ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/Phaser.java
(Generate patch)

Comparing jsr166/src/jsr166y/Phaser.java (file contents):
Revision 1.10 by dl, Tue Jan 6 14:30:31 2009 UTC vs.
Revision 1.41 by jsr166, Mon Aug 24 15:42:51 2009 UTC

# Line 7 | Line 7
7   package jsr166y;
8  
9   import java.util.concurrent.*;
10 < import java.util.concurrent.atomic.*;
10 >
11 > import java.util.concurrent.atomic.AtomicReference;
12   import java.util.concurrent.locks.LockSupport;
12 import sun.misc.Unsafe;
13 import java.lang.reflect.*;
13  
14   /**
15 < * A reusable synchronization barrier, similar in functionality to a
15 > * A reusable synchronization barrier, similar in functionality to
16   * {@link java.util.concurrent.CyclicBarrier CyclicBarrier} and
17   * {@link java.util.concurrent.CountDownLatch CountDownLatch}
18   * but supporting more flexible usage.
19   *
20 < * <ul>
21 < *
22 < * <li> The number of parties synchronizing on a phaser may vary over
23 < * time.  A task may register to be a party at any time, and may
24 < * deregister upon arriving at the barrier.  As is the case with most
25 < * basic synchronization constructs, registration and deregistration
26 < * affect only internal counts; they do not establish any further
27 < * internal bookkeeping, so tasks cannot query whether they are
28 < * registered. (However, you can introduce such bookkeeping by
29 < * subclassing this class.)
30 < *
31 < * <li> Each generation has an associated phase value, starting at
32 < * zero, and advancing when all parties reach the barrier (wrapping
33 < * around to zero after reaching {@code Integer.MAX_VALUE}).
34 < *
35 < * <li> Like a CyclicBarrier, a Phaser may be repeatedly awaited.
36 < * Method {@code arriveAndAwaitAdvance} has effect analogous to
37 < * {@code CyclicBarrier.await}.  However, Phasers separate two
38 < * aspects of coordination, that may also be invoked independently:
20 > * <p> <b>Registration.</b> Unlike the case for other barriers, the
21 > * number of parties <em>registered</em> to synchronize on a phaser
22 > * may vary over time.  Tasks may be registered at any time (using
23 > * methods {@link #register}, {@link #bulkRegister}, or forms of
24 > * constructors establishing initial numbers of parties), and
25 > * optionally deregistered upon any arrival (using {@link
26 > * #arriveAndDeregister}).  As is the case with most basic
27 > * synchronization constructs, registration and deregistration affect
28 > * only internal counts; they do not establish any further internal
29 > * bookkeeping, so tasks cannot query whether they are registered.
30 > * (However, you can introduce such bookkeeping by subclassing this
31 > * class.)
32 > *
33 > * <p> <b>Synchronization.</b> Like a {@code CyclicBarrier}, a {@code
34 > * Phaser} may be repeatedly awaited.  Method {@link
35 > * #arriveAndAwaitAdvance} has effect analogous to {@link
36 > * java.util.concurrent.CyclicBarrier#await CyclicBarrier.await}. Each
37 > * generation of a {@code Phaser} has an associated phase number. The
38 > * phase number starts at zero, and advances when all parties arrive
39 > * at the barrier, wrapping around to zero after reaching {@code
40 > * Integer.MAX_VALUE}. The use of phase numbers enables independent
41 > * control of actions upon arrival at a barrier and upon awaiting
42 > * others, via two kinds of methods that may be invoked by any
43 > * registered party:
44   *
45   * <ul>
46   *
47 < *   <li> Arriving at a barrier. Methods {@code arrive} and
48 < *       {@code arriveAndDeregister} do not block, but return
49 < *       the phase value current upon entry to the method.
50 < *
51 < *   <li> Awaiting others. Method {@code awaitAdvance} requires an
52 < *       argument indicating the entry phase, and returns when the
53 < *       barrier advances to a new phase.
54 < * </ul>
47 > *   <li> <b>Arrival.</b> Methods {@link #arrive} and
48 > *       {@link #arriveAndDeregister} record arrival at a
49 > *       barrier. These methods do not block, but return an associated
50 > *       <em>arrival phase number</em>; that is, the phase number of
51 > *       the barrier to which the arrival applied. When the final
52 > *       party for a given phase arrives, an optional barrier action
53 > *       is performed and the phase advances.  Barrier actions,
54 > *       performed by the party triggering a phase advance, are
55 > *       arranged by overriding method {@link #onAdvance(int, int)},
56 > *       which also controls termination. Overriding this method is
57 > *       similar to, but more flexible than, providing a barrier
58 > *       action to a {@code CyclicBarrier}.
59 > *
60 > *   <li> <b>Waiting.</b> Method {@link #awaitAdvance} requires an
61 > *       argument indicating an arrival phase number, and returns when
62 > *       the barrier advances to (or is already at) a different phase.
63 > *       Unlike similar constructions using {@code CyclicBarrier},
64 > *       method {@code awaitAdvance} continues to wait even if the
65 > *       waiting thread is interrupted. Interruptible and timeout
66 > *       versions are also available, but exceptions encountered while
67 > *       tasks wait interruptibly or with timeout do not change the
68 > *       state of the barrier. If necessary, you can perform any
69 > *       associated recovery within handlers of those exceptions,
70 > *       often after invoking {@code forceTermination}.  Phasers may
71 > *       also be used by tasks executing in a {@link ForkJoinPool},
72 > *       which will ensure sufficient parallelism to execute tasks
73 > *       when others are blocked waiting for a phase to advance.
74   *
75 + * </ul>
76   *
77 < * <li> Barrier actions, performed by the task triggering a phase
78 < * advance while others may be waiting, are arranged by overriding
79 < * method {@code onAdvance}, that also controls termination.
80 < * Overriding this method may be used to similar but more flexible
81 < * effect as providing a barrier action to a CyclicBarrier.
82 < *
83 < * <li> Phasers may enter a <em>termination</em> state in which all
84 < * actions immediately return without updating phaser state or waiting
85 < * for advance, and indicating (via a negative phase value) that
86 < * execution is complete.  Termination is triggered by executing the
87 < * overridable {@code onAdvance} method that is invoked each time the
64 < * barrier is about to be tripped. When a Phaser is controlling an
65 < * action with a fixed number of iterations, it is often convenient to
66 < * override this method to cause termination when the current phase
67 < * number reaches a threshold. Method {@code forceTermination} is also
68 < * available to abruptly release waiting threads and allow them to
69 < * terminate.
77 > * <p> <b>Termination.</b> A {@code Phaser} may enter a
78 > * <em>termination</em> state in which all synchronization methods
79 > * immediately return without updating phaser state or waiting for
80 > * advance, and indicating (via a negative phase value) that execution
81 > * is complete.  Termination is triggered when an invocation of {@code
82 > * onAdvance} returns {@code true}.  As illustrated below, when
83 > * phasers control actions with a fixed number of iterations, it is
84 > * often convenient to override this method to cause termination when
85 > * the current phase number reaches a threshold. Method {@link
86 > * #forceTermination} is also available to abruptly release waiting
87 > * threads and allow them to terminate.
88   *
89 < * <li> Phasers may be tiered to reduce contention. Phasers with large
89 > * <p> <b>Tiering.</b> Phasers may be <em>tiered</em> (i.e., arranged
90 > * in tree structures) to reduce contention. Phasers with large
91   * numbers of parties that would otherwise experience heavy
92 < * synchronization contention costs may instead be arranged in trees.
93 < * This will typically greatly increase throughput even though it
94 < * incurs somewhat greater per-operation overhead.
95 < *
96 < * <li> By default, {@code awaitAdvance} continues to wait even if
97 < * the waiting thread is interrupted. And unlike the case in
98 < * CyclicBarriers, exceptions encountered while tasks wait
99 < * interruptibly or with timeout do not change the state of the
100 < * barrier. If necessary, you can perform any associated recovery
101 < * within handlers of those exceptions, often after invoking
102 < * {@code forceTermination}.
103 < *
104 < * <li>Phasers ensure lack of starvation when used by ForkJoinTasks.
105 < *
106 < * </ul>
92 > * synchronization contention costs may instead be set up so that
93 > * groups of sub-phasers share a common parent.  This may greatly
94 > * increase throughput even though it incurs greater per-operation
95 > * overhead.
96 > *
97 > * <p><b>Monitoring.</b> While synchronization methods may be invoked
98 > * only by registered parties, the current state of a phaser may be
99 > * monitored by any caller.  At any given moment there are {@link
100 > * #getRegisteredParties} parties in total, of which {@link
101 > * #getArrivedParties} have arrived at the current phase ({@link
102 > * #getPhase}).  When the remaining ({@link #getUnarrivedParties})
103 > * parties arrive, the phase advances; thus, this value is always
104 > * greater than zero if there are any registered parties.  The values
105 > * returned by these methods may reflect transient states and so are
106 > * not in general useful for synchronization control.  Method {@link
107 > * #toString} returns snapshots of these state queries in a form
108 > * convenient for informal monitoring.
109   *
110   * <p><b>Sample usages:</b>
111   *
112 < * <p>A Phaser may be used instead of a {@code CountDownLatch} to control
113 < * a one-shot action serving a variable number of parties. The typical
114 < * idiom is for the method setting this up to first register, then
115 < * start the actions, then deregister, as in:
116 < *
117 < * <pre>
118 < *  void runTasks(List&lt;Runnable&gt; list) {
119 < *    final Phaser phaser = new Phaser(1); // "1" to register self
120 < *    for (Runnable r : list) {
121 < *      phaser.register();
122 < *      new Thread() {
123 < *        public void run() {
124 < *          phaser.arriveAndAwaitAdvance(); // await all creation
125 < *          r.run();
126 < *          phaser.arriveAndDeregister();   // signal completion
127 < *        }
128 < *      }.start();
112 > * <p>A {@code Phaser} may be used instead of a {@code CountDownLatch}
113 > * to control a one-shot action serving a variable number of
114 > * parties. The typical idiom is for the method setting this up to
115 > * first register, then start the actions, then deregister, as in:
116 > *
117 > *  <pre> {@code
118 > * void runTasks(List<Runnable> tasks) {
119 > *   final Phaser phaser = new Phaser(1); // "1" to register self
120 > *   // create and start threads
121 > *   for (Runnable task : tasks) {
122 > *     phaser.register();
123 > *     new Thread() {
124 > *       public void run() {
125 > *         phaser.arriveAndAwaitAdvance(); // await all creation
126 > *         task.run();
127 > *       }
128 > *     }.start();
129   *   }
130   *
131 < *   doSomethingOnBehalfOfWorkers();
132 < *   phaser.arrive(); // allow threads to start
133 < *   int p = phaser.arriveAndDeregister(); // deregister self  ...
113 < *   p = phaser.awaitAdvance(p); // ... and await arrival
114 < *   otherActions(); // do other things while tasks execute
115 < *   phaser.awaitAdvance(p); // await final completion
116 < * }
117 < * </pre>
131 > *   // allow threads to start and deregister self
132 > *   phaser.arriveAndDeregister();
133 > * }}</pre>
134   *
135   * <p>One way to cause a set of threads to repeatedly perform actions
136   * for a given number of iterations is to override {@code onAdvance}:
137   *
138 < * <pre>
139 < *  void startTasks(List&lt;Runnable&gt; list, final int iterations) {
140 < *    final Phaser phaser = new Phaser() {
141 < *       public boolean onAdvance(int phase, int registeredParties) {
142 < *         return phase &gt;= iterations || registeredParties == 0;
138 > *  <pre> {@code
139 > * void startTasks(List<Runnable> tasks, final int iterations) {
140 > *   final Phaser phaser = new Phaser() {
141 > *     protected boolean onAdvance(int phase, int registeredParties) {
142 > *       return phase >= iterations || registeredParties == 0;
143 > *     }
144 > *   };
145 > *   phaser.register();
146 > *   for (Runnable task : tasks) {
147 > *     phaser.register();
148 > *     new Thread() {
149 > *       public void run() {
150 > *         do {
151 > *           task.run();
152 > *           phaser.arriveAndAwaitAdvance();
153 > *         } while(!phaser.isTerminated();
154   *       }
155 < *    };
129 < *    phaser.register();
130 < *    for (Runnable r : list) {
131 < *      phaser.register();
132 < *      new Thread() {
133 < *        public void run() {
134 < *           do {
135 < *             r.run();
136 < *             phaser.arriveAndAwaitAdvance();
137 < *           } while(!phaser.isTerminated();
138 < *        }
139 < *      }.start();
155 > *     }.start();
156   *   }
157   *   phaser.arriveAndDeregister(); // deregister self, don't wait
158 < * }
159 < * </pre>
158 > * }}</pre>
159 > *
160 > * If the main task must later await termination, it
161 > * may re-register and then execute a similar loop:
162 > * <pre> {@code
163 > *   // ...
164 > *   phaser.register();
165 > *   while (!phaser.isTerminated())
166 > *     phaser.arriveAndAwaitAdvance();
167 > * }</pre>
168 > *
169 > * Related constructions may be used to await particular phase numbers
170 > * in contexts where you are sure that the phase will never wrap around
171 > * {@code Integer.MAX_VALUE}. For example:
172 > *
173 > * <pre> {@code
174 > *   void awaitPhase(Phaser phaser, int phase) {
175 > *     int p = phaser.register(); // assumes caller not already registered
176 > *     while (p < phase) {
177 > *       if (phaser.isTerminated())
178 > *         // ... deal with unexpected termination
179 > *       else
180 > *         p = phaser.arriveAndAwaitAdvance();
181 > *     }
182 > *     phaser.arriveAndDeregister();
183 > *   }
184 > * }</pre>
185   *
186 < * <p> To create a set of tasks using a tree of Phasers,
186 > *
187 > * <p>To create a set of tasks using a tree of phasers,
188   * you could use code of the following form, assuming a
189 < * Task class with a constructor accepting a Phaser that
189 > * Task class with a constructor accepting a phaser that
190   * it registers for upon construction:
191 < * <pre>
192 < *  void build(Task[] actions, int lo, int hi, Phaser b) {
193 < *    int step = (hi - lo) / TASKS_PER_PHASER;
194 < *    if (step &gt; 1) {
195 < *       int i = lo;
196 < *       while (i &lt; hi) {
197 < *         int r = Math.min(i + step, hi);
198 < *         build(actions, i, r, new Phaser(b));
199 < *         i = r;
200 < *       }
201 < *    }
202 < *    else {
203 < *      for (int i = lo; i &lt; hi; ++i)
204 < *        actions[i] = new Task(b);
205 < *        // assumes new Task(b) performs b.register()
206 < *    }
207 < *  }
208 < *  // .. initially called, for n tasks via
167 < *  build(new Task[n], 0, n, new Phaser());
168 < * </pre>
191 > *  <pre> {@code
192 > * void build(Task[] actions, int lo, int hi, Phaser b) {
193 > *   int step = (hi - lo) / TASKS_PER_PHASER;
194 > *   if (step > 1) {
195 > *     int i = lo;
196 > *     while (i < hi) {
197 > *       int r = Math.min(i + step, hi);
198 > *       build(actions, i, r, new Phaser(b));
199 > *       i = r;
200 > *     }
201 > *   } else {
202 > *     for (int i = lo; i < hi; ++i)
203 > *       actions[i] = new Task(b);
204 > *       // assumes new Task(b) performs b.register()
205 > *   }
206 > * }
207 > * // .. initially called, for n tasks via
208 > * build(new Task[n], 0, n, new Phaser());}</pre>
209   *
210   * The best value of {@code TASKS_PER_PHASER} depends mainly on
211   * expected barrier synchronization rates. A value as low as four may
# Line 176 | Line 216 | import java.lang.reflect.*;
216   *
217   * <p><b>Implementation notes</b>: This implementation restricts the
218   * maximum number of parties to 65535. Attempts to register additional
219 < * parties result in IllegalStateExceptions. However, you can and
219 > * parties result in {@code IllegalStateException}. However, you can and
220   * should create tiered phasers to accommodate arbitrarily large sets
221   * of participants.
222 + *
223 + * @since 1.7
224 + * @author Doug Lea
225   */
226   public class Phaser {
227      /*
# Line 207 | Line 250 | public class Phaser {
250       */
251      private volatile long state;
252  
210    private static final int ushortBits = 16;
253      private static final int ushortMask = 0xffff;
254      private static final int phaseMask  = 0x7fffffff;
255  
256      private static int unarrivedOf(long s) {
257 <        return (int)(s & ushortMask);
257 >        return (int) (s & ushortMask);
258      }
259  
260      private static int partiesOf(long s) {
261 <        return ((int)s) >>> 16;
261 >        return ((int) s) >>> 16;
262      }
263  
264      private static int phaseOf(long s) {
265 <        return (int)(s >>> 32);
265 >        return (int) (s >>> 32);
266      }
267  
268      private static int arrivedOf(long s) {
# Line 228 | Line 270 | public class Phaser {
270      }
271  
272      private static long stateFor(int phase, int parties, int unarrived) {
273 <        return ((((long)phase) << 32) | (((long)parties) << 16) |
274 <                (long)unarrived);
273 >        return ((((long) phase) << 32) | (((long) parties) << 16) |
274 >                (long) unarrived);
275      }
276  
277      private static long trippedStateFor(int phase, int parties) {
278 <        long lp = (long)parties;
279 <        return (((long)phase) << 32) | (lp << 16) | lp;
278 >        long lp = (long) parties;
279 >        return (((long) phase) << 32) | (lp << 16) | lp;
280      }
281  
282      /**
283 <     * Returns message string for bad bounds exceptions
283 >     * Returns message string for bad bounds exceptions.
284       */
285      private static String badBounds(int parties, int unarrived) {
286          return ("Attempt to set " + unarrived +
# Line 251 | Line 293 | public class Phaser {
293      private final Phaser parent;
294  
295      /**
296 <     * The root of Phaser tree. Equals this if not in a tree.  Used to
296 >     * The root of phaser tree. Equals this if not in a tree.  Used to
297       * support faster state push-down.
298       */
299      private final Phaser root;
# Line 267 | Line 309 | public class Phaser {
309      private final AtomicReference<QNode> oddQ  = new AtomicReference<QNode>();
310  
311      private AtomicReference<QNode> queueFor(int phase) {
312 <        return (phase & 1) == 0? evenQ : oddQ;
312 >        return ((phase & 1) == 0) ? evenQ : oddQ;
313      }
314  
315      /**
# Line 275 | Line 317 | public class Phaser {
317       * root if necessary.
318       */
319      private long getReconciledState() {
320 <        return parent == null? state : reconcileState();
320 >        return (parent == null) ? state : reconcileState();
321      }
322  
323      /**
# Line 302 | Line 344 | public class Phaser {
344      }
345  
346      /**
347 <     * Creates a new Phaser without any initially registered parties,
347 >     * Creates a new phaser without any initially registered parties,
348       * initial phase number 0, and no parent. Any thread using this
349 <     * Phaser will need to first register for it.
349 >     * phaser will need to first register for it.
350       */
351      public Phaser() {
352          this(null);
353      }
354  
355      /**
356 <     * Creates a new Phaser with the given numbers of registered
356 >     * Creates a new phaser with the given numbers of registered
357       * unarrived parties, initial phase number 0, and no parent.
358 <     * @param parties the number of parties required to trip barrier.
358 >     *
359 >     * @param parties the number of parties required to trip barrier
360       * @throws IllegalArgumentException if parties less than zero
361 <     * or greater than the maximum number of parties supported.
361 >     * or greater than the maximum number of parties supported
362       */
363      public Phaser(int parties) {
364          this(null, parties);
365      }
366  
367      /**
368 <     * Creates a new Phaser with the given parent, without any
368 >     * Creates a new phaser with the given parent, without any
369       * initially registered parties. If parent is non-null this phaser
370       * is registered with the parent and its initial phase number is
371       * the same as that of parent phaser.
372 <     * @param parent the parent phaser.
372 >     *
373 >     * @param parent the parent phaser
374       */
375      public Phaser(Phaser parent) {
376          int phase = 0;
# Line 341 | Line 385 | public class Phaser {
385      }
386  
387      /**
388 <     * Creates a new Phaser with the given parent and numbers of
389 <     * registered unarrived parties. If parent is non-null this phaser
388 >     * Creates a new phaser with the given parent and numbers of
389 >     * registered unarrived parties. If parent is non-null, this phaser
390       * is registered with the parent and its initial phase number is
391       * the same as that of parent phaser.
392 <     * @param parent the parent phaser.
393 <     * @param parties the number of parties required to trip barrier.
392 >     *
393 >     * @param parent the parent phaser
394 >     * @param parties the number of parties required to trip barrier
395       * @throws IllegalArgumentException if parties less than zero
396 <     * or greater than the maximum number of parties supported.
396 >     * or greater than the maximum number of parties supported
397       */
398      public Phaser(Phaser parent, int parties) {
399          if (parties < 0 || parties > ushortMask)
# Line 366 | Line 411 | public class Phaser {
411  
412      /**
413       * Adds a new unarrived party to this phaser.
414 <     * @return the current barrier phase number upon registration
414 >     *
415 >     * @return the arrival phase number to which this registration applied
416       * @throws IllegalStateException if attempting to register more
417 <     * than the maximum supported number of parties.
417 >     * than the maximum supported number of parties
418       */
419      public int register() {
420          return doRegister(1);
# Line 376 | Line 422 | public class Phaser {
422  
423      /**
424       * Adds the given number of new unarrived parties to this phaser.
425 <     * @param parties the number of parties required to trip barrier.
426 <     * @return the current barrier phase number upon registration
425 >     *
426 >     * @param parties the number of parties required to trip barrier
427 >     * @return the arrival phase number to which this registration applied
428       * @throws IllegalStateException if attempting to register more
429 <     * than the maximum supported number of parties.
429 >     * than the maximum supported number of parties
430       */
431      public int bulkRegister(int parties) {
432          if (parties < 0)
# Line 399 | Line 446 | public class Phaser {
446              phase = phaseOf(s);
447              int unarrived = unarrivedOf(s) + registrations;
448              int parties = partiesOf(s) + registrations;
449 <            if (phase < 0)
449 >            if (phase < 0)
450                  break;
451              if (parties > ushortMask || unarrived > ushortMask)
452                  throw new IllegalStateException(badBounds(parties, unarrived));
# Line 412 | Line 459 | public class Phaser {
459  
460      /**
461       * Arrives at the barrier, but does not wait for others.  (You can
462 <     * in turn wait for others via {@link #awaitAdvance}).
462 >     * in turn wait for others via {@link #awaitAdvance}).  It is an
463 >     * unenforced usage error for an unregistered party to invoke this
464 >     * method.
465       *
466 <     * @return the barrier phase number upon entry to this method, or a
418 <     * negative value if terminated;
466 >     * @return the arrival phase number, or a negative value if terminated
467       * @throws IllegalStateException if not terminated and the number
468 <     * of unarrived parties would become negative.
468 >     * of unarrived parties would become negative
469       */
470      public int arrive() {
471          int phase;
# Line 437 | Line 485 | public class Phaser {
485                  if (par == null) {      // directly trip
486                      if (casState
487                          (s,
488 <                         trippedStateFor(onAdvance(phase, parties)? -1 :
488 >                         trippedStateFor(onAdvance(phase, parties) ? -1 :
489                                           ((phase + 1) & phaseMask), parties))) {
490                          releaseWaiters(phase);
491                          break;
# Line 460 | Line 508 | public class Phaser {
508      }
509  
510      /**
511 <     * Arrives at the barrier, and deregisters from it, without
512 <     * waiting for others. Deregistration reduces number of parties
511 >     * Arrives at the barrier and deregisters from it without waiting
512 >     * for others. Deregistration reduces the number of parties
513       * required to trip the barrier in future phases.  If this phaser
514       * has a parent, and deregistration causes this phaser to have
515 <     * zero parties, this phaser is also deregistered from its parent.
515 >     * zero parties, this phaser also arrives at and is deregistered
516 >     * from its parent.  It is an unenforced usage error for an
517 >     * unregistered party to invoke this method.
518       *
519 <     * @return the current barrier phase number upon entry to
470 <     * this method, or a negative value if terminated;
519 >     * @return the arrival phase number, or a negative value if terminated
520       * @throws IllegalStateException if not terminated and the number
521 <     * of registered or unarrived parties would become negative.
521 >     * of registered or unarrived parties would become negative
522       */
523      public int arriveAndDeregister() {
524          // similar code to arrive, but too different to merge
# Line 498 | Line 547 | public class Phaser {
547                  if (unarrived == 0) {
548                      if (casState
549                          (s,
550 <                         trippedStateFor(onAdvance(phase, parties)? -1 :
550 >                         trippedStateFor(onAdvance(phase, parties) ? -1 :
551                                           ((phase + 1) & phaseMask), parties))) {
552                          releaseWaiters(phase);
553                          break;
# Line 517 | Line 566 | public class Phaser {
566  
567      /**
568       * Arrives at the barrier and awaits others. Equivalent in effect
569 <     * to {@code awaitAdvance(arrive())}.  If you instead need to
570 <     * await with interruption of timeout, and/or deregister upon
571 <     * arrival, you can arrange them using analogous constructions.
572 <     * @return the phase on entry to this method
569 >     * to {@code awaitAdvance(arrive())}.  If you need to await with
570 >     * interruption or timeout, you can arrange this with an analogous
571 >     * construction using one of the other forms of the awaitAdvance
572 >     * method.  If instead you need to deregister upon arrival use
573 >     * {@code arriveAndDeregister}. It is an unenforced usage error
574 >     * for an unregistered party to invoke this method.
575 >     *
576 >     * @return the arrival phase number, or a negative number if terminated
577       * @throws IllegalStateException if not terminated and the number
578 <     * of unarrived parties would become negative.
578 >     * of unarrived parties would become negative
579       */
580      public int arriveAndAwaitAdvance() {
581          return awaitAdvance(arrive());
582      }
583  
584      /**
585 <     * Awaits the phase of the barrier to advance from the given
586 <     * value, or returns immediately if argument is negative or this
587 <     * barrier is terminated.
588 <     * @param phase the phase on entry to this method
589 <     * @return the phase on exit from this method
585 >     * Awaits the phase of the barrier to advance from the given phase
586 >     * value, returning immediately if the current phase of the
587 >     * barrier is not equal to the given phase value or this barrier
588 >     * is terminated.  It is an unenforced usage error for an
589 >     * unregistered party to invoke this method.
590 >     *
591 >     * @param phase an arrival phase number, or negative value if
592 >     * terminated; this argument is normally the value returned by a
593 >     * previous call to {@code arrive} or its variants
594 >     * @return the next arrival phase number, or a negative value
595 >     * if terminated or argument is negative
596       */
597      public int awaitAdvance(int phase) {
598          if (phase < 0)
# Line 549 | Line 608 | public class Phaser {
608      }
609  
610      /**
611 <     * Awaits the phase of the barrier to advance from the given
612 <     * value, or returns immediately if argument is negative or this
613 <     * barrier is terminated, or throws InterruptedException if
614 <     * interrupted while waiting.
615 <     * @param phase the phase on entry to this method
616 <     * @return the phase on exit from this method
611 >     * Awaits the phase of the barrier to advance from the given phase
612 >     * value, throwing {@code InterruptedException} if interrupted
613 >     * while waiting, or returning immediately if the current phase of
614 >     * the barrier is not equal to the given phase value or this
615 >     * barrier is terminated. It is an unenforced usage error for an
616 >     * unregistered party to invoke this method.
617 >     *
618 >     * @param phase an arrival phase number, or negative value if
619 >     * terminated; this argument is normally the value returned by a
620 >     * previous call to {@code arrive} or its variants
621 >     * @return the next arrival phase number, or a negative value
622 >     * if terminated or argument is negative
623       * @throws InterruptedException if thread interrupted while waiting
624       */
625 <    public int awaitAdvanceInterruptibly(int phase)
625 >    public int awaitAdvanceInterruptibly(int phase)
626          throws InterruptedException {
627          if (phase < 0)
628              return phase;
# Line 571 | Line 636 | public class Phaser {
636      }
637  
638      /**
639 <     * Awaits the phase of the barrier to advance from the given value
640 <     * or the given timeout elapses, or returns immediately if
641 <     * argument is negative or this barrier is terminated.
642 <     * @param phase the phase on entry to this method
643 <     * @return the phase on exit from this method
639 >     * Awaits the phase of the barrier to advance from the given phase
640 >     * value or the given timeout to elapse, throwing {@code
641 >     * InterruptedException} if interrupted while waiting, or
642 >     * returning immediately if the current phase of the barrier is
643 >     * not equal to the given phase value or this barrier is
644 >     * terminated.  It is an unenforced usage error for an
645 >     * unregistered party to invoke this method.
646 >     *
647 >     * @param phase an arrival phase number, or negative value if
648 >     * terminated; this argument is normally the value returned by a
649 >     * previous call to {@code arrive} or its variants
650 >     * @param timeout how long to wait before giving up, in units of
651 >     *        {@code unit}
652 >     * @param unit a {@code TimeUnit} determining how to interpret the
653 >     *        {@code timeout} parameter
654 >     * @return the next arrival phase number, or a negative value
655 >     * if terminated or argument is negative
656       * @throws InterruptedException if thread interrupted while waiting
657       * @throws TimeoutException if timed out while waiting
658       */
659 <    public int awaitAdvanceInterruptibly(int phase, long timeout, TimeUnit unit)
659 >    public int awaitAdvanceInterruptibly(int phase,
660 >                                         long timeout, TimeUnit unit)
661          throws InterruptedException, TimeoutException {
662          if (phase < 0)
663              return phase;
# Line 620 | Line 698 | public class Phaser {
698       * Returns the current phase number. The maximum phase number is
699       * {@code Integer.MAX_VALUE}, after which it restarts at
700       * zero. Upon termination, the phase number is negative.
701 +     *
702       * @return the phase number, or a negative value if terminated
703       */
704      public final int getPhase() {
# Line 627 | Line 706 | public class Phaser {
706      }
707  
708      /**
630     * Returns {@code true} if the current phase number equals the given phase.
631     * @param phase the phase
632     * @return {@code true} if the current phase number equals the given phase
633     */
634    public final boolean hasPhase(int phase) {
635        return phaseOf(getReconciledState()) == phase;
636    }
637
638    /**
709       * Returns the number of parties registered at this barrier.
710 +     *
711       * @return the number of parties
712       */
713      public int getRegisteredParties() {
# Line 644 | Line 715 | public class Phaser {
715      }
716  
717      /**
718 <     * Returns the number of parties that have arrived at the current
719 <     * phase of this barrier.
718 >     * Returns the number of registered parties that have arrived at
719 >     * the current phase of this barrier.
720 >     *
721       * @return the number of arrived parties
722       */
723      public int getArrivedParties() {
# Line 655 | Line 727 | public class Phaser {
727      /**
728       * Returns the number of registered parties that have not yet
729       * arrived at the current phase of this barrier.
730 +     *
731       * @return the number of unarrived parties
732       */
733      public int getUnarrivedParties() {
# Line 662 | Line 735 | public class Phaser {
735      }
736  
737      /**
738 <     * Returns the parent of this phaser, or null if none.
739 <     * @return the parent of this phaser, or null if none
738 >     * Returns the parent of this phaser, or {@code null} if none.
739 >     *
740 >     * @return the parent of this phaser, or {@code null} if none
741       */
742      public Phaser getParent() {
743          return parent;
# Line 672 | Line 746 | public class Phaser {
746      /**
747       * Returns the root ancestor of this phaser, which is the same as
748       * this phaser if it has no parent.
749 +     *
750       * @return the root ancestor of this phaser
751       */
752      public Phaser getRoot() {
# Line 680 | Line 755 | public class Phaser {
755  
756      /**
757       * Returns {@code true} if this barrier has been terminated.
758 +     *
759       * @return {@code true} if this barrier has been terminated
760       */
761      public boolean isTerminated() {
# Line 690 | Line 766 | public class Phaser {
766       * Overridable method to perform an action upon phase advance, and
767       * to control termination. This method is invoked whenever the
768       * barrier is tripped (and thus all other waiting parties are
769 <     * dormant). If it returns true, then, rather than advance the
770 <     * phase number, this barrier will be set to a final termination
771 <     * state, and subsequent calls to {@code isTerminated} will
772 <     * return true.
769 >     * dormant). If it returns {@code true}, then, rather than advance
770 >     * the phase number, this barrier will be set to a final
771 >     * termination state, and subsequent calls to {@link #isTerminated}
772 >     * will return true.
773       *
774 <     * <p> The default version returns true when the number of
774 >     * <p>The default version returns {@code true} when the number of
775       * registered parties is zero. Normally, overrides that arrange
776       * termination for other reasons should also preserve this
777       * property.
778       *
779 <     * <p> You may override this method to perform an action with side
779 >     * <p>You may override this method to perform an action with side
780       * effects visible to participating tasks, but it is in general
781       * only sensible to do so in designs where all parties register
782 <     * before any arrive, and all {@code awaitAdvance} at each phase.
783 <     * Otherwise, you cannot ensure lack of interference. In
784 <     * particular, this method may be invoked more than once per
709 <     * transition if other parties successfully register while the
710 <     * invocation of this method is in progress, thus postponing the
711 <     * transition until those parties also arrive, re-triggering this
712 <     * method.
782 >     * before any arrive, and all {@link #awaitAdvance} at each phase.
783 >     * Otherwise, you cannot ensure lack of interference from other
784 >     * parties during the invocation of this method.
785       *
786       * @param phase the phase number on entering the barrier
787       * @param registeredParties the current number of registered parties
# Line 795 | Line 867 | public class Phaser {
867                  try {
868                      ForkJoinPool.managedBlock(this, false);
869                  } catch (InterruptedException ie) {
870 <                }
870 >                }
871              }
872              return wasInterrupted;
873          }
# Line 803 | Line 875 | public class Phaser {
875      }
876  
877      /**
878 <     * Removes and signals waiting threads from wait queue
878 >     * Removes and signals waiting threads from wait queue.
879       */
880      private void releaseWaiters(int phase) {
881          AtomicReference<QNode> head = queueFor(phase);
# Line 815 | Line 887 | public class Phaser {
887      }
888  
889      /**
890 <     * Tries to enqueue given node in the appropriate wait queue
890 >     * Tries to enqueue given node in the appropriate wait queue.
891 >     *
892       * @return true if successful
893       */
894      private boolean tryEnqueue(QNode node) {
# Line 825 | Line 898 | public class Phaser {
898  
899      /**
900       * Enqueues node and waits unless aborted or signalled.
901 +     *
902       * @return current phase
903       */
904      private int untimedWait(int phase) {
# Line 912 | Line 986 | public class Phaser {
986          return p;
987      }
988  
989 <    // Temporary Unsafe mechanics for preliminary release
989 >    // Unsafe mechanics
990  
991 <    static final Unsafe _unsafe;
992 <    static final long stateOffset;
991 >    private static final sun.misc.Unsafe UNSAFE = getUnsafe();
992 >    private static final long stateOffset =
993 >        objectFieldOffset("state", Phaser.class);
994  
995 <    static {
995 >    private final boolean casState(long cmp, long val) {
996 >        return UNSAFE.compareAndSwapLong(this, stateOffset, cmp, val);
997 >    }
998 >
999 >    private static long objectFieldOffset(String field, Class<?> klazz) {
1000          try {
1001 <            if (Phaser.class.getClassLoader() != null) {
1002 <                Field f = Unsafe.class.getDeclaredField("theUnsafe");
1003 <                f.setAccessible(true);
1004 <                _unsafe = (Unsafe)f.get(null);
1005 <            }
1006 <            else
928 <                _unsafe = Unsafe.getUnsafe();
929 <            stateOffset = _unsafe.objectFieldOffset
930 <                (Phaser.class.getDeclaredField("state"));
931 <        } catch (Exception e) {
932 <            throw new RuntimeException("Could not initialize intrinsics", e);
1001 >            return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
1002 >        } catch (NoSuchFieldException e) {
1003 >            // Convert Exception to corresponding Error
1004 >            NoSuchFieldError error = new NoSuchFieldError(field);
1005 >            error.initCause(e);
1006 >            throw error;
1007          }
1008      }
1009  
1010 <    final boolean casState(long cmp, long val) {
1011 <        return _unsafe.compareAndSwapLong(this, stateOffset, cmp, val);
1010 >    /**
1011 >     * Returns a sun.misc.Unsafe.  Suitable for use in a 3rd party package.
1012 >     * Replace with a simple call to Unsafe.getUnsafe when integrating
1013 >     * into a jdk.
1014 >     *
1015 >     * @return a sun.misc.Unsafe
1016 >     */
1017 >    private static sun.misc.Unsafe getUnsafe() {
1018 >        try {
1019 >            return sun.misc.Unsafe.getUnsafe();
1020 >        } catch (SecurityException se) {
1021 >            try {
1022 >                return java.security.AccessController.doPrivileged
1023 >                    (new java.security
1024 >                     .PrivilegedExceptionAction<sun.misc.Unsafe>() {
1025 >                        public sun.misc.Unsafe run() throws Exception {
1026 >                            java.lang.reflect.Field f = sun.misc
1027 >                                .Unsafe.class.getDeclaredField("theUnsafe");
1028 >                            f.setAccessible(true);
1029 >                            return (sun.misc.Unsafe) f.get(null);
1030 >                        }});
1031 >            } catch (java.security.PrivilegedActionException e) {
1032 >                throw new RuntimeException("Could not initialize intrinsics",
1033 >                                           e.getCause());
1034 >            }
1035 >        }
1036      }
1037   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines