ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/Phaser.java
(Generate patch)

Comparing jsr166/src/jsr166y/Phaser.java (file contents):
Revision 1.39 by dl, Mon Aug 24 12:15:46 2009 UTC vs.
Revision 1.54 by dl, Sat Nov 13 13:10:04 2010 UTC

# Line 6 | Line 6
6  
7   package jsr166y;
8  
9 < import java.util.concurrent.*;
10 <
9 > import java.util.concurrent.TimeUnit;
10 > import java.util.concurrent.TimeoutException;
11   import java.util.concurrent.atomic.AtomicReference;
12   import java.util.concurrent.locks.LockSupport;
13  
# Line 97 | Line 97 | import java.util.concurrent.locks.LockSu
97   * <p><b>Monitoring.</b> While synchronization methods may be invoked
98   * only by registered parties, the current state of a phaser may be
99   * monitored by any caller.  At any given moment there are {@link
100 < * #getRegisteredParties}, where {@link #getArrivedParties} have
101 < * arrived at the current phase ({@link #getPhase}). When the
102 < * remaining {@link #getUnarrivedParties}) arrive, the phase
103 < * advances. Method {@link #toString} returns snapshots of these state
104 < * queries in a form convenient for informal monitoring.
100 > * #getRegisteredParties} parties in total, of which {@link
101 > * #getArrivedParties} have arrived at the current phase ({@link
102 > * #getPhase}).  When the remaining ({@link #getUnarrivedParties})
103 > * parties arrive, the phase advances.  The values returned by these
104 > * methods may reflect transient states and so are not in general
105 > * useful for synchronization control.  Method {@link #toString}
106 > * returns snapshots of these state queries in a form convenient for
107 > * informal monitoring.
108   *
109   * <p><b>Sample usages:</b>
110   *
111   * <p>A {@code Phaser} may be used instead of a {@code CountDownLatch}
112 < * to control a one-shot action serving a variable number of
113 < * parties. The typical idiom is for the method setting this up to
114 < * first register, then start the actions, then deregister, as in:
112 > * to control a one-shot action serving a variable number of parties.
113 > * The typical idiom is for the method setting this up to first
114 > * register, then start the actions, then deregister, as in:
115   *
116   *  <pre> {@code
117   * void runTasks(List<Runnable> tasks) {
# Line 139 | Line 142 | import java.util.concurrent.locks.LockSu
142   *     }
143   *   };
144   *   phaser.register();
145 < *   for (Runnable task : tasks) {
145 > *   for (final Runnable task : tasks) {
146   *     phaser.register();
147   *     new Thread() {
148   *       public void run() {
149   *         do {
150   *           task.run();
151   *           phaser.arriveAndAwaitAdvance();
152 < *         } while(!phaser.isTerminated();
152 > *         } while (!phaser.isTerminated());
153   *       }
154   *     }.start();
155   *   }
# Line 155 | Line 158 | import java.util.concurrent.locks.LockSu
158   *
159   * If the main task must later await termination, it
160   * may re-register and then execute a similar loop:
161 < * <pre> {@code
161 > *  <pre> {@code
162   *   // ...
163   *   phaser.register();
164   *   while (!phaser.isTerminated())
165 < *     phaser.arriveAndAwaitAdvance();
163 < * }</pre>
165 > *     phaser.arriveAndAwaitAdvance();}</pre>
166   *
167 < * Related constructions may be used to await particular phase numbers
167 > * <p>Related constructions may be used to await particular phase numbers
168   * in contexts where you are sure that the phase will never wrap around
169   * {@code Integer.MAX_VALUE}. For example:
170   *
171 < * <pre> {@code
172 < *   void awaitPhase(Phaser phaser, int phase) {
173 < *     int p = phaser.register(); // assumes caller not already registered
174 < *     while (p < phase) {
175 < *       if (phaser.isTerminated())
176 < *         // ... deal with unexpected termination
177 < *       else
178 < *         p = phaser.arriveAndAwaitAdvance();
177 < *     }
178 < *     phaser.arriveAndDeregister();
171 > *  <pre> {@code
172 > * void awaitPhase(Phaser phaser, int phase) {
173 > *   int p = phaser.register(); // assumes caller not already registered
174 > *   while (p < phase) {
175 > *     if (phaser.isTerminated())
176 > *       // ... deal with unexpected termination
177 > *     else
178 > *       p = phaser.arriveAndAwaitAdvance();
179   *   }
180 < * }</pre>
180 > *   phaser.arriveAndDeregister();
181 > * }}</pre>
182   *
183   *
184   * <p>To create a set of tasks using a tree of phasers,
185   * you could use code of the following form, assuming a
186   * Task class with a constructor accepting a phaser that
187 < * it registers for upon construction:
187 > * it registers with upon construction:
188 > *
189   *  <pre> {@code
190 < * void build(Task[] actions, int lo, int hi, Phaser b) {
191 < *   int step = (hi - lo) / TASKS_PER_PHASER;
192 < *   if (step > 1) {
193 < *     int i = lo;
194 < *     while (i < hi) {
193 < *       int r = Math.min(i + step, hi);
194 < *       build(actions, i, r, new Phaser(b));
195 < *       i = r;
190 > * void build(Task[] actions, int lo, int hi, Phaser ph) {
191 > *   if (hi - lo > TASKS_PER_PHASER) {
192 > *     for (int i = lo; i < hi; i += TASKS_PER_PHASER) {
193 > *       int j = Math.min(i + TASKS_PER_PHASER, hi);
194 > *       build(actions, i, j, new Phaser(ph));
195   *     }
196   *   } else {
197   *     for (int i = lo; i < hi; ++i)
198 < *       actions[i] = new Task(b);
199 < *       // assumes new Task(b) performs b.register()
198 > *       actions[i] = new Task(ph);
199 > *       // assumes new Task(ph) performs ph.register()
200   *   }
201   * }
202   * // .. initially called, for n tasks via
# Line 208 | Line 207 | import java.util.concurrent.locks.LockSu
207   * be appropriate for extremely small per-barrier task bodies (thus
208   * high rates), or up to hundreds for extremely large ones.
209   *
211 * </pre>
212 *
210   * <p><b>Implementation notes</b>: This implementation restricts the
211   * maximum number of parties to 65535. Attempts to register additional
212   * parties result in {@code IllegalStateException}. However, you can and
# Line 230 | Line 227 | public class Phaser {
227       * Barrier state representation. Conceptually, a barrier contains
228       * four values:
229       *
230 <     * * parties -- the number of parties to wait (16 bits)
231 <     * * unarrived -- the number of parties yet to hit barrier (16 bits)
232 <     * * phase -- the generation of the barrier (31 bits)
233 <     * * terminated -- set if barrier is terminated (1 bit)
230 >     * * unarrived -- the number of parties yet to hit barrier (bits  0-15)
231 >     * * parties -- the number of parties to wait              (bits 16-31)
232 >     * * phase -- the generation of the barrier                (bits 32-62)
233 >     * * terminated -- set if barrier is terminated            (bit  63 / sign)
234       *
235       * However, to efficiently maintain atomicity, these values are
236       * packed into a single (atomic) long. Termination uses the sign
237       * bit of 32 bit representation of phase, so phase is set to -1 on
238       * termination. Good performance relies on keeping state decoding
239       * and encoding simple, and keeping race windows short.
243     *
244     * Note: there are some cheats in arrive() that rely on unarrived
245     * count being lowest 16 bits.
240       */
241      private volatile long state;
242  
243 <    private static final int ushortBits = 16;
244 <    private static final int ushortMask = 0xffff;
245 <    private static final int phaseMask  = 0x7fffffff;
243 >    private static final int  MAX_COUNT      = 0xffff;
244 >    private static final int  MAX_PHASE      = 0x7fffffff;
245 >    private static final int  PARTIES_SHIFT  = 16;
246 >    private static final int  PHASE_SHIFT    = 32;
247 >    private static final long UNARRIVED_MASK = 0xffffL;
248 >    private static final long PARTIES_MASK   = 0xffff0000L;
249 >    private static final long ONE_ARRIVAL    = 1L;
250 >    private static final long ONE_PARTY      = 1L << PARTIES_SHIFT;
251 >    private static final long TERMINATION_PHASE  = -1L << PHASE_SHIFT;
252 >
253 >    // The following unpacking methods are usually manually inlined
254  
255      private static int unarrivedOf(long s) {
256 <        return (int) (s & ushortMask);
256 >        return (int) (s & UNARRIVED_MASK);
257      }
258  
259      private static int partiesOf(long s) {
260 <        return ((int) s) >>> 16;
260 >        return ((int) (s & PARTIES_MASK)) >>> PARTIES_SHIFT;
261      }
262  
263      private static int phaseOf(long s) {
264 <        return (int) (s >>> 32);
264 >        return (int) (s >>> PHASE_SHIFT);
265      }
266  
267      private static int arrivedOf(long s) {
268          return partiesOf(s) - unarrivedOf(s);
269      }
270  
269    private static long stateFor(int phase, int parties, int unarrived) {
270        return ((((long) phase) << 32) | (((long) parties) << 16) |
271                (long) unarrived);
272    }
273
274    private static long trippedStateFor(int phase, int parties) {
275        long lp = (long) parties;
276        return (((long) phase) << 32) | (lp << 16) | lp;
277    }
278
279    /**
280     * Returns message string for bad bounds exceptions.
281     */
282    private static String badBounds(int parties, int unarrived) {
283        return ("Attempt to set " + unarrived +
284                " unarrived of " + parties + " parties");
285    }
286
271      /**
272       * The parent of this phaser, or null if none
273       */
# Line 295 | Line 279 | public class Phaser {
279       */
280      private final Phaser root;
281  
298    // Wait queues
299
282      /**
283       * Heads of Treiber stacks for waiting threads. To eliminate
284 <     * contention while releasing some threads while adding others, we
284 >     * contention when releasing some threads while adding others, we
285       * use two of them, alternating across even and odd phases.
286 +     * Subphasers share queues with root to speed up releases.
287       */
288 <    private final AtomicReference<QNode> evenQ = new AtomicReference<QNode>();
289 <    private final AtomicReference<QNode> oddQ  = new AtomicReference<QNode>();
288 >    private final AtomicReference<QNode> evenQ;
289 >    private final AtomicReference<QNode> oddQ;
290  
291      private AtomicReference<QNode> queueFor(int phase) {
292          return ((phase & 1) == 0) ? evenQ : oddQ;
293      }
294  
295      /**
296 <     * Returns current state, first resolving lagged propagation from
297 <     * root if necessary.
296 >     * Main implementation for methods arrive and arriveAndDeregister.
297 >     * Manually tuned to speed up and minimize race windows for the
298 >     * common case of just decrementing unarrived field.
299 >     *
300 >     * @param adj - adjustment to apply to state -- either
301 >     * ONE_ARRIVAL (for arrive) or
302 >     * ONE_ARRIVAL|ONE_PARTY (for arriveAndDeregister)
303       */
304 <    private long getReconciledState() {
305 <        return (parent == null) ? state : reconcileState();
304 >    private int doArrive(long adj) {
305 >        for (;;) {
306 >            long s;
307 >            int phase, unarrived;
308 >            if ((phase = (int)((s = state) >>> PHASE_SHIFT)) < 0)
309 >                return phase;
310 >            else if ((unarrived = (int)(s & UNARRIVED_MASK)) == 0)
311 >                checkBadArrive(s);
312 >            else if (UNSAFE.compareAndSwapLong(this, stateOffset, s, s -= adj)){
313 >                if (unarrived == 1) {
314 >                    Phaser par;
315 >                    long p = s & PARTIES_MASK; // unshifted parties field
316 >                    long lu = p >>> PARTIES_SHIFT;
317 >                    int u = (int)lu;
318 >                    int nextPhase = (phase + 1) & MAX_PHASE;
319 >                    long next = ((long)nextPhase << PHASE_SHIFT) | p | lu;
320 >                    if ((par = parent) == null) {
321 >                        UNSAFE.compareAndSwapLong
322 >                            (this, stateOffset, s, onAdvance(phase, u)?
323 >                             next | TERMINATION_PHASE : next);
324 >                        releaseWaiters(phase);
325 >                    }
326 >                    else {
327 >                        par.doArrive(u == 0?
328 >                                     ONE_ARRIVAL|ONE_PARTY : ONE_ARRIVAL);
329 >                        if ((int)(par.state >>> PHASE_SHIFT) != nextPhase ||
330 >                            ((int)(state >>> PHASE_SHIFT) != nextPhase &&
331 >                             !UNSAFE.compareAndSwapLong(this, stateOffset,
332 >                                                        s, next)))
333 >                            reconcileState();
334 >                    }
335 >                }
336 >                return phase;
337 >            }
338 >        }
339      }
340  
341      /**
342 <     * Recursively resolves state.
342 >     * Rechecks state and throws bounds exceptions on arrival -- called
343 >     * only if unarrived is apparently zero.
344 >     */
345 >    private void checkBadArrive(long s) {
346 >        if (reconcileState() == s)
347 >            throw new IllegalStateException
348 >                ("Attempted arrival of unregistered party for " +
349 >                 stateToString(s));
350 >    }
351 >
352 >    /**
353 >     * Implementation of register, bulkRegister
354 >     *
355 >     * @param registrations number to add to both parties and unarrived fields
356 >     */
357 >    private int doRegister(int registrations) {
358 >        long adj = (long)registrations; // adjustment to state
359 >        adj |= adj << PARTIES_SHIFT;
360 >        Phaser par = parent;
361 >        for (;;) {
362 >            int phase, parties;
363 >            long s = par == null? state : reconcileState();
364 >            if ((phase = (int)(s >>> PHASE_SHIFT)) < 0)
365 >                return phase;
366 >            if ((parties = ((int)(s & PARTIES_MASK)) >>> PARTIES_SHIFT) != 0 &&
367 >                (s & UNARRIVED_MASK) == 0)
368 >                internalAwaitAdvance(phase, null); // wait for onAdvance
369 >            else if (parties + registrations > MAX_COUNT)
370 >                throw new IllegalStateException(badRegister(s));
371 >            else if (UNSAFE.compareAndSwapLong(this, stateOffset, s, s + adj))
372 >                return phase;
373 >        }
374 >    }
375 >
376 >    /**
377 >     * Returns message string for bounds exceptions on registration
378 >     */
379 >    private String badRegister(long s) {
380 >        return "Attempt to register more than " +
381 >            MAX_COUNT + " parties for " + stateToString(s);
382 >    }
383 >
384 >    /**
385 >     * Recursively resolves lagged phase propagation from root if
386 >     * necessary.
387       */
388      private long reconcileState() {
389 <        Phaser p = parent;
390 <        long s = state;
391 <        if (p != null) {
392 <            while (unarrivedOf(s) == 0 && phaseOf(s) != phaseOf(root.state)) {
393 <                long parentState = p.getReconciledState();
394 <                int parentPhase = phaseOf(parentState);
395 <                int phase = phaseOf(s = state);
396 <                if (phase != parentPhase) {
397 <                    long next = trippedStateFor(parentPhase, partiesOf(s));
398 <                    if (casState(s, next)) {
399 <                        releaseWaiters(phase);
400 <                        s = next;
401 <                    }
402 <                }
389 >        Phaser par = parent;
390 >        if (par == null)
391 >            return state;
392 >        Phaser rt = root;
393 >        for (;;) {
394 >            long s, u;
395 >            int phase, rPhase, pPhase;
396 >            if ((phase = (int)((s = state)>>> PHASE_SHIFT)) < 0 ||
397 >                (rPhase = (int)(rt.state >>> PHASE_SHIFT)) == phase)
398 >                return s;
399 >            long pState = par.parent == null? par.state : par.reconcileState();
400 >            if (state == s) {
401 >                if ((rPhase < 0 || (s & UNARRIVED_MASK) == 0) &&
402 >                    ((pPhase = (int)(pState >>> PHASE_SHIFT)) < 0 ||
403 >                     pPhase == ((phase + 1) & MAX_PHASE)))
404 >                    UNSAFE.compareAndSwapLong
405 >                        (this, stateOffset, s,
406 >                         (((long) pPhase) << PHASE_SHIFT) |
407 >                         (u = s & PARTIES_MASK) |
408 >                         (u >>> PARTIES_SHIFT)); // reset unarrived to parties
409 >                else
410 >                    releaseWaiters(phase); // help release others
411              }
412          }
340        return s;
413      }
414  
415      /**
# Line 346 | Line 418 | public class Phaser {
418       * phaser will need to first register for it.
419       */
420      public Phaser() {
421 <        this(null);
421 >        this(null, 0);
422      }
423  
424      /**
425 <     * Creates a new phaser with the given numbers of registered
425 >     * Creates a new phaser with the given number of registered
426       * unarrived parties, initial phase number 0, and no parent.
427       *
428       * @param parties the number of parties required to trip barrier
# Line 370 | Line 442 | public class Phaser {
442       * @param parent the parent phaser
443       */
444      public Phaser(Phaser parent) {
445 <        int phase = 0;
374 <        this.parent = parent;
375 <        if (parent != null) {
376 <            this.root = parent.root;
377 <            phase = parent.register();
378 <        }
379 <        else
380 <            this.root = this;
381 <        this.state = trippedStateFor(phase, 0);
445 >        this(parent, 0);
446      }
447  
448      /**
449 <     * Creates a new phaser with the given parent and numbers of
449 >     * Creates a new phaser with the given parent and number of
450       * registered unarrived parties. If parent is non-null, this phaser
451       * is registered with the parent and its initial phase number is
452       * the same as that of parent phaser.
# Line 393 | Line 457 | public class Phaser {
457       * or greater than the maximum number of parties supported
458       */
459      public Phaser(Phaser parent, int parties) {
460 <        if (parties < 0 || parties > ushortMask)
460 >        if (parties < 0 || parties > MAX_COUNT)
461              throw new IllegalArgumentException("Illegal number of parties");
462 <        int phase = 0;
462 >        int phase;
463          this.parent = parent;
464          if (parent != null) {
465 <            this.root = parent.root;
465 >            Phaser r = parent.root;
466 >            this.root = r;
467 >            this.evenQ = r.evenQ;
468 >            this.oddQ = r.oddQ;
469              phase = parent.register();
470          }
471 <        else
471 >        else {
472              this.root = this;
473 <        this.state = trippedStateFor(phase, parties);
473 >            this.evenQ = new AtomicReference<QNode>();
474 >            this.oddQ = new AtomicReference<QNode>();
475 >            phase = 0;
476 >        }
477 >        long p = (long)parties;
478 >        this.state = (((long) phase) << PHASE_SHIFT) | p | (p << PARTIES_SHIFT);
479      }
480  
481      /**
482       * Adds a new unarrived party to this phaser.
483 +     * If an ongoing invocation of {@link #onAdvance} is in progress,
484 +     * this method may wait until its completion before registering.
485       *
486       * @return the arrival phase number to which this registration applied
487       * @throws IllegalStateException if attempting to register more
# Line 419 | Line 493 | public class Phaser {
493  
494      /**
495       * Adds the given number of new unarrived parties to this phaser.
496 +     * If an ongoing invocation of {@link #onAdvance} is in progress,
497 +     * this method may wait until its completion before registering.
498       *
499 <     * @param parties the number of parties required to trip barrier
499 >     * @param parties the number of additional parties required to trip barrier
500       * @return the arrival phase number to which this registration applied
501       * @throws IllegalStateException if attempting to register more
502       * than the maximum supported number of parties
503 +     * @throws IllegalArgumentException if {@code parties < 0}
504       */
505      public int bulkRegister(int parties) {
506          if (parties < 0)
507              throw new IllegalArgumentException();
508 +        if (parties > MAX_COUNT)
509 +            throw new IllegalStateException(badRegister(state));
510          if (parties == 0)
511              return getPhase();
512          return doRegister(parties);
513      }
514  
515      /**
437     * Shared code for register, bulkRegister
438     */
439    private int doRegister(int registrations) {
440        int phase;
441        for (;;) {
442            long s = getReconciledState();
443            phase = phaseOf(s);
444            int unarrived = unarrivedOf(s) + registrations;
445            int parties = partiesOf(s) + registrations;
446            if (phase < 0)
447                break;
448            if (parties > ushortMask || unarrived > ushortMask)
449                throw new IllegalStateException(badBounds(parties, unarrived));
450            if (phase == phaseOf(root.state) &&
451                casState(s, stateFor(phase, parties, unarrived)))
452                break;
453        }
454        return phase;
455    }
456
457    /**
516       * Arrives at the barrier, but does not wait for others.  (You can
517       * in turn wait for others via {@link #awaitAdvance}).  It is an
518       * unenforced usage error for an unregistered party to invoke this
# Line 465 | Line 523 | public class Phaser {
523       * of unarrived parties would become negative
524       */
525      public int arrive() {
526 <        int phase;
469 <        for (;;) {
470 <            long s = state;
471 <            phase = phaseOf(s);
472 <            if (phase < 0)
473 <                break;
474 <            int parties = partiesOf(s);
475 <            int unarrived = unarrivedOf(s) - 1;
476 <            if (unarrived > 0) {        // Not the last arrival
477 <                if (casState(s, s - 1)) // s-1 adds one arrival
478 <                    break;
479 <            }
480 <            else if (unarrived == 0) {  // the last arrival
481 <                Phaser par = parent;
482 <                if (par == null) {      // directly trip
483 <                    if (casState
484 <                        (s,
485 <                         trippedStateFor(onAdvance(phase, parties) ? -1 :
486 <                                         ((phase + 1) & phaseMask), parties))) {
487 <                        releaseWaiters(phase);
488 <                        break;
489 <                    }
490 <                }
491 <                else {                  // cascade to parent
492 <                    if (casState(s, s - 1)) { // zeroes unarrived
493 <                        par.arrive();
494 <                        reconcileState();
495 <                        break;
496 <                    }
497 <                }
498 <            }
499 <            else if (phase != phaseOf(root.state)) // or if unreconciled
500 <                reconcileState();
501 <            else
502 <                throw new IllegalStateException(badBounds(parties, unarrived));
503 <        }
504 <        return phase;
526 >        return doArrive(ONE_ARRIVAL);
527      }
528  
529      /**
# Line 518 | Line 540 | public class Phaser {
540       * of registered or unarrived parties would become negative
541       */
542      public int arriveAndDeregister() {
543 <        // similar code to arrive, but too different to merge
522 <        Phaser par = parent;
523 <        int phase;
524 <        for (;;) {
525 <            long s = state;
526 <            phase = phaseOf(s);
527 <            if (phase < 0)
528 <                break;
529 <            int parties = partiesOf(s) - 1;
530 <            int unarrived = unarrivedOf(s) - 1;
531 <            if (parties >= 0) {
532 <                if (unarrived > 0 || (unarrived == 0 && par != null)) {
533 <                    if (casState
534 <                        (s,
535 <                         stateFor(phase, parties, unarrived))) {
536 <                        if (unarrived == 0) {
537 <                            par.arriveAndDeregister();
538 <                            reconcileState();
539 <                        }
540 <                        break;
541 <                    }
542 <                    continue;
543 <                }
544 <                if (unarrived == 0) {
545 <                    if (casState
546 <                        (s,
547 <                         trippedStateFor(onAdvance(phase, parties) ? -1 :
548 <                                         ((phase + 1) & phaseMask), parties))) {
549 <                        releaseWaiters(phase);
550 <                        break;
551 <                    }
552 <                    continue;
553 <                }
554 <                if (par != null && phase != phaseOf(root.state)) {
555 <                    reconcileState();
556 <                    continue;
557 <                }
558 <            }
559 <            throw new IllegalStateException(badBounds(parties, unarrived));
560 <        }
561 <        return phase;
543 >        return doArrive(ONE_ARRIVAL|ONE_PARTY);
544      }
545  
546      /**
547       * Arrives at the barrier and awaits others. Equivalent in effect
548       * to {@code awaitAdvance(arrive())}.  If you need to await with
549       * interruption or timeout, you can arrange this with an analogous
550 <     * construction using one of the other forms of the awaitAdvance
551 <     * method.  If instead you need to deregister upon arrival use
552 <     * {@code arriveAndDeregister}. It is an unenforced usage error
553 <     * for an unregistered party to invoke this method.
550 >     * construction using one of the other forms of the {@code
551 >     * awaitAdvance} method.  If instead you need to deregister upon
552 >     * arrival, use {@link #arriveAndDeregister}. It is an unenforced
553 >     * usage error for an unregistered party to invoke this method.
554       *
555       * @return the arrival phase number, or a negative number if terminated
556       * @throws IllegalStateException if not terminated and the number
# Line 582 | Line 564 | public class Phaser {
564       * Awaits the phase of the barrier to advance from the given phase
565       * value, returning immediately if the current phase of the
566       * barrier is not equal to the given phase value or this barrier
567 <     * is terminated.  It is an unenforced usage error for an
586 <     * unregistered party to invoke this method.
567 >     * is terminated.
568       *
569       * @param phase an arrival phase number, or negative value if
570       * terminated; this argument is normally the value returned by a
# Line 594 | Line 575 | public class Phaser {
575      public int awaitAdvance(int phase) {
576          if (phase < 0)
577              return phase;
578 <        long s = getReconciledState();
598 <        int p = phaseOf(s);
578 >        int p = (int)((parent==null? state : reconcileState()) >>> PHASE_SHIFT);
579          if (p != phase)
580              return p;
581 <        if (unarrivedOf(s) == 0 && parent != null)
602 <            parent.awaitAdvance(phase);
603 <        // Fall here even if parent waited, to reconcile and help release
604 <        return untimedWait(phase);
581 >        return internalAwaitAdvance(phase, null);
582      }
583  
584      /**
# Line 609 | Line 586 | public class Phaser {
586       * value, throwing {@code InterruptedException} if interrupted
587       * while waiting, or returning immediately if the current phase of
588       * the barrier is not equal to the given phase value or this
589 <     * barrier is terminated. It is an unenforced usage error for an
613 <     * unregistered party to invoke this method.
589 >     * barrier is terminated.
590       *
591       * @param phase an arrival phase number, or negative value if
592       * terminated; this argument is normally the value returned by a
# Line 623 | Line 599 | public class Phaser {
599          throws InterruptedException {
600          if (phase < 0)
601              return phase;
602 <        long s = getReconciledState();
627 <        int p = phaseOf(s);
602 >        int p = (int)((parent==null? state : reconcileState()) >>> PHASE_SHIFT);
603          if (p != phase)
604              return p;
605 <        if (unarrivedOf(s) == 0 && parent != null)
606 <            parent.awaitAdvanceInterruptibly(phase);
607 <        return interruptibleWait(phase);
605 >        QNode node = new QNode(this, phase, true, false, 0L);
606 >        p = internalAwaitAdvance(phase, node);
607 >        if (node.wasInterrupted)
608 >            throw new InterruptedException();
609 >        else
610 >            return p;
611      }
612  
613      /**
# Line 638 | Line 616 | public class Phaser {
616       * InterruptedException} if interrupted while waiting, or
617       * returning immediately if the current phase of the barrier is
618       * not equal to the given phase value or this barrier is
619 <     * terminated.  It is an unenforced usage error for an
642 <     * unregistered party to invoke this method.
619 >     * terminated.
620       *
621       * @param phase an arrival phase number, or negative value if
622       * terminated; this argument is normally the value returned by a
# Line 656 | Line 633 | public class Phaser {
633      public int awaitAdvanceInterruptibly(int phase,
634                                           long timeout, TimeUnit unit)
635          throws InterruptedException, TimeoutException {
636 +        long nanos = unit.toNanos(timeout);
637          if (phase < 0)
638              return phase;
639 <        long s = getReconciledState();
662 <        int p = phaseOf(s);
639 >        int p = (int)((parent==null? state : reconcileState()) >>> PHASE_SHIFT);
640          if (p != phase)
641              return p;
642 <        if (unarrivedOf(s) == 0 && parent != null)
643 <            parent.awaitAdvanceInterruptibly(phase, timeout, unit);
644 <        return timedWait(phase, unit.toNanos(timeout));
642 >        QNode node = new QNode(this, phase, true, true, nanos);
643 >        p = internalAwaitAdvance(phase, node);
644 >        if (node.wasInterrupted)
645 >            throw new InterruptedException();
646 >        else if (p == phase)
647 >            throw new TimeoutException();
648 >        else
649 >            return p;
650      }
651  
652      /**
# Line 675 | Line 657 | public class Phaser {
657       * unexpected exceptions.
658       */
659      public void forceTermination() {
660 <        for (;;) {
661 <            long s = getReconciledState();
662 <            int phase = phaseOf(s);
663 <            int parties = partiesOf(s);
664 <            int unarrived = unarrivedOf(s);
665 <            if (phase < 0 ||
666 <                casState(s, stateFor(-1, parties, unarrived))) {
685 <                releaseWaiters(0);
686 <                releaseWaiters(1);
687 <                if (parent != null)
688 <                    parent.forceTermination();
689 <                return;
690 <            }
691 <        }
660 >        Phaser r = root;    // force at root then reconcile
661 >        long s;
662 >        while ((s = r.state) >= 0)
663 >            UNSAFE.compareAndSwapLong(r, stateOffset, s, s | TERMINATION_PHASE);
664 >        reconcileState();
665 >        releaseWaiters(0); // signal all threads
666 >        releaseWaiters(1);
667      }
668  
669      /**
# Line 699 | Line 674 | public class Phaser {
674       * @return the phase number, or a negative value if terminated
675       */
676      public final int getPhase() {
677 <        return phaseOf(getReconciledState());
677 >        return (int)((parent==null? state : reconcileState()) >>> PHASE_SHIFT);
678      }
679  
680      /**
# Line 708 | Line 683 | public class Phaser {
683       * @return the number of parties
684       */
685      public int getRegisteredParties() {
686 <        return partiesOf(state);
686 >        return partiesOf(parent==null? state : reconcileState());
687      }
688  
689      /**
# Line 718 | Line 693 | public class Phaser {
693       * @return the number of arrived parties
694       */
695      public int getArrivedParties() {
696 <        return arrivedOf(state);
696 >        return arrivedOf(parent==null? state : reconcileState());
697      }
698  
699      /**
# Line 728 | Line 703 | public class Phaser {
703       * @return the number of unarrived parties
704       */
705      public int getUnarrivedParties() {
706 <        return unarrivedOf(state);
706 >        return unarrivedOf(parent==null? state : reconcileState());
707      }
708  
709      /**
# Line 756 | Line 731 | public class Phaser {
731       * @return {@code true} if this barrier has been terminated
732       */
733      public boolean isTerminated() {
734 <        return getPhase() < 0;
734 >        return (parent == null? state : reconcileState()) < 0;
735      }
736  
737      /**
738 <     * Overridable method to perform an action upon phase advance, and
739 <     * to control termination. This method is invoked whenever the
740 <     * barrier is tripped (and thus all other waiting parties are
741 <     * dormant). If it returns {@code true}, then, rather than advance
742 <     * the phase number, this barrier will be set to a final
743 <     * termination state, and subsequent calls to {@link #isTerminated}
744 <     * will return true.
738 >     * Overridable method to perform an action upon impending phase
739 >     * advance, and to control termination. This method is invoked
740 >     * upon arrival of the party tripping the barrier (when all other
741 >     * waiting parties are dormant).  If this method returns {@code
742 >     * true}, then, rather than advance the phase number, this barrier
743 >     * will be set to a final termination state, and subsequent calls
744 >     * to {@link #isTerminated} will return true. Any (unchecked)
745 >     * Exception or Error thrown by an invocation of this method is
746 >     * propagated to the party attempting to trip the barrier, in
747 >     * which case no advance occurs.
748 >     *
749 >     * <p>The arguments to this method provide the state of the phaser
750 >     * prevailing for the current transition.  The effects of invoking
751 >     * arrival, registration, and waiting methods on this Phaser from
752 >     * within {@code onAdvance} are unspecified and should not be
753 >     * relied on.
754 >     *
755 >     * <p>If this Phaser is a member of a tiered set of Phasers, then
756 >     * {@code onAdvance} is invoked only for its root Phaser on each
757 >     * advance.
758       *
759       * <p>The default version returns {@code true} when the number of
760       * registered parties is zero. Normally, overrides that arrange
761       * termination for other reasons should also preserve this
762       * property.
763       *
776     * <p>You may override this method to perform an action with side
777     * effects visible to participating tasks, but it is in general
778     * only sensible to do so in designs where all parties register
779     * before any arrive, and all {@link #awaitAdvance} at each phase.
780     * Otherwise, you cannot ensure lack of interference from other
781     * parties during the invocation of this method.
782     *
764       * @param phase the phase number on entering the barrier
765       * @param registeredParties the current number of registered parties
766       * @return {@code true} if this barrier should terminate
# Line 798 | Line 779 | public class Phaser {
779       * @return a string identifying this barrier, as well as its state
780       */
781      public String toString() {
782 <        long s = getReconciledState();
782 >        return stateToString(reconcileState());
783 >    }
784 >
785 >    /**
786 >     * Implementation of toString and string-based error messages
787 >     */
788 >    private String stateToString(long s) {
789          return super.toString() +
790              "[phase = " + phaseOf(s) +
791              " parties = " + partiesOf(s) +
792              " arrived = " + arrivedOf(s) + "]";
793      }
794  
795 <    // methods for waiting
795 >    // Waiting mechanics
796 >
797 >    /**
798 >     * Removes and signals threads from queue for phase
799 >     */
800 >    private void releaseWaiters(int phase) {
801 >        AtomicReference<QNode> head = queueFor(phase);
802 >        QNode q;
803 >        int p;
804 >        while ((q = head.get()) != null &&
805 >               ((p = q.phase) == phase ||
806 >                (int)(root.state >>> PHASE_SHIFT) != p)) {
807 >            if (head.compareAndSet(q, q.next))
808 >                q.signal();
809 >        }
810 >    }
811 >
812 >    /**
813 >     * Tries to enqueue given node in the appropriate wait queue.
814 >     *
815 >     * @return true if successful
816 >     */
817 >    private boolean tryEnqueue(int phase, QNode node) {
818 >        releaseWaiters(phase-1); // ensure old queue clean
819 >        AtomicReference<QNode> head = queueFor(phase);
820 >        QNode q = head.get();
821 >        return ((q == null || q.phase == phase) &&
822 >                (int)(root.state >>> PHASE_SHIFT) == phase &&
823 >                head.compareAndSet(node.next = q, node));
824 >    }
825 >
826 >    /** The number of CPUs, for spin control */
827 >    private static final int NCPU = Runtime.getRuntime().availableProcessors();
828 >
829 >    /**
830 >     * The number of times to spin before blocking while waiting for
831 >     * advance, per arrival while waiting. On multiprocessors, fully
832 >     * blocking and waking up a large number of threads all at once is
833 >     * usually a very slow process, so we use rechargeable spins to
834 >     * avoid it when threads regularly arrive: When a thread in
835 >     * internalAwaitAdvance notices another arrival before blocking,
836 >     * and there appear to be enough CPUs available, it spins
837 >     * SPINS_PER_ARRIVAL more times before continuing to try to
838 >     * block. The value trades off good-citizenship vs big unnecessary
839 >     * slowdowns.
840 >     */
841 >    static final int SPINS_PER_ARRIVAL = NCPU < 2? 1 : 1 << 8;
842 >
843 >    /**
844 >     * Possibly blocks and waits for phase to advance unless aborted.
845 >     *
846 >     * @param phase current phase
847 >     * @param node if non-null, the wait node to track interrupt and timeout;
848 >     * if null, denotes noninterruptible wait
849 >     * @return current phase
850 >     */
851 >    private int internalAwaitAdvance(int phase, QNode node) {
852 >        Phaser current = this;       // to eventually wait at root if tiered
853 >        boolean queued = false;      // true when node is enqueued
854 >        int lastUnarrived = -1;      // to increase spins upon change
855 >        int spins = SPINS_PER_ARRIVAL;
856 >        for (;;) {
857 >            int p, unarrived;
858 >            Phaser par;
859 >            long s = current.state;
860 >            if ((p = (int)(s >>> PHASE_SHIFT)) != phase) {
861 >                if (node != null)
862 >                    node.onRelease();
863 >                releaseWaiters(phase);
864 >                return p;
865 >            }
866 >            else if ((unarrived = (int)(s & UNARRIVED_MASK)) != lastUnarrived) {
867 >                if ((lastUnarrived = unarrived) < NCPU)
868 >                    spins += SPINS_PER_ARRIVAL;
869 >            }
870 >            else if (unarrived == 0 && (par = current.parent) != null) {
871 >                current = par;       // if all arrived, use parent
872 >                par = par.parent;
873 >                lastUnarrived = -1;
874 >            }
875 >            else if (spins > 0)
876 >                --spins;
877 >            else if (node == null)   // must be noninterruptible
878 >                node = new QNode(this, phase, false, false, 0L);
879 >            else if (node.isReleasable()) {
880 >                if ((int)(reconcileState() >>> PHASE_SHIFT) == phase)
881 >                    return phase;    // aborted
882 >            }
883 >            else if (!queued)
884 >                queued = tryEnqueue(phase, node);
885 >            else {
886 >                try {
887 >                    ForkJoinPool.managedBlock(node);
888 >                } catch (InterruptedException ie) {
889 >                    node.wasInterrupted = true;
890 >                }
891 >            }
892 >        }
893 >    }
894  
895      /**
896       * Wait nodes for Treiber stack representing wait queue
# Line 813 | Line 898 | public class Phaser {
898      static final class QNode implements ForkJoinPool.ManagedBlocker {
899          final Phaser phaser;
900          final int phase;
816        final long startTime;
817        final long nanos;
818        final boolean timed;
901          final boolean interruptible;
902 <        volatile boolean wasInterrupted = false;
902 >        final boolean timed;
903 >        boolean wasInterrupted;
904 >        long nanos;
905 >        long lastTime;
906          volatile Thread thread; // nulled to cancel wait
907          QNode next;
908 +
909          QNode(Phaser phaser, int phase, boolean interruptible,
910 <              boolean timed, long startTime, long nanos) {
910 >              boolean timed, long nanos) {
911              this.phaser = phaser;
912              this.phase = phase;
827            this.timed = timed;
913              this.interruptible = interruptible;
829            this.startTime = startTime;
914              this.nanos = nanos;
915 +            this.timed = timed;
916 +            this.lastTime = timed? System.nanoTime() : 0L;
917              thread = Thread.currentThread();
918          }
919 +
920          public boolean isReleasable() {
921 <            return (thread == null ||
922 <                    phaser.getPhase() != phase ||
923 <                    (interruptible && wasInterrupted) ||
924 <                    (timed && (nanos - (System.nanoTime() - startTime)) <= 0));
921 >            Thread t = thread;
922 >            if (t != null) {
923 >                if (phaser.getPhase() != phase)
924 >                    t = null;
925 >                else {
926 >                    if (Thread.interrupted())
927 >                        wasInterrupted = true;
928 >                    if (interruptible && wasInterrupted)
929 >                        t = null;
930 >                    else if (timed) {
931 >                        if (nanos > 0) {
932 >                            long now = System.nanoTime();
933 >                            nanos -= now - lastTime;
934 >                            lastTime = now;
935 >                        }
936 >                        if (nanos <= 0)
937 >                            t = null;
938 >                    }
939 >                }
940 >                if (t != null)
941 >                    return false;
942 >                thread = null;
943 >            }
944 >            return true;
945          }
946 +
947          public boolean block() {
948 <            if (Thread.interrupted()) {
949 <                wasInterrupted = true;
950 <                if (interruptible)
843 <                    return true;
844 <            }
845 <            if (!timed)
948 >            if (isReleasable())
949 >                return true;
950 >            else if (!timed)
951                  LockSupport.park(this);
952 <            else {
953 <                long waitTime = nanos - (System.nanoTime() - startTime);
849 <                if (waitTime <= 0)
850 <                    return true;
851 <                LockSupport.parkNanos(this, waitTime);
852 <            }
952 >            else if (nanos > 0)
953 >                LockSupport.parkNanos(this, nanos);
954              return isReleasable();
955          }
956 +
957          void signal() {
958              Thread t = thread;
959              if (t != null) {
# Line 859 | Line 961 | public class Phaser {
961                  LockSupport.unpark(t);
962              }
963          }
862        boolean doWait() {
863            if (thread != null) {
864                try {
865                    ForkJoinPool.managedBlock(this, false);
866                } catch (InterruptedException ie) {
867                }
868            }
869            return wasInterrupted;
870        }
871
872    }
873
874    /**
875     * Removes and signals waiting threads from wait queue.
876     */
877    private void releaseWaiters(int phase) {
878        AtomicReference<QNode> head = queueFor(phase);
879        QNode q;
880        while ((q = head.get()) != null) {
881            if (head.compareAndSet(q, q.next))
882                q.signal();
883        }
884    }
885
886    /**
887     * Tries to enqueue given node in the appropriate wait queue.
888     *
889     * @return true if successful
890     */
891    private boolean tryEnqueue(QNode node) {
892        AtomicReference<QNode> head = queueFor(node.phase);
893        return head.compareAndSet(node.next = head.get(), node);
894    }
964  
965 <    /**
966 <     * Enqueues node and waits unless aborted or signalled.
967 <     *
968 <     * @return current phase
969 <     */
901 <    private int untimedWait(int phase) {
902 <        QNode node = null;
903 <        boolean queued = false;
904 <        boolean interrupted = false;
905 <        int p;
906 <        while ((p = getPhase()) == phase) {
907 <            if (Thread.interrupted())
908 <                interrupted = true;
909 <            else if (node == null)
910 <                node = new QNode(this, phase, false, false, 0, 0);
911 <            else if (!queued)
912 <                queued = tryEnqueue(node);
913 <            else
914 <                interrupted = node.doWait();
965 >        void onRelease() { // actions upon return from internalAwaitAdvance
966 >            if (!interruptible && wasInterrupted)
967 >                Thread.currentThread().interrupt();
968 >            if (thread != null)
969 >                thread = null;
970          }
916        if (node != null)
917            node.thread = null;
918        releaseWaiters(phase);
919        if (interrupted)
920            Thread.currentThread().interrupt();
921        return p;
922    }
971  
924    /**
925     * Interruptible version
926     * @return current phase
927     */
928    private int interruptibleWait(int phase) throws InterruptedException {
929        QNode node = null;
930        boolean queued = false;
931        boolean interrupted = false;
932        int p;
933        while ((p = getPhase()) == phase && !interrupted) {
934            if (Thread.interrupted())
935                interrupted = true;
936            else if (node == null)
937                node = new QNode(this, phase, true, false, 0, 0);
938            else if (!queued)
939                queued = tryEnqueue(node);
940            else
941                interrupted = node.doWait();
942        }
943        if (node != null)
944            node.thread = null;
945        if (p != phase || (p = getPhase()) != phase)
946            releaseWaiters(phase);
947        if (interrupted)
948            throw new InterruptedException();
949        return p;
950    }
951
952    /**
953     * Timeout version.
954     * @return current phase
955     */
956    private int timedWait(int phase, long nanos)
957        throws InterruptedException, TimeoutException {
958        long startTime = System.nanoTime();
959        QNode node = null;
960        boolean queued = false;
961        boolean interrupted = false;
962        int p;
963        while ((p = getPhase()) == phase && !interrupted) {
964            if (Thread.interrupted())
965                interrupted = true;
966            else if (nanos - (System.nanoTime() - startTime) <= 0)
967                break;
968            else if (node == null)
969                node = new QNode(this, phase, true, true, startTime, nanos);
970            else if (!queued)
971                queued = tryEnqueue(node);
972            else
973                interrupted = node.doWait();
974        }
975        if (node != null)
976            node.thread = null;
977        if (p != phase || (p = getPhase()) != phase)
978            releaseWaiters(phase);
979        if (interrupted)
980            throw new InterruptedException();
981        if (p == phase)
982            throw new TimeoutException();
983        return p;
972      }
973  
974      // Unsafe mechanics
# Line 989 | Line 977 | public class Phaser {
977      private static final long stateOffset =
978          objectFieldOffset("state", Phaser.class);
979  
992    private final boolean casState(long cmp, long val) {
993        return UNSAFE.compareAndSwapLong(this, stateOffset, cmp, val);
994    }
995
980      private static long objectFieldOffset(String field, Class<?> klazz) {
981          try {
982              return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines