * @return the current barrier phase number upon entry to
472 <     * this method, or a negative value if terminated;
472 >     * this method, or a negative value if terminated
473       * @throws IllegalStateException if not terminated and the number
474 <     * of registered or unarrived parties would become negative.
474 >     * of registered or unarrived parties would become negative
475       */
476      public int arriveAndDeregister() {
477          // similar code to arrive, but too different to merge
# Line 470 | Line 480 | public class Phaser {
480          for (;;) {
481              long s = state;
482              phase = phaseOf(s);
483 +            if (phase < 0)
484 +                break;
485              int parties = partiesOf(s) - 1;
486              int unarrived = unarrivedOf(s) - 1;
487              if (parties >= 0) {
# Line 488 | Line 500 | public class Phaser {
500                  if (unarrived == 0) {
501                      if (casState
502                          (s,
503 <                         trippedStateFor(onAdvance(phase, parties)? -1 :
503 >                         trippedStateFor(onAdvance(phase, parties) ? -1 :
504                                           ((phase + 1) & phaseMask), parties))) {
505                          releaseWaiters(phase);
506                          break;
507                      }
508                      continue;
509                  }
498                if (phase < 0)
499                    break;
510                  if (par != null && phase != phaseOf(root.state)) {
511                      reconcileState();
512                      continue;
513                  }
514              }
515 <            throw badBounds(parties, unarrived);
515 >            throw new IllegalStateException(badBounds(parties, unarrived));
516          }
517          return phase;
518      }
519  
520      /**
521       * Arrives at the barrier and awaits others. Equivalent in effect
522 <     * to {@code awaitAdvance(arrive())}.  If you instead need to
523 <     * await with interruption of timeout, and/or deregister upon
524 <     * arrival, you can arrange them using analogous constructions.
522 >     * to {@code awaitAdvance(arrive())}.  If you need to await with
523 >     * interruption or timeout, you can arrange this with an analogous
524 >     * construction using one of the other forms of the awaitAdvance
525 >     * method.  If instead you need to deregister upon arrival use
526 >     * {@code arriveAndDeregister}.
527 >     *
528       * @return the phase on entry to this method
529       * @throws IllegalStateException if not terminated and the number
530 <     * of unarrived parties would become negative.
530 >     * of unarrived parties would become negative
531       */
532      public int arriveAndAwaitAdvance() {
533          return awaitAdvance(arrive());
534      }
535  
536      /**
537 <     * Awaits the phase of the barrier to advance from the given
538 <     * value, or returns immediately if argument is negative or this
539 <     * barrier is terminated.
537 >     * Awaits the phase of the barrier to advance from the given phase
538 >     * value, returning immediately if the current phase of the
539 >     * barrier is not equal to the given phase value or this barrier
540 >     * is terminated.
541 >     *
542       * @param phase the phase on entry to this method
543 <     * @return the phase on exit from this method
543 >     * @return the current barrier phase number upon exit of
544 >     * this method, or a negative value if terminated or
545 >     * argument is negative
546       */
547      public int awaitAdvance(int phase) {
548          if (phase < 0)
# Line 534 | Line 551 | public class Phaser {
551          int p = phaseOf(s);
552          if (p != phase)
553              return p;
554 <        if (unarrivedOf(s) == 0)
554 >        if (unarrivedOf(s) == 0 && parent != null)
555              parent.awaitAdvance(phase);
556          // Fall here even if parent waited, to reconcile and help release
557          return untimedWait(phase);
558      }
559  
560      /**
561 <     * Awaits the phase of the barrier to advance from the given
562 <     * value, or returns immediately if argument is negative or this
563 <     * barrier is terminated, or throws InterruptedException if
564 <     * interrupted while waiting.
561 >     * Awaits the phase of the barrier to advance from the given phase
562 >     * value, throwing {@code InterruptedException} if interrupted while
563 >     * waiting, or returning immediately if the current phase of the
564 >     * barrier is not equal to the given phase value or this barrier
565 >     * is terminated.
566 >     *
567       * @param phase the phase on entry to this method
568 <     * @return the phase on exit from this method
568 >     * @return the current barrier phase number upon exit of
569 >     * this method, or a negative value if terminated or
570 >     * argument is negative
571       * @throws InterruptedException if thread interrupted while waiting
572       */
573 <    public int awaitAdvanceInterruptibly(int phase) throws InterruptedException {
573 >    public int awaitAdvanceInterruptibly(int phase)
574 >        throws InterruptedException {
575          if (phase < 0)
576              return phase;
577          long s = getReconciledState();
578          int p = phaseOf(s);
579          if (p != phase)
580              return p;
581 <        if (unarrivedOf(s) != 0)
581 >        if (unarrivedOf(s) == 0 && parent != null)
582              parent.awaitAdvanceInterruptibly(phase);
583          return interruptibleWait(phase);
584      }
585  
586      /**
587 <     * Awaits the phase of the barrier to advance from the given value
588 <     * or the given timeout elapses, or returns immediately if
589 <     * argument is negative or this barrier is terminated.
587 >     * Awaits the phase of the barrier to advance from the given phase
588 >     * value or the given timeout to elapse, throwing
589 >     * {@code InterruptedException} if interrupted while waiting, or
590 >     * returning immediately if the current phase of the barrier is not
591 >     * equal to the given phase value or this barrier is terminated.
592 >     *
593       * @param phase the phase on entry to this method
594 <     * @return the phase on exit from this method
594 >     * @param timeout how long to wait before giving up, in units of
595 >     *        {@code unit}
596 >     * @param unit a {@code TimeUnit} determining how to interpret the
597 >     *        {@code timeout} parameter
598 >     * @return the current barrier phase number upon exit of
599 >     * this method, or a negative value if terminated or
600 >     * argument is negative
601       * @throws InterruptedException if thread interrupted while waiting
602       * @throws TimeoutException if timed out while waiting
603       */
604 <    public int awaitAdvanceInterruptibly(int phase, long timeout, TimeUnit unit)
604 >    public int awaitAdvanceInterruptibly(int phase,
605 >                                         long timeout, TimeUnit unit)
606          throws InterruptedException, TimeoutException {
607          if (phase < 0)
608              return phase;
# Line 578 | Line 610 | public class Phaser {
610          int p = phaseOf(s);
611          if (p != phase)
612              return p;
613 <        if (unarrivedOf(s) == 0)
613 >        if (unarrivedOf(s) == 0 && parent != null)
614              parent.awaitAdvanceInterruptibly(phase, timeout, unit);
615          return timedWait(phase, unit.toNanos(timeout));
616      }
# Line 611 | Line 643 | public class Phaser {
643       * Returns the current phase number. The maximum phase number is
644       * {@code Integer.MAX_VALUE}, after which it restarts at
645       * zero. Upon termination, the phase number is negative.
646 +     *
647       * @return the phase number, or a negative value if terminated
648       */
649      public final int getPhase() {
# Line 618 | Line 651 | public class Phaser {
651      }
652  
653      /**
621     * Returns {@code true} if the current phase number equals the given phase.
622     * @param phase the phase
623     * @return {@code true} if the current phase number equals the given phase
624     */
625    public final boolean hasPhase(int phase) {
626        return phaseOf(getReconciledState()) == phase;
627    }
628
629    /**
654       * Returns the number of parties registered at this barrier.
655 +     *
656       * @return the number of parties
657       */
658      public int getRegisteredParties() {
# Line 637 | Line 662 | public class Phaser {
662      /**
663       * Returns the number of parties that have arrived at the current
664       * phase of this barrier.
665 +     *
666       * @return the number of arrived parties
667       */
668      public int getArrivedParties() {
# Line 646 | Line 672 | public class Phaser {
672      /**
673       * Returns the number of registered parties that have not yet
674       * arrived at the current phase of this barrier.
675 +     *
676       * @return the number of unarrived parties
677       */
678      public int getUnarrivedParties() {
# Line 653 | Line 680 | public class Phaser {
680      }
681  
682      /**
683 <     * Returns the parent of this phaser, or null if none.
684 <     * @return the parent of this phaser, or null if none
683 >     * Returns the parent of this phaser, or {@code null} if none.
684 >     *
685 >     * @return the parent of this phaser, or {@code null} if none
686       */
687      public Phaser getParent() {
688          return parent;
# Line 663 | Line 691 | public class Phaser {
691      /**
692       * Returns the root ancestor of this phaser, which is the same as
693       * this phaser if it has no parent.
694 +     *
695       * @return the root ancestor of this phaser
696       */
697      public Phaser getRoot() {
# Line 671 | Line 700 | public class Phaser {
700  
701      /**
702       * Returns {@code true} if this barrier has been terminated.
703 +     *
704       * @return {@code true} if this barrier has been terminated
705       */
706      public boolean isTerminated() {
# Line 681 | Line 711 | public class Phaser {
711       * Overridable method to perform an action upon phase advance, and
712       * to control termination. This method is invoked whenever the
713       * barrier is tripped (and thus all other waiting parties are
714 <     * dormant). If it returns true, then, rather than advance the
715 <     * phase number, this barrier will be set to a final termination
716 <     * state, and subsequent calls to {@code isTerminated} will
717 <     * return true.
714 >     * dormant). If it returns {@code true}, then, rather than advance
715 >     * the phase number, this barrier will be set to a final
716 >     * termination state, and subsequent calls to {@link #isTerminated}
717 >     * will return true.
718       *
719 <     * <p> The default version returns true when the number of
719 >     * <p>The default version returns {@code true} when the number of
720       * registered parties is zero. Normally, overrides that arrange
721       * termination for other reasons should also preserve this
722       * property.
723       *
724 <     * <p> You may override this method to perform an action with side
724 >     * <p>You may override this method to perform an action with side
725       * effects visible to participating tasks, but it is in general
726       * only sensible to do so in designs where all parties register
727 <     * before any arrive, and all {@code awaitAdvance} at each phase.
728 <     * Otherwise, you cannot ensure lack of interference. In
729 <     * particular, this method may be invoked more than once per
700 <     * transition if other parties successfully register while the
701 <     * invocation of this method is in progress, thus postponing the
702 <     * transition until those parties also arrive, re-triggering this
703 <     * method.
727 >     * before any arrive, and all {@link #awaitAdvance} at each phase.
728 >     * Otherwise, you cannot ensure lack of interference from other
729 >     * parties during the invocation of this method.
730       *
731       * @param phase the phase number on entering the barrier
732       * @param registeredParties the current number of registered parties
# Line 729 | Line 755 | public class Phaser {
755  
756      // methods for waiting
757  
732    /** The number of CPUs, for spin control */
733    static final int NCPUS = Runtime.getRuntime().availableProcessors();
734
735    /**
736     * The number of times to spin before blocking in timed waits.
737     * The value is empirically derived.
738     */
739    static final int maxTimedSpins = (NCPUS < 2)? 0 : 32;
740
741    /**
742     * The number of times to spin before blocking in untimed waits.
743     * This is greater than timed value because untimed waits spin
744     * faster since they don't need to check times on each spin.
745     */
746    static final int maxUntimedSpins = maxTimedSpins * 32;
747
748    /**
749     * The number of nanoseconds for which it is faster to spin
750     * rather than to use timed park. A rough estimate suffices.
751     */
752    static final long spinForTimeoutThreshold = 1000L;
753
758      /**
759 <     * Wait nodes for Treiber stack representing wait queue for non-FJ
756 <     * tasks.
759 >     * Wait nodes for Treiber stack representing wait queue
760       */
761 <    static final class QNode {
762 <        QNode next;
761 >    static final class QNode implements ForkJoinPool.ManagedBlocker {
762 >        final Phaser phaser;
763 >        final int phase;
764 >        final long startTime;
765 >        final long nanos;
766 >        final boolean timed;
767 >        final boolean interruptible;
768 >        volatile boolean wasInterrupted = false;
769          volatile Thread thread; // nulled to cancel wait
770 <        QNode() {
770 >        QNode next;
771 >        QNode(Phaser phaser, int phase, boolean interruptible,
772 >              boolean timed, long startTime, long nanos) {
773 >            this.phaser = phaser;
774 >            this.phase = phase;
775 >            this.timed = timed;
776 >            this.interruptible = interruptible;
777 >            this.startTime = startTime;
778 >            this.nanos = nanos;
779              thread = Thread.currentThread();
780          }
781 +        public boolean isReleasable() {
782 +            return (thread == null ||
783 +                    phaser.getPhase() != phase ||
784 +                    (interruptible && wasInterrupted) ||
785 +                    (timed && (nanos - (System.nanoTime() - startTime)) <= 0));
786 +        }
787 +        public boolean block() {
788 +            if (Thread.interrupted()) {
789 +                wasInterrupted = true;
790 +                if (interruptible)
791 +                    return true;
792 +            }
793 +            if (!timed)
794 +                LockSupport.park(this);
795 +            else {
796 +                long waitTime = nanos - (System.nanoTime() - startTime);
797 +                if (waitTime <= 0)
798 +                    return true;
799 +                LockSupport.parkNanos(this, waitTime);
800 +            }
801 +            return isReleasable();
802 +        }
803          void signal() {
804              Thread t = thread;
805              if (t != null) {
# Line 768 | Line 807 | public class Phaser {
807                  LockSupport.unpark(t);
808              }
809          }
810 +        boolean doWait() {
811 +            if (thread != null) {
812 +                try {
813 +                    ForkJoinPool.managedBlock(this, false);
814 +                } catch (InterruptedException ie) {
815 +                }
816 +            }
817 +            return wasInterrupted;
818 +        }
819 +
820      }
821  
822      /**
823 <     * Removes and signals waiting threads from wait queue
823 >     * Removes and signals waiting threads from wait queue.
824       */
825      private void releaseWaiters(int phase) {
826          AtomicReference<QNode> head = queueFor(phase);
# Line 783 | Line 832 | public class Phaser {
832      }
833  
834      /**
835 +     * Tries to enqueue given node in the appropriate wait queue.
836 +     *
837 +     * @return true if successful
838 +     */
839 +    private boolean tryEnqueue(QNode node) {
840 +        AtomicReference<QNode> head = queueFor(node.phase);
841 +        return head.compareAndSet(node.next = head.get(), node);
842 +    }
843 +
844 +    /**
845       * Enqueues node and waits unless aborted or signalled.
846 +     *
847 +     * @return current phase
848       */
849      private int untimedWait(int phase) {
789        int spins = maxUntimedSpins;
850          QNode node = null;
791        boolean interrupted = false;
851          boolean queued = false;
852 +        boolean interrupted = false;
853          int p;
854          while ((p = getPhase()) == phase) {
855 <            interrupted = Thread.interrupted();
856 <            if (node != null) {
857 <                if (!queued) {
858 <                    AtomicReference<QNode> head = queueFor(phase);
859 <                    queued = head.compareAndSet(node.next = head.get(), node);
860 <                }
801 <                else if (node.thread != null)
802 <                    LockSupport.park(this);
803 <            }
804 <            else if (spins <= 0)
805 <                node = new QNode();
855 >            if (Thread.interrupted())
856 >                interrupted = true;
857 >            else if (node == null)
858 >                node = new QNode(this, phase, false, false, 0, 0);
859 >            else if (!queued)
860 >                queued = tryEnqueue(node);
861              else
862 <                --spins;
862 >                interrupted = node.doWait();
863          }
864          if (node != null)
865              node.thread = null;
866 +        releaseWaiters(phase);
867          if (interrupted)
868              Thread.currentThread().interrupt();
813        releaseWaiters(phase);
869          return p;
870      }
871  
872      /**
873 <     * Messier interruptible version
873 >     * Interruptible version
874 >     * @return current phase
875       */
876      private int interruptibleWait(int phase) throws InterruptedException {
821        int spins = maxUntimedSpins;
877          QNode node = null;
878          boolean queued = false;
879          boolean interrupted = false;
880          int p;
881 <        while ((p = getPhase()) == phase) {
882 <            if (interrupted = Thread.interrupted())
883 <                break;
884 <            if (node != null) {
885 <                if (!queued) {
886 <                    AtomicReference<QNode> head = queueFor(phase);
887 <                    queued = head.compareAndSet(node.next = head.get(), node);
833 <                }
834 <                else if (node.thread != null)
835 <                    LockSupport.park(this);
836 <            }
837 <            else if (spins <= 0)
838 <                node = new QNode();
881 >        while ((p = getPhase()) == phase && !interrupted) {
882 >            if (Thread.interrupted())
883 >                interrupted = true;
884 >            else if (node == null)
885 >                node = new QNode(this, phase, true, false, 0, 0);
886 >            else if (!queued)
887 >                queued = tryEnqueue(node);
888              else
889 <                --spins;
889 >                interrupted = node.doWait();
890          }
891          if (node != null)
892              node.thread = null;
893 +        if (p != phase || (p = getPhase()) != phase)
894 +            releaseWaiters(phase);
895          if (interrupted)
896              throw new InterruptedException();
846        releaseWaiters(phase);
897          return p;
898      }
899  
900      /**
901 <     * Even messier timeout version.
901 >     * Timeout version.
902 >     * @return current phase
903       */
904      private int timedWait(int phase, long nanos)
905          throws InterruptedException, TimeoutException {
906 +        long startTime = System.nanoTime();
907 +        QNode node = null;
908 +        boolean queued = false;
909 +        boolean interrupted = false;
910          int p;
911 <        if ((p = getPhase()) == phase) {
912 <            long lastTime = System.nanoTime();
913 <            int spins = maxTimedSpins;
914 <            QNode node = null;
915 <            boolean queued = false;
916 <            boolean interrupted = false;
917 <            while ((p = getPhase()) == phase) {
918 <                if (interrupted = Thread.interrupted())
919 <                    break;
920 <                long now = System.nanoTime();
921 <                if ((nanos -= now - lastTime) <= 0)
867 <                    break;
868 <                lastTime = now;
869 <                if (node != null) {
870 <                    if (!queued) {
871 <                        AtomicReference<QNode> head = queueFor(phase);
872 <                        queued = head.compareAndSet(node.next = head.get(), node);
873 <                    }
874 <                    else if (node.thread != null &&
875 <                             nanos > spinForTimeoutThreshold) {
876 <                        LockSupport.parkNanos(this, nanos);
877 <                    }
878 <                }
879 <                else if (spins <= 0)
880 <                    node = new QNode();
881 <                else
882 <                    --spins;
883 <            }
884 <            if (node != null)
885 <                node.thread = null;
886 <            if (interrupted)
887 <                throw new InterruptedException();
888 <            if (p == phase && (p = getPhase()) == phase)
889 <                throw new TimeoutException();
911 >        while ((p = getPhase()) == phase && !interrupted) {
912 >            if (Thread.interrupted())
913 >                interrupted = true;
914 >            else if (nanos - (System.nanoTime() - startTime) <= 0)
915 >                break;
916 >            else if (node == null)
917 >                node = new QNode(this, phase, true, true, startTime, nanos);
918 >            else if (!queued)
919 >                queued = tryEnqueue(node);
920 >            else
921 >                interrupted = node.doWait();
922          }
923 <        releaseWaiters(phase);
923 >        if (node != null)
924 >            node.thread = null;
925 >        if (p != phase || (p = getPhase()) != phase)
926 >            releaseWaiters(phase);
927 >        if (interrupted)
928 >            throw new InterruptedException();
929 >        if (p == phase)
930 >            throw new TimeoutException();
931          return p;
932      }
933  
934 <    // Temporary Unsafe mechanics for preliminary release
934 >    // Unsafe mechanics
935 >
936 >    private static final sun.misc.Unsafe UNSAFE = getUnsafe();
937 >    private static final long stateOffset =
938 >        objectFieldOffset("state", Phaser.class);
939  
940 <    static final Unsafe _unsafe;
941 <    static final long stateOffset;
940 >    private final boolean casState(long cmp, long val) {
941 >        return UNSAFE.compareAndSwapLong(this, stateOffset, cmp, val);
942 >    }
943  
944 <    static {
944 >    private static long objectFieldOffset(String field, Class<?> klazz) {
945          try {
946 <            if (Phaser.class.getClassLoader() != null) {
947 <                Field f = Unsafe.class.getDeclaredField("theUnsafe");
948 <                f.setAccessible(true);
949 <                _unsafe = (Unsafe)f.get(null);
950 <            }
951 <            else
908 <                _unsafe = Unsafe.getUnsafe();
909 <            stateOffset = _unsafe.objectFieldOffset
910 <                (Phaser.class.getDeclaredField("state"));
911 <        } catch (Exception e) {
912 <            throw new RuntimeException("Could not initialize intrinsics", e);
946 >            return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
947 >        } catch (NoSuchFieldException e) {
948 >            // Convert Exception to corresponding Error
949 >            NoSuchFieldError error = new NoSuchFieldError(field);
950 >            error.initCause(e);
951 >            throw error;
952          }
953      }
954  
955 <    final boolean casState(long cmp, long val) {
956 <        return _unsafe.compareAndSwapLong(this, stateOffset, cmp, val);
955 >    /**
956 >     * Returns a sun.misc.Unsafe.  Suitable for use in a 3rd party package.
957 >     * Replace with a simple call to Unsafe.getUnsafe when integrating
958 >     * into a jdk.
959 >     *
960 >     * @return a sun.misc.Unsafe
961 >     */
962 >    private static sun.misc.Unsafe getUnsafe() {
963 >        try {
964 >            return sun.misc.Unsafe.getUnsafe();
965 >        } catch (SecurityException se) {
966 >            try {
967 >                return java.security.AccessController.doPrivileged
968 >                    (new java.security
969 >                     .PrivilegedExceptionAction<sun.misc.Unsafe>() {
970 >                        public sun.misc.Unsafe run() throws Exception {
971 >                            java.lang.reflect.Field f = sun.misc
972 >                                .Unsafe.class.getDeclaredField("theUnsafe");
973 >                            f.setAccessible(true);
974 >                            return (sun.misc.Unsafe) f.get(null);
975 >                        }});
976 >            } catch (java.security.PrivilegedActionException e) {
977 >                throw new RuntimeException("Could not initialize intrinsics",
978 >                                           e.getCause());
979 >            }
980 >        }
981      }
982   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines