ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/Phaser.java
(Generate patch)

Comparing jsr166/src/jsr166y/Phaser.java (file contents):
Revision 1.1 by dl, Mon Jul 7 16:53:30 2008 UTC vs.
Revision 1.42 by dl, Mon Aug 24 18:37:15 2009 UTC

# Line 5 | Line 5
5   */
6  
7   package jsr166y;
8 < import jsr166y.forkjoin.*;
8 >
9   import java.util.concurrent.*;
10 < import java.util.concurrent.atomic.*;
10 >
11 > import java.util.concurrent.atomic.AtomicReference;
12   import java.util.concurrent.locks.LockSupport;
13  
14   /**
15 < * A reusable synchronization barrier, similar in functionality to a
16 < * {@link java.util.concurrent.CyclicBarrier}, but supporting more
17 < * flexible usage.
15 > * A reusable synchronization barrier, similar in functionality to
16 > * {@link java.util.concurrent.CyclicBarrier CyclicBarrier} and
17 > * {@link java.util.concurrent.CountDownLatch CountDownLatch}
18 > * but supporting more flexible usage.
19   *
20 < * <ul>
20 > * <p> <b>Registration.</b> Unlike the case for other barriers, the
21 > * number of parties <em>registered</em> to synchronize on a phaser
22 > * may vary over time.  Tasks may be registered at any time (using
23 > * methods {@link #register}, {@link #bulkRegister}, or forms of
24 > * constructors establishing initial numbers of parties), and
25 > * optionally deregistered upon any arrival (using {@link
26 > * #arriveAndDeregister}).  As is the case with most basic
27 > * synchronization constructs, registration and deregistration affect
28 > * only internal counts; they do not establish any further internal
29 > * bookkeeping, so tasks cannot query whether they are registered.
30 > * (However, you can introduce such bookkeeping by subclassing this
31 > * class.)
32   *
33 < * <li> The number of parties synchronizing on the barrier may vary
34 < * over time.  A task may register to be a party in a barrier at any
35 < * time, and may deregister upon arriving at the barrier.  As is the
36 < * case with most basic synchronization constructs, registration
37 < * and deregistration affect only internal counts; they do not
38 < * establish any further internal bookkeeping, so tasks cannot query
39 < * whether they are registered.
40 < *
41 < * <li> Each generation has an associated phase value, starting at
42 < * zero, and advancing when all parties reach the barrier (wrapping
43 < * around to zero after reaching <tt>Integer.MAX_VALUE</tt>).
31 < *
32 < * <li> Like a CyclicBarrier, a Phaser may be repeatedly awaited.
33 < * Method <tt>arriveAndAwaitAdvance</tt> has effect analogous to
34 < * <tt>CyclicBarrier.await</tt>.  However, Phasers separate two
35 < * aspects of coordination, that may be invoked independently:
33 > * <p> <b>Synchronization.</b> Like a {@code CyclicBarrier}, a {@code
34 > * Phaser} may be repeatedly awaited.  Method {@link
35 > * #arriveAndAwaitAdvance} has effect analogous to {@link
36 > * java.util.concurrent.CyclicBarrier#await CyclicBarrier.await}. Each
37 > * generation of a {@code Phaser} has an associated phase number. The
38 > * phase number starts at zero, and advances when all parties arrive
39 > * at the barrier, wrapping around to zero after reaching {@code
40 > * Integer.MAX_VALUE}. The use of phase numbers enables independent
41 > * control of actions upon arrival at a barrier and upon awaiting
42 > * others, via two kinds of methods that may be invoked by any
43 > * registered party:
44   *
45   * <ul>
46   *
47 < *   <li> Arriving at a barrier. Methods <tt>arrive</tt> and
48 < *       <tt>arriveAndDeregister</tt> do not block, but return
49 < *       the phase value on entry to the method.
50 < *
51 < *   <li> Awaiting others. Method <tt>awaitAdvance</tt> requires an
52 < *       argument indicating the entry phase, and returns when the
53 < *       barrier advances to a new phase.
47 > *   <li> <b>Arrival.</b> Methods {@link #arrive} and
48 > *       {@link #arriveAndDeregister} record arrival at a
49 > *       barrier. These methods do not block, but return an associated
50 > *       <em>arrival phase number</em>; that is, the phase number of
51 > *       the barrier to which the arrival applied. When the final
52 > *       party for a given phase arrives, an optional barrier action
53 > *       is performed and the phase advances.  Barrier actions,
54 > *       performed by the party triggering a phase advance, are
55 > *       arranged by overriding method {@link #onAdvance(int, int)},
56 > *       which also controls termination. Overriding this method is
57 > *       similar to, but more flexible than, providing a barrier
58 > *       action to a {@code CyclicBarrier}.
59 > *
60 > *   <li> <b>Waiting.</b> Method {@link #awaitAdvance} requires an
61 > *       argument indicating an arrival phase number, and returns when
62 > *       the barrier advances to (or is already at) a different phase.
63 > *       Unlike similar constructions using {@code CyclicBarrier},
64 > *       method {@code awaitAdvance} continues to wait even if the
65 > *       waiting thread is interrupted. Interruptible and timeout
66 > *       versions are also available, but exceptions encountered while
67 > *       tasks wait interruptibly or with timeout do not change the
68 > *       state of the barrier. If necessary, you can perform any
69 > *       associated recovery within handlers of those exceptions,
70 > *       often after invoking {@code forceTermination}.  Phasers may
71 > *       also be used by tasks executing in a {@link ForkJoinPool},
72 > *       which will ensure sufficient parallelism to execute tasks
73 > *       when others are blocked waiting for a phase to advance.
74 > *
75   * </ul>
76   *
77 + * <p> <b>Termination.</b> A {@code Phaser} may enter a
78 + * <em>termination</em> state in which all synchronization methods
79 + * immediately return without updating phaser state or waiting for
80 + * advance, and indicating (via a negative phase value) that execution
81 + * is complete.  Termination is triggered when an invocation of {@code
82 + * onAdvance} returns {@code true}.  As illustrated below, when
83 + * phasers control actions with a fixed number of iterations, it is
84 + * often convenient to override this method to cause termination when
85 + * the current phase number reaches a threshold. Method {@link
86 + * #forceTermination} is also available to abruptly release waiting
87 + * threads and allow them to terminate.
88   *
89 < * <li> Barrier actions, performed by the task triggering a phase
90 < * advance while others may be waiting, are arranged by overriding
91 < * method <tt>onAdvance</tt>, that also controls termination.
92 < *
93 < * <li> Phasers may enter a <em>termination</em> state in which all
94 < * await actions immediately return, indicating (via a negative phase
95 < * value) that execution is complete.  Termination is triggered by
56 < * executing the overridable <tt>onAdvance</tt> method that is invoked
57 < * each time the barrier is tripped. When a Phaser is controlling an
58 < * action with a fixed number of iterations, it is often convenient to
59 < * override this method to cause termination when the current phase
60 < * number reaches a threshold.  Method <tt>forceTermination</tt> is
61 < * also available to assist recovery actions upon failure.
62 < *
63 < * <li> Unlike most synchronizers, a Phaser may also be used with
64 < * ForkJoinTasks (as well as plain threads).
65 < *
66 < * <li> By default, <tt>awaitAdvance</tt> continues to wait even if
67 < * the current thread is interrupted. And unlike the case in
68 < * CyclicBarriers, exceptions encountered while tasks wait
69 < * interruptibly or with timeout do not change the state of the
70 < * barrier. If necessary, you can perform any associated recovery
71 < * within handlers of those exceptions.
89 > * <p> <b>Tiering.</b> Phasers may be <em>tiered</em> (i.e., arranged
90 > * in tree structures) to reduce contention. Phasers with large
91 > * numbers of parties that would otherwise experience heavy
92 > * synchronization contention costs may instead be set up so that
93 > * groups of sub-phasers share a common parent.  This may greatly
94 > * increase throughput even though it incurs greater per-operation
95 > * overhead.
96   *
97 < * </ul>
97 > * <p><b>Monitoring.</b> While synchronization methods may be invoked
98 > * only by registered parties, the current state of a phaser may be
99 > * monitored by any caller.  At any given moment there are {@link
100 > * #getRegisteredParties} parties in total, of which {@link
101 > * #getArrivedParties} have arrived at the current phase ({@link
102 > * #getPhase}).  When the remaining ({@link #getUnarrivedParties})
103 > * parties arrive, the phase advances.  The values returned by these
104 > * methods may reflect transient states and so are not in general
105 > * useful for synchronization control.  Method {@link #toString}
106 > * returns snapshots of these state queries in a form convenient for
107 > * informal monitoring.
108 > *
109 > * <p><b>Sample usages:</b>
110 > *
111 > * <p>A {@code Phaser} may be used instead of a {@code CountDownLatch}
112 > * to control a one-shot action serving a variable number of
113 > * parties. The typical idiom is for the method setting this up to
114 > * first register, then start the actions, then deregister, as in:
115 > *
116 > *  <pre> {@code
117 > * void runTasks(List<Runnable> tasks) {
118 > *   final Phaser phaser = new Phaser(1); // "1" to register self
119 > *   // create and start threads
120 > *   for (Runnable task : tasks) {
121 > *     phaser.register();
122 > *     new Thread() {
123 > *       public void run() {
124 > *         phaser.arriveAndAwaitAdvance(); // await all creation
125 > *         task.run();
126 > *       }
127 > *     }.start();
128 > *   }
129 > *
130 > *   // allow threads to start and deregister self
131 > *   phaser.arriveAndDeregister();
132 > * }}</pre>
133 > *
134 > * <p>One way to cause a set of threads to repeatedly perform actions
135 > * for a given number of iterations is to override {@code onAdvance}:
136 > *
137 > *  <pre> {@code
138 > * void startTasks(List<Runnable> tasks, final int iterations) {
139 > *   final Phaser phaser = new Phaser() {
140 > *     protected boolean onAdvance(int phase, int registeredParties) {
141 > *       return phase >= iterations || registeredParties == 0;
142 > *     }
143 > *   };
144 > *   phaser.register();
145 > *   for (Runnable task : tasks) {
146 > *     phaser.register();
147 > *     new Thread() {
148 > *       public void run() {
149 > *         do {
150 > *           task.run();
151 > *           phaser.arriveAndAwaitAdvance();
152 > *         } while(!phaser.isTerminated();
153 > *       }
154 > *     }.start();
155 > *   }
156 > *   phaser.arriveAndDeregister(); // deregister self, don't wait
157 > * }}</pre>
158   *
159 < * <p><b>Sample usage:</b>
159 > * If the main task must later await termination, it
160 > * may re-register and then execute a similar loop:
161 > * <pre> {@code
162 > *   // ...
163 > *   phaser.register();
164 > *   while (!phaser.isTerminated())
165 > *     phaser.arriveAndAwaitAdvance();
166 > * }</pre>
167   *
168 < * <p>[todo: non-FJ example]
168 > * Related constructions may be used to await particular phase numbers
169 > * in contexts where you are sure that the phase will never wrap around
170 > * {@code Integer.MAX_VALUE}. For example:
171   *
172 < * <p> A Phaser may be used to support a style of programming in
173 < * which a task waits for others to complete, without otherwise
174 < * needing to keep track of which tasks it is waiting for. This is
175 < * similar to the "sync" construct in Cilk and "clocks" in X10.
176 < * Special constructions based on such barriers are available using
177 < * the <tt>LinkedAsyncAction</tt> and <tt>CyclicAction</tt> classes,
178 < * but they can be useful in other contexts as well.  For a simple
179 < * (but not very useful) example, here is a variant of Fibonacci:
180 < *
181 < * <pre>
89 < * class BarrierFibonacci extends RecursiveAction {
90 < *   int argument, result;
91 < *   final Phaser parentBarrier;
92 < *   BarrierFibonacci(int n, Phaser parentBarrier) {
93 < *     this.argument = n;
94 < *     this.parentBarrier = parentBarrier;
95 < *     parentBarrier.register();
172 > * <pre> {@code
173 > *   void awaitPhase(Phaser phaser, int phase) {
174 > *     int p = phaser.register(); // assumes caller not already registered
175 > *     while (p < phase) {
176 > *       if (phaser.isTerminated())
177 > *         // ... deal with unexpected termination
178 > *       else
179 > *         p = phaser.arriveAndAwaitAdvance();
180 > *     }
181 > *     phaser.arriveAndDeregister();
182   *   }
183 < *   protected void compute() {
184 < *     int n = argument;
185 < *     if (n &lt;= 1)
186 < *        result = n;
187 < *     else {
188 < *        Phaser childBarrier = new Phaser(1);
189 < *        BarrierFibonacci f1 = new BarrierFibonacci(n - 1, childBarrier);
190 < *        BarrierFibonacci f2 = new BarrierFibonacci(n - 2, childBarrier);
191 < *        f1.fork();
192 < *        f2.fork();
193 < *        childBarrier.arriveAndAwait();
194 < *        result = f1.result + f2.result;
183 > * }</pre>
184 > *
185 > *
186 > * <p>To create a set of tasks using a tree of phasers,
187 > * you could use code of the following form, assuming a
188 > * Task class with a constructor accepting a phaser that
189 > * it registers for upon construction:
190 > *  <pre> {@code
191 > * void build(Task[] actions, int lo, int hi, Phaser b) {
192 > *   int step = (hi - lo) / TASKS_PER_PHASER;
193 > *   if (step > 1) {
194 > *     int i = lo;
195 > *     while (i < hi) {
196 > *       int r = Math.min(i + step, hi);
197 > *       build(actions, i, r, new Phaser(b));
198 > *       i = r;
199   *     }
200 < *     parentBarrier.arriveAndDeregister();
200 > *   } else {
201 > *     for (int i = lo; i < hi; ++i)
202 > *       actions[i] = new Task(b);
203 > *       // assumes new Task(b) performs b.register()
204   *   }
205   * }
206 + * // .. initially called, for n tasks via
207 + * build(new Task[n], 0, n, new Phaser());}</pre>
208 + *
209 + * The best value of {@code TASKS_PER_PHASER} depends mainly on
210 + * expected barrier synchronization rates. A value as low as four may
211 + * be appropriate for extremely small per-barrier task bodies (thus
212 + * high rates), or up to hundreds for extremely large ones.
213 + *
214   * </pre>
215   *
216   * <p><b>Implementation notes</b>: This implementation restricts the
217 < * maximum number of parties to 65535. Attempts to register
218 < * additional parties result in IllegalStateExceptions.  
217 > * maximum number of parties to 65535. Attempts to register additional
218 > * parties result in {@code IllegalStateException}. However, you can and
219 > * should create tiered phasers to accommodate arbitrarily large sets
220 > * of participants.
221 > *
222 > * @since 1.7
223 > * @author Doug Lea
224   */
225   public class Phaser {
226      /*
227       * This class implements an extension of X10 "clocks".  Thanks to
228 <     * Vijay Saraswat for the idea of applying it to ForkJoinTasks,
229 <     * and to Vivek Sarkar for enhancements to extend functionality.
228 >     * Vijay Saraswat for the idea, and to Vivek Sarkar for
229 >     * enhancements to extend functionality.
230       */
231  
232      /**
233       * Barrier state representation. Conceptually, a barrier contains
234       * four values:
235 <     *
235 >     *
236       * * parties -- the number of parties to wait (16 bits)
237       * * unarrived -- the number of parties yet to hit barrier (16 bits)
238       * * phase -- the generation of the barrier (31 bits)
239       * * terminated -- set if barrier is terminated (1 bit)
240       *
241       * However, to efficiently maintain atomicity, these values are
242 <     * packed into a single AtomicLong. Termination uses the sign bit
243 <     * of 32 bit representation of phase, so phase is set to -1 on
244 <     * termination.
245 <     */
246 <    private final AtomicLong state;
247 <
248 <    /**
143 <     * Head of Treiber stack for waiting nonFJ threads.
242 >     * packed into a single (atomic) long. Termination uses the sign
243 >     * bit of 32 bit representation of phase, so phase is set to -1 on
244 >     * termination. Good performance relies on keeping state decoding
245 >     * and encoding simple, and keeping race windows short.
246 >     *
247 >     * Note: there are some cheats in arrive() that rely on unarrived
248 >     * count being lowest 16 bits.
249       */
250 <    private final AtomicReference<QNode> head = new AtomicReference<QNode>();
250 >    private volatile long state;
251  
252 <    private static final int ushortBits = 16;
253 <    private static final int ushortMask =  (1 << ushortBits) - 1;
149 <    private static final int phaseMask = 0x7fffffff;
252 >    private static final int ushortMask = 0xffff;
253 >    private static final int phaseMask  = 0x7fffffff;
254  
255      private static int unarrivedOf(long s) {
256 <        return (int)(s & ushortMask);
256 >        return (int) (s & ushortMask);
257      }
258  
259      private static int partiesOf(long s) {
260 <        return (int)(s & (ushortMask << 16)) >>> 16;
260 >        return ((int) s) >>> 16;
261      }
262  
263      private static int phaseOf(long s) {
264 <        return (int)(s >>> 32);
264 >        return (int) (s >>> 32);
265      }
266  
267      private static int arrivedOf(long s) {
# Line 165 | Line 269 | public class Phaser {
269      }
270  
271      private static long stateFor(int phase, int parties, int unarrived) {
272 <        return (((long)phase) << 32) | ((parties << 16) | unarrived);
272 >        return ((((long) phase) << 32) | (((long) parties) << 16) |
273 >                (long) unarrived);
274      }
275  
276 <    private static IllegalStateException badBounds(int parties, int unarrived) {
277 <        return new IllegalStateException("Attempt to set " + unarrived +
278 <                                         " unarrived of " + parties + " parties");
276 >    private static long trippedStateFor(int phase, int parties) {
277 >        long lp = (long) parties;
278 >        return (((long) phase) << 32) | (lp << 16) | lp;
279      }
280  
281      /**
282 <     * Creates a new Phaser without any initially registered parties,
283 <     * and initial phase number 0.
282 >     * Returns message string for bad bounds exceptions.
283 >     */
284 >    private static String badBounds(int parties, int unarrived) {
285 >        return ("Attempt to set " + unarrived +
286 >                " unarrived of " + parties + " parties");
287 >    }
288 >
289 >    /**
290 >     * The parent of this phaser, or null if none
291 >     */
292 >    private final Phaser parent;
293 >
294 >    /**
295 >     * The root of phaser tree. Equals this if not in a tree.  Used to
296 >     * support faster state push-down.
297 >     */
298 >    private final Phaser root;
299 >
300 >    // Wait queues
301 >
302 >    /**
303 >     * Heads of Treiber stacks for waiting threads. To eliminate
304 >     * contention while releasing some threads while adding others, we
305 >     * use two of them, alternating across even and odd phases.
306 >     */
307 >    private final AtomicReference<QNode> evenQ = new AtomicReference<QNode>();
308 >    private final AtomicReference<QNode> oddQ  = new AtomicReference<QNode>();
309 >
310 >    private AtomicReference<QNode> queueFor(int phase) {
311 >        return ((phase & 1) == 0) ? evenQ : oddQ;
312 >    }
313 >
314 >    /**
315 >     * Returns current state, first resolving lagged propagation from
316 >     * root if necessary.
317 >     */
318 >    private long getReconciledState() {
319 >        return (parent == null) ? state : reconcileState();
320 >    }
321 >
322 >    /**
323 >     * Recursively resolves state.
324 >     */
325 >    private long reconcileState() {
326 >        Phaser p = parent;
327 >        long s = state;
328 >        if (p != null) {
329 >            while (unarrivedOf(s) == 0 && phaseOf(s) != phaseOf(root.state)) {
330 >                long parentState = p.getReconciledState();
331 >                int parentPhase = phaseOf(parentState);
332 >                int phase = phaseOf(s = state);
333 >                if (phase != parentPhase) {
334 >                    long next = trippedStateFor(parentPhase, partiesOf(s));
335 >                    if (casState(s, next)) {
336 >                        releaseWaiters(phase);
337 >                        s = next;
338 >                    }
339 >                }
340 >            }
341 >        }
342 >        return s;
343 >    }
344 >
345 >    /**
346 >     * Creates a new phaser without any initially registered parties,
347 >     * initial phase number 0, and no parent. Any thread using this
348 >     * phaser will need to first register for it.
349       */
350      public Phaser() {
351 <        state = new AtomicLong(stateFor(0, 0, 0));
351 >        this(null);
352      }
353  
354      /**
355 <     * Creates a new Phaser with the given numbers of registered
356 <     * unarrived parties and initial phase number 0.
357 <     * @param parties the number of parties required to trip barrier.
355 >     * Creates a new phaser with the given numbers of registered
356 >     * unarrived parties, initial phase number 0, and no parent.
357 >     *
358 >     * @param parties the number of parties required to trip barrier
359       * @throws IllegalArgumentException if parties less than zero
360 <     * or greater than the maximum number of parties supported.
360 >     * or greater than the maximum number of parties supported
361       */
362      public Phaser(int parties) {
363 +        this(null, parties);
364 +    }
365 +
366 +    /**
367 +     * Creates a new phaser with the given parent, without any
368 +     * initially registered parties. If parent is non-null this phaser
369 +     * is registered with the parent and its initial phase number is
370 +     * the same as that of parent phaser.
371 +     *
372 +     * @param parent the parent phaser
373 +     */
374 +    public Phaser(Phaser parent) {
375 +        int phase = 0;
376 +        this.parent = parent;
377 +        if (parent != null) {
378 +            this.root = parent.root;
379 +            phase = parent.register();
380 +        }
381 +        else
382 +            this.root = this;
383 +        this.state = trippedStateFor(phase, 0);
384 +    }
385 +
386 +    /**
387 +     * Creates a new phaser with the given parent and numbers of
388 +     * registered unarrived parties. If parent is non-null, this phaser
389 +     * is registered with the parent and its initial phase number is
390 +     * the same as that of parent phaser.
391 +     *
392 +     * @param parent the parent phaser
393 +     * @param parties the number of parties required to trip barrier
394 +     * @throws IllegalArgumentException if parties less than zero
395 +     * or greater than the maximum number of parties supported
396 +     */
397 +    public Phaser(Phaser parent, int parties) {
398          if (parties < 0 || parties > ushortMask)
399              throw new IllegalArgumentException("Illegal number of parties");
400 <        state = new AtomicLong(stateFor(0, parties, parties));
400 >        int phase = 0;
401 >        this.parent = parent;
402 >        if (parent != null) {
403 >            this.root = parent.root;
404 >            phase = parent.register();
405 >        }
406 >        else
407 >            this.root = this;
408 >        this.state = trippedStateFor(phase, parties);
409      }
410  
411      /**
412       * Adds a new unarrived party to this phaser.
413 <     * @return the current barrier phase number upon registration
413 >     *
414 >     * @return the arrival phase number to which this registration applied
415 >     * @throws IllegalStateException if attempting to register more
416 >     * than the maximum supported number of parties
417 >     */
418 >    public int register() {
419 >        return doRegister(1);
420 >    }
421 >
422 >    /**
423 >     * Adds the given number of new unarrived parties to this phaser.
424 >     *
425 >     * @param parties the number of parties required to trip barrier
426 >     * @return the arrival phase number to which this registration applied
427       * @throws IllegalStateException if attempting to register more
428 <     * than the maximum supported number of parties.
428 >     * than the maximum supported number of parties
429       */
430 <    public int register() { // increment both parties and unarrived
431 <        final AtomicLong state = this.state;
430 >    public int bulkRegister(int parties) {
431 >        if (parties < 0)
432 >            throw new IllegalArgumentException();
433 >        if (parties == 0)
434 >            return getPhase();
435 >        return doRegister(parties);
436 >    }
437 >
438 >    /**
439 >     * Shared code for register, bulkRegister
440 >     */
441 >    private int doRegister(int registrations) {
442 >        int phase;
443          for (;;) {
444 <            long s = state.get();
445 <            int phase = phaseOf(s);
446 <            int parties = partiesOf(s) + 1;
447 <            int unarrived = unarrivedOf(s) + 1;
444 >            long s = getReconciledState();
445 >            phase = phaseOf(s);
446 >            int unarrived = unarrivedOf(s) + registrations;
447 >            int parties = partiesOf(s) + registrations;
448 >            if (phase < 0)
449 >                break;
450              if (parties > ushortMask || unarrived > ushortMask)
451 <                throw badBounds(parties, unarrived);
452 <            if (state.compareAndSet(s, stateFor(phase, parties, unarrived)))
453 <                return phase;
451 >                throw new IllegalStateException(badBounds(parties, unarrived));
452 >            if (phase == phaseOf(root.state) &&
453 >                casState(s, stateFor(phase, parties, unarrived)))
454 >                break;
455          }
456 +        return phase;
457      }
458  
459      /**
460       * Arrives at the barrier, but does not wait for others.  (You can
461 <     * in turn wait for others via {@link #awaitAdvance}).
461 >     * in turn wait for others via {@link #awaitAdvance}).  It is an
462 >     * unenforced usage error for an unregistered party to invoke this
463 >     * method.
464       *
465 <     * @return the current barrier phase number upon entry to
466 <     * this method, or a negative value if terminated;
467 <     * @throws IllegalStateException if the number of unarrived
224 <     * parties would become negative.
465 >     * @return the arrival phase number, or a negative value if terminated
466 >     * @throws IllegalStateException if not terminated and the number
467 >     * of unarrived parties would become negative
468       */
469 <    public int arrive() { // decrement unarrived. If zero, trip
470 <        final AtomicLong state = this.state;
469 >    public int arrive() {
470 >        int phase;
471          for (;;) {
472 <            long s = state.get();
473 <            int phase = phaseOf(s);
472 >            long s = state;
473 >            phase = phaseOf(s);
474 >            if (phase < 0)
475 >                break;
476              int parties = partiesOf(s);
477              int unarrived = unarrivedOf(s) - 1;
478 <            if (unarrived < 0)
479 <                throw badBounds(parties, unarrived);
480 <            if (unarrived == 0 && phase >= 0) {
236 <                trip(phase, parties);
237 <                return phase;
478 >            if (unarrived > 0) {        // Not the last arrival
479 >                if (casState(s, s - 1)) // s-1 adds one arrival
480 >                    break;
481              }
482 <            if (state.compareAndSet(s, stateFor(phase, parties, unarrived)))
483 <                return phase;
482 >            else if (unarrived == 0) {  // the last arrival
483 >                Phaser par = parent;
484 >                if (par == null) {      // directly trip
485 >                    if (casState
486 >                        (s,
487 >                         trippedStateFor(onAdvance(phase, parties) ? -1 :
488 >                                         ((phase + 1) & phaseMask), parties))) {
489 >                        releaseWaiters(phase);
490 >                        break;
491 >                    }
492 >                }
493 >                else {                  // cascade to parent
494 >                    if (casState(s, s - 1)) { // zeroes unarrived
495 >                        par.arrive();
496 >                        reconcileState();
497 >                        break;
498 >                    }
499 >                }
500 >            }
501 >            else if (phase != phaseOf(root.state)) // or if unreconciled
502 >                reconcileState();
503 >            else
504 >                throw new IllegalStateException(badBounds(parties, unarrived));
505          }
506 +        return phase;
507      }
508  
509      /**
510 <     * Arrives at the barrier, and deregisters from it, without
511 <     * waiting for others.
510 >     * Arrives at the barrier and deregisters from it without waiting
511 >     * for others. Deregistration reduces the number of parties
512 >     * required to trip the barrier in future phases.  If this phaser
513 >     * has a parent, and deregistration causes this phaser to have
514 >     * zero parties, this phaser also arrives at and is deregistered
515 >     * from its parent.  It is an unenforced usage error for an
516 >     * unregistered party to invoke this method.
517       *
518 <     * @return the current barrier phase number upon entry to
519 <     * this method, or a negative value if terminated;
520 <     * @throws IllegalStateException if the number of registered or
521 <     * unarrived parties would become negative.
522 <     */
523 <    public int arriveAndDeregister() { // Same as arrive, plus decrement parties
524 <        final AtomicLong state = this.state;
518 >     * @return the arrival phase number, or a negative value if terminated
519 >     * @throws IllegalStateException if not terminated and the number
520 >     * of registered or unarrived parties would become negative
521 >     */
522 >    public int arriveAndDeregister() {
523 >        // similar code to arrive, but too different to merge
524 >        Phaser par = parent;
525 >        int phase;
526          for (;;) {
527 <            long s = state.get();
528 <            int phase = phaseOf(s);
527 >            long s = state;
528 >            phase = phaseOf(s);
529 >            if (phase < 0)
530 >                break;
531              int parties = partiesOf(s) - 1;
532              int unarrived = unarrivedOf(s) - 1;
533 <            if (parties < 0 || unarrived < 0)
534 <                throw badBounds(parties, unarrived);
535 <            if (unarrived == 0 && phase >= 0) {
536 <                trip(phase, parties);
537 <                return phase;
533 >            if (parties >= 0) {
534 >                if (unarrived > 0 || (unarrived == 0 && par != null)) {
535 >                    if (casState
536 >                        (s,
537 >                         stateFor(phase, parties, unarrived))) {
538 >                        if (unarrived == 0) {
539 >                            par.arriveAndDeregister();
540 >                            reconcileState();
541 >                        }
542 >                        break;
543 >                    }
544 >                    continue;
545 >                }
546 >                if (unarrived == 0) {
547 >                    if (casState
548 >                        (s,
549 >                         trippedStateFor(onAdvance(phase, parties) ? -1 :
550 >                                         ((phase + 1) & phaseMask), parties))) {
551 >                        releaseWaiters(phase);
552 >                        break;
553 >                    }
554 >                    continue;
555 >                }
556 >                if (par != null && phase != phaseOf(root.state)) {
557 >                    reconcileState();
558 >                    continue;
559 >                }
560              }
561 <            if (state.compareAndSet(s, stateFor(phase, parties, unarrived)))
267 <                return phase;
561 >            throw new IllegalStateException(badBounds(parties, unarrived));
562          }
563 +        return phase;
564      }
565  
566      /**
567 <     * Arrives at the barrier and awaits others. Unlike other arrival
568 <     * methods, this method returns the arrival index of the
569 <     * caller. The caller tripping the barrier returns zero, the
570 <     * previous caller 1, and so on.
571 <     * @return the arrival index
572 <     * @throws IllegalStateException if the number of unarrived
573 <     * parties would become negative.
567 >     * Arrives at the barrier and awaits others. Equivalent in effect
568 >     * to {@code awaitAdvance(arrive())}.  If you need to await with
569 >     * interruption or timeout, you can arrange this with an analogous
570 >     * construction using one of the other forms of the awaitAdvance
571 >     * method.  If instead you need to deregister upon arrival use
572 >     * {@code arriveAndDeregister}. It is an unenforced usage error
573 >     * for an unregistered party to invoke this method.
574 >     *
575 >     * @return the arrival phase number, or a negative number if terminated
576 >     * @throws IllegalStateException if not terminated and the number
577 >     * of unarrived parties would become negative
578       */
579      public int arriveAndAwaitAdvance() {
580 <        final AtomicLong state = this.state;
282 <        for (;;) {
283 <            long s = state.get();
284 <            int phase = phaseOf(s);
285 <            int parties = partiesOf(s);
286 <            int unarrived = unarrivedOf(s) - 1;
287 <            if (unarrived < 0)
288 <                throw badBounds(parties, unarrived);
289 <            if (unarrived == 0 && phase >= 0) {
290 <                trip(phase, parties);
291 <                return 0;
292 <            }
293 <            if (state.compareAndSet(s, stateFor(phase, parties, unarrived))) {
294 <                awaitAdvance(phase);
295 <                return unarrived;
296 <            }
297 <        }
580 >        return awaitAdvance(arrive());
581      }
582  
583      /**
584 <     * Awaits the phase of the barrier to advance from the given
585 <     * value, or returns immediately if this barrier is terminated
586 <     * @param phase the phase on entry to this method
587 <     * @return the phase on exit from this method
584 >     * Awaits the phase of the barrier to advance from the given phase
585 >     * value, returning immediately if the current phase of the
586 >     * barrier is not equal to the given phase value or this barrier
587 >     * is terminated.  It is an unenforced usage error for an
588 >     * unregistered party to invoke this method.
589 >     *
590 >     * @param phase an arrival phase number, or negative value if
591 >     * terminated; this argument is normally the value returned by a
592 >     * previous call to {@code arrive} or its variants
593 >     * @return the next arrival phase number, or a negative value
594 >     * if terminated or argument is negative
595       */
596      public int awaitAdvance(int phase) {
597          if (phase < 0)
598              return phase;
599 <        Thread current = Thread.currentThread();
600 <        if (current instanceof ForkJoinWorkerThread)
601 <            return helpingWait(phase);
602 <        if (untimedWait(current, phase, false))
603 <            current.interrupt();
604 <        return phaseOf(state.get());
599 >        long s = getReconciledState();
600 >        int p = phaseOf(s);
601 >        if (p != phase)
602 >            return p;
603 >        if (unarrivedOf(s) == 0 && parent != null)
604 >            parent.awaitAdvance(phase);
605 >        // Fall here even if parent waited, to reconcile and help release
606 >        return untimedWait(phase);
607      }
608  
609      /**
610 <     * Awaits the phase of the barrier to advance from the given
611 <     * value, or returns immediately if this barrier is terminated, or
612 <     * throws InterruptedException if interrupted while waiting.
613 <     * @param phase the phase on entry to this method
614 <     * @return the phase on exit from this method
610 >     * Awaits the phase of the barrier to advance from the given phase
611 >     * value, throwing {@code InterruptedException} if interrupted
612 >     * while waiting, or returning immediately if the current phase of
613 >     * the barrier is not equal to the given phase value or this
614 >     * barrier is terminated. It is an unenforced usage error for an
615 >     * unregistered party to invoke this method.
616 >     *
617 >     * @param phase an arrival phase number, or negative value if
618 >     * terminated; this argument is normally the value returned by a
619 >     * previous call to {@code arrive} or its variants
620 >     * @return the next arrival phase number, or a negative value
621 >     * if terminated or argument is negative
622       * @throws InterruptedException if thread interrupted while waiting
623       */
624 <    public int awaitAdvanceInterruptibly(int phase) throws InterruptedException {
624 >    public int awaitAdvanceInterruptibly(int phase)
625 >        throws InterruptedException {
626          if (phase < 0)
627              return phase;
628 <        Thread current = Thread.currentThread();
629 <        if (current instanceof ForkJoinWorkerThread)
630 <            return helpingWait(phase);
631 <        else if (Thread.interrupted() || untimedWait(current, phase, true))
632 <            throw new InterruptedException();
633 <        else
634 <            return phaseOf(state.get());
628 >        long s = getReconciledState();
629 >        int p = phaseOf(s);
630 >        if (p != phase)
631 >            return p;
632 >        if (unarrivedOf(s) == 0 && parent != null)
633 >            parent.awaitAdvanceInterruptibly(phase);
634 >        return interruptibleWait(phase);
635      }
636  
637      /**
638 <     * Awaits the phase of the barrier to advance from the given value
639 <     * or the given timeout elapses, or returns immediately if this
640 <     * barrier is terminated
641 <     * @param phase the phase on entry to this method
642 <     * @return the phase on exit from this method
638 >     * Awaits the phase of the barrier to advance from the given phase
639 >     * value or the given timeout to elapse, throwing {@code
640 >     * InterruptedException} if interrupted while waiting, or
641 >     * returning immediately if the current phase of the barrier is
642 >     * not equal to the given phase value or this barrier is
643 >     * terminated.  It is an unenforced usage error for an
644 >     * unregistered party to invoke this method.
645 >     *
646 >     * @param phase an arrival phase number, or negative value if
647 >     * terminated; this argument is normally the value returned by a
648 >     * previous call to {@code arrive} or its variants
649 >     * @param timeout how long to wait before giving up, in units of
650 >     *        {@code unit}
651 >     * @param unit a {@code TimeUnit} determining how to interpret the
652 >     *        {@code timeout} parameter
653 >     * @return the next arrival phase number, or a negative value
654 >     * if terminated or argument is negative
655       * @throws InterruptedException if thread interrupted while waiting
656       * @throws TimeoutException if timed out while waiting
657       */
658 <    public int awaitAdvanceInterruptibly(int phase, long timeout, TimeUnit unit)
658 >    public int awaitAdvanceInterruptibly(int phase,
659 >                                         long timeout, TimeUnit unit)
660          throws InterruptedException, TimeoutException {
661          if (phase < 0)
662              return phase;
663 <        long nanos = unit.toNanos(timeout);
664 <        Thread current = Thread.currentThread();
665 <        if (current instanceof ForkJoinWorkerThread)
666 <            return timedHelpingWait(phase, nanos);
667 <        timedWait(current, phase, nanos);
668 <        return phaseOf(state.get());
663 >        long s = getReconciledState();
664 >        int p = phaseOf(s);
665 >        if (p != phase)
666 >            return p;
667 >        if (unarrivedOf(s) == 0 && parent != null)
668 >            parent.awaitAdvanceInterruptibly(phase, timeout, unit);
669 >        return timedWait(phase, unit.toNanos(timeout));
670      }
671  
672      /**
673       * Forces this barrier to enter termination state. Counts of
674 <     * arrived and registered parties are unaffected. This method may
675 <     * be useful for coordinating recovery after one or more tasks
676 <     * encounter unexpected exceptions.
674 >     * arrived and registered parties are unaffected. If this phaser
675 >     * has a parent, it too is terminated. This method may be useful
676 >     * for coordinating recovery after one or more tasks encounter
677 >     * unexpected exceptions.
678       */
679      public void forceTermination() {
365        final AtomicLong state = this.state;
680          for (;;) {
681 <            long s = state.get();
681 >            long s = getReconciledState();
682              int phase = phaseOf(s);
683              int parties = partiesOf(s);
684              int unarrived = unarrivedOf(s);
685              if (phase < 0 ||
686 <                state.compareAndSet(s, stateFor(-1, parties, unarrived))) {
687 <                if (head.get() != null)
688 <                    releaseWaiters(-1);
686 >                casState(s, stateFor(-1, parties, unarrived))) {
687 >                releaseWaiters(0);
688 >                releaseWaiters(1);
689 >                if (parent != null)
690 >                    parent.forceTermination();
691                  return;
692              }
693          }
694      }
695  
696      /**
381     * Resets the barrier with the given numbers of registered unarrived
382     * parties and phase number 0. This method allows repeated reuse
383     * of this barrier, but only if it is somehow known not to be in
384     * use for other purposes.
385     * @param parties the number of parties required to trip barrier.
386     * @throws IllegalArgumentException if parties less than zero
387     * or greater than the maximum number of parties supported.
388     */
389    public void reset(int parties) {
390        if (parties < 0 || parties > ushortMask)
391            throw new IllegalArgumentException("Illegal number of parties");
392        state.set(stateFor(0, parties, parties));
393        if (head.get() != null)
394            releaseWaiters(0);
395    }
396
397    /**
697       * Returns the current phase number. The maximum phase number is
698 <     * <tt>Integer.MAX_VALUE</tt>, after which it restarts at
698 >     * {@code Integer.MAX_VALUE}, after which it restarts at
699       * zero. Upon termination, the phase number is negative.
700 +     *
701       * @return the phase number, or a negative value if terminated
702       */
703 <    public int getPhase() {
704 <        return phaseOf(state.get());
703 >    public final int getPhase() {
704 >        return phaseOf(getReconciledState());
705      }
706  
707      /**
708       * Returns the number of parties registered at this barrier.
709 +     *
710       * @return the number of parties
711       */
712      public int getRegisteredParties() {
713 <        return partiesOf(state.get());
713 >        return partiesOf(state);
714      }
715  
716      /**
717 <     * Returns the number of parties that have arrived at the current
718 <     * phase of this barrier.
717 >     * Returns the number of registered parties that have arrived at
718 >     * the current phase of this barrier.
719 >     *
720       * @return the number of arrived parties
721       */
722      public int getArrivedParties() {
723 <        return arrivedOf(state.get());
723 >        return arrivedOf(state);
724      }
725  
726      /**
727       * Returns the number of registered parties that have not yet
728       * arrived at the current phase of this barrier.
729 +     *
730       * @return the number of unarrived parties
731       */
732      public int getUnarrivedParties() {
733 <        return unarrivedOf(state.get());
733 >        return unarrivedOf(state);
734 >    }
735 >
736 >    /**
737 >     * Returns the parent of this phaser, or {@code null} if none.
738 >     *
739 >     * @return the parent of this phaser, or {@code null} if none
740 >     */
741 >    public Phaser getParent() {
742 >        return parent;
743 >    }
744 >
745 >    /**
746 >     * Returns the root ancestor of this phaser, which is the same as
747 >     * this phaser if it has no parent.
748 >     *
749 >     * @return the root ancestor of this phaser
750 >     */
751 >    public Phaser getRoot() {
752 >        return root;
753      }
754  
755      /**
756 <     * Returns true if this barrier has been terminated
757 <     * @return true if this barrier has been terminated
756 >     * Returns {@code true} if this barrier has been terminated.
757 >     *
758 >     * @return {@code true} if this barrier has been terminated
759       */
760      public boolean isTerminated() {
761 <        return phaseOf(state.get()) < 0;
761 >        return getPhase() < 0;
762      }
763  
764      /**
765       * Overridable method to perform an action upon phase advance, and
766 <     * to control termination. This method is invoked whenever the
767 <     * barrier is tripped (and thus all other waiting parties are
768 <     * dormant). If it returns true, then, rather than advance the
769 <     * phase number, this barrier will be set to a final termination
770 <     * state, and subsequent calls to <tt>isTerminated</tt> will
771 <     * return true.
772 <     *
773 <     * <p> The default version returns true when the number of
766 >     * to control termination. This method is invoked upon arrival of
767 >     * the party tripping the barrier (when all other waiting parties
768 >     * are dormant).  If this method returns {@code true}, then,
769 >     * rather than advance the phase number, this barrier will be set
770 >     * to a final termination state, and subsequent calls to {@link
771 >     * #isTerminated} will return true. Any (unchecked) Exception or
772 >     * Error thrown by an invocation of this method is propagated to
773 >     * the party attempting to trip the barrier, in which case no
774 >     * advance occurs.
775 >     *
776 >     * <p>The arguments to this method provide the state of the phaser
777 >     * prevailing for the current transition. (When called from within
778 >     * an implementation of {@code onAdvance} the values returned by
779 >     * methods such as {@code getPhase} may or may not reliably
780 >     * indicate the state to which this transition applies.)
781 >     *
782 >     * <p>The default version returns {@code true} when the number of
783       * registered parties is zero. Normally, overrides that arrange
784       * termination for other reasons should also preserve this
785       * property.
786       *
787 +     * <p>You may override this method to perform an action with side
788 +     * effects visible to participating tasks, but it is in general
789 +     * only sensible to do so in designs where all parties register
790 +     * before any arrive, and all {@link #awaitAdvance} at each phase.
791 +     * Otherwise, you cannot ensure lack of interference from other
792 +     * parties during the invocation of this method.
793 +     *
794       * @param phase the phase number on entering the barrier
795 <     * @param registeredParties the current number of registered
796 <     * parties.
458 <     * @return true if this barrier should terminate
795 >     * @param registeredParties the current number of registered parties
796 >     * @return {@code true} if this barrier should terminate
797       */
798      protected boolean onAdvance(int phase, int registeredParties) {
799          return registeredParties <= 0;
800      }
801  
802      /**
803 <     * Returns a string identifying this barrier, as well as its
803 >     * Returns a string identifying this phaser, as well as its
804       * state.  The state, in brackets, includes the String {@code
805 <     * "phase ="} followed by the phase number, {@code "parties ="}
805 >     * "phase = "} followed by the phase number, {@code "parties = "}
806       * followed by the number of registered parties, and {@code
807 <     * "arrived ="} followed by the number of arrived parties
807 >     * "arrived = "} followed by the number of arrived parties.
808       *
809       * @return a string identifying this barrier, as well as its state
810       */
811      public String toString() {
812 <        long s = state.get();
813 <        return super.toString() + "[phase = " + phaseOf(s) + " parties = " + partiesOf(s) + " arrived = " + arrivedOf(s) + "]";
812 >        long s = getReconciledState();
813 >        return super.toString() +
814 >            "[phase = " + phaseOf(s) +
815 >            " parties = " + partiesOf(s) +
816 >            " arrived = " + arrivedOf(s) + "]";
817      }
818  
819 <    // methods for tripping and waiting
819 >    // methods for waiting
820  
821      /**
822 <     * Advance the current phase (or terminate)
822 >     * Wait nodes for Treiber stack representing wait queue
823       */
824 <    private void trip(int phase, int parties) {
825 <        int next = onAdvance(phase, parties)? -1 : ((phase + 1) & phaseMask);
826 <        state.set(stateFor(next, parties, parties));
827 <        if (head.get() != null)
828 <            releaseWaiters(next);
829 <    }
830 <
831 <    private int helpingWait(int phase) {
832 <        final AtomicLong state = this.state;
833 <        int p;
834 <        while ((p = phaseOf(state.get())) == phase) {
835 <            ForkJoinTask<?> t = ForkJoinWorkerThread.pollTask();
836 <            if (t != null) {
837 <                if ((p = phaseOf(state.get())) == phase)
838 <                    t.exec();
839 <                else {   // push task and exit if barrier advanced
840 <                    t.fork();
841 <                    break;
842 <                }
502 <            }
824 >    static final class QNode implements ForkJoinPool.ManagedBlocker {
825 >        final Phaser phaser;
826 >        final int phase;
827 >        final long startTime;
828 >        final long nanos;
829 >        final boolean timed;
830 >        final boolean interruptible;
831 >        volatile boolean wasInterrupted = false;
832 >        volatile Thread thread; // nulled to cancel wait
833 >        QNode next;
834 >        QNode(Phaser phaser, int phase, boolean interruptible,
835 >              boolean timed, long startTime, long nanos) {
836 >            this.phaser = phaser;
837 >            this.phase = phase;
838 >            this.timed = timed;
839 >            this.interruptible = interruptible;
840 >            this.startTime = startTime;
841 >            this.nanos = nanos;
842 >            thread = Thread.currentThread();
843          }
844 <        return p;
845 <    }
846 <
847 <    private int timedHelpingWait(int phase, long nanos) throws TimeoutException {
848 <        final AtomicLong state = this.state;
849 <        long lastTime = System.nanoTime();
850 <        int p;
851 <        while ((p = phaseOf(state.get())) == phase) {
852 <            long now = System.nanoTime();
853 <            nanos -= now - lastTime;
854 <            lastTime = now;
515 <            if (nanos <= 0) {
516 <                if ((p = phaseOf(state.get())) == phase)
517 <                    throw new TimeoutException();
518 <                else
519 <                    break;
844 >        public boolean isReleasable() {
845 >            return (thread == null ||
846 >                    phaser.getPhase() != phase ||
847 >                    (interruptible && wasInterrupted) ||
848 >                    (timed && (nanos - (System.nanoTime() - startTime)) <= 0));
849 >        }
850 >        public boolean block() {
851 >            if (Thread.interrupted()) {
852 >                wasInterrupted = true;
853 >                if (interruptible)
854 >                    return true;
855              }
856 <            ForkJoinTask<?> t = ForkJoinWorkerThread.pollTask();
856 >            if (!timed)
857 >                LockSupport.park(this);
858 >            else {
859 >                long waitTime = nanos - (System.nanoTime() - startTime);
860 >                if (waitTime <= 0)
861 >                    return true;
862 >                LockSupport.parkNanos(this, waitTime);
863 >            }
864 >            return isReleasable();
865 >        }
866 >        void signal() {
867 >            Thread t = thread;
868              if (t != null) {
869 <                if ((p = phaseOf(state.get())) == phase)
870 <                    t.exec();
871 <                else {   // push task and exit if barrier advanced
872 <                    t.fork();
873 <                    break;
869 >                thread = null;
870 >                LockSupport.unpark(t);
871 >            }
872 >        }
873 >        boolean doWait() {
874 >            if (thread != null) {
875 >                try {
876 >                    ForkJoinPool.managedBlock(this, false);
877 >                } catch (InterruptedException ie) {
878                  }
879              }
880 +            return wasInterrupted;
881          }
882 <        return p;
882 >
883      }
884  
885      /**
886 <     * Wait nodes for Treiber stack representing wait queue for non-FJ
536 <     * tasks. The waiting scheme is an adaptation of the one used in
537 <     * forkjoin.PoolBarrier.
886 >     * Removes and signals waiting threads from wait queue.
887       */
888 <    static final class QNode {
889 <        QNode next;
890 <        volatile Thread thread; // nulled to cancel wait
891 <        final int phase;
892 <        QNode(Thread t, int c) {
893 <            thread = t;
545 <            phase = c;
546 <        }
547 <    }
548 <
549 <    private void releaseWaiters(int currentPhase) {
550 <        final AtomicReference<QNode> head = this.head;
551 <        QNode p;
552 <        while ((p = head.get()) != null && p.phase != currentPhase) {
553 <            if (head.compareAndSet(p, null)) {
554 <                do {
555 <                    Thread t = p.thread;
556 <                    if (t != null) {
557 <                        p.thread = null;
558 <                        LockSupport.unpark(t);
559 <                    }
560 <                } while ((p = p.next) != null);
561 <            }
888 >    private void releaseWaiters(int phase) {
889 >        AtomicReference<QNode> head = queueFor(phase);
890 >        QNode q;
891 >        while ((q = head.get()) != null) {
892 >            if (head.compareAndSet(q, q.next))
893 >                q.signal();
894          }
895      }
896  
565    /** The number of CPUs, for spin control */
566    static final int NCPUS = Runtime.getRuntime().availableProcessors();
567
897      /**
898 <     * The number of times to spin before blocking in timed waits.
899 <     * The value is empirically derived
900 <     */
572 <    static final int maxTimedSpins = (NCPUS < 2)? 0 : 32;
573 <
574 <    /**
575 <     * The number of times to spin before blocking in untimed waits.
576 <     * This is greater than timed value because untimed waits spin
577 <     * faster since they don't need to check times on each spin.
898 >     * Tries to enqueue given node in the appropriate wait queue.
899 >     *
900 >     * @return true if successful
901       */
902 <    static final int maxUntimedSpins = maxTimedSpins * 32;
902 >    private boolean tryEnqueue(QNode node) {
903 >        AtomicReference<QNode> head = queueFor(node.phase);
904 >        return head.compareAndSet(node.next = head.get(), node);
905 >    }
906  
907      /**
908 <     * The number of nanoseconds for which it is faster to spin
909 <     * rather than to use timed park. A rough estimate suffices.
908 >     * Enqueues node and waits unless aborted or signalled.
909 >     *
910 >     * @return current phase
911       */
912 <    static final long spinForTimeoutThreshold = 1000L;
912 >    private int untimedWait(int phase) {
913 >        QNode node = null;
914 >        boolean queued = false;
915 >        boolean interrupted = false;
916 >        int p;
917 >        while ((p = getPhase()) == phase) {
918 >            if (Thread.interrupted())
919 >                interrupted = true;
920 >            else if (node == null)
921 >                node = new QNode(this, phase, false, false, 0, 0);
922 >            else if (!queued)
923 >                queued = tryEnqueue(node);
924 >            else
925 >                interrupted = node.doWait();
926 >        }
927 >        if (node != null)
928 >            node.thread = null;
929 >        releaseWaiters(phase);
930 >        if (interrupted)
931 >            Thread.currentThread().interrupt();
932 >        return p;
933 >    }
934  
935      /**
936 <     * Enqueues node and waits unless aborted or signalled.
936 >     * Interruptible version
937 >     * @return current phase
938       */
939 <    private boolean untimedWait(Thread thread, int currentPhase,
591 <                               boolean abortOnInterrupt) {
592 <        final AtomicReference<QNode> head = this.head;
593 <        final AtomicLong state = this.state;
594 <        boolean wasInterrupted = false;
939 >    private int interruptibleWait(int phase) throws InterruptedException {
940          QNode node = null;
941          boolean queued = false;
942 <        int spins = maxUntimedSpins;
943 <        while (phaseOf(state.get()) == currentPhase) {
944 <            QNode h;
945 <            if (node != null && queued) {
946 <                if (node.thread != null) {
947 <                    LockSupport.park();
948 <                    if (Thread.interrupted()) {
949 <                        wasInterrupted = true;
950 <                        if (abortOnInterrupt)
606 <                            break;
607 <                    }
608 <                }
609 <            }
610 <            else if ((h = head.get()) != null && h.phase != currentPhase) {
611 <                if (phaseOf(state.get()) == currentPhase) { // must recheck
612 <                    if (head.compareAndSet(h, h.next)) {
613 <                        Thread t = h.thread; // help clear out old waiters
614 <                        if (t != null) {
615 <                            h.thread = null;
616 <                            LockSupport.unpark(t);
617 <                        }
618 <                    }
619 <                }
620 <                else
621 <                    break;
622 <            }
623 <            else if (node != null)
624 <                queued = head.compareAndSet(node.next = h, node);
625 <            else if (spins <= 0)
626 <                node = new QNode(thread, currentPhase);
942 >        boolean interrupted = false;
943 >        int p;
944 >        while ((p = getPhase()) == phase && !interrupted) {
945 >            if (Thread.interrupted())
946 >                interrupted = true;
947 >            else if (node == null)
948 >                node = new QNode(this, phase, true, false, 0, 0);
949 >            else if (!queued)
950 >                queued = tryEnqueue(node);
951              else
952 <                --spins;
952 >                interrupted = node.doWait();
953          }
954          if (node != null)
955              node.thread = null;
956 <        return wasInterrupted;
956 >        if (p != phase || (p = getPhase()) != phase)
957 >            releaseWaiters(phase);
958 >        if (interrupted)
959 >            throw new InterruptedException();
960 >        return p;
961      }
962  
963      /**
964 <     * Messier timeout version
964 >     * Timeout version.
965 >     * @return current phase
966       */
967 <    private void timedWait(Thread thread, int currentPhase, long nanos)
967 >    private int timedWait(int phase, long nanos)
968          throws InterruptedException, TimeoutException {
969 <        final AtomicReference<QNode> head = this.head;
641 <        final AtomicLong state = this.state;
642 <        long lastTime = System.nanoTime();
969 >        long startTime = System.nanoTime();
970          QNode node = null;
971          boolean queued = false;
972 <        int spins = maxTimedSpins;
973 <        while (phaseOf(state.get()) == currentPhase) {
974 <            QNode h;
975 <            long now = System.nanoTime();
976 <            nanos -= now - lastTime;
977 <            lastTime = now;
978 <            if (nanos <= 0) {
979 <                if (node != null)
980 <                    node.thread = null;
981 <                if (phaseOf(state.get()) == currentPhase)
982 <                    throw new TimeoutException();
656 <                else
657 <                    break;
658 <            }
659 <            else if (node != null && queued) {
660 <                if (node.thread != null &&
661 <                    nanos > spinForTimeoutThreshold) {
662 <                    //                LockSupport.parkNanos(this, nanos);
663 <                    LockSupport.parkNanos(nanos);
664 <                    if (Thread.interrupted()) {
665 <                        node.thread = null;
666 <                        throw new InterruptedException();
667 <                    }
668 <                }
669 <            }
670 <            else if ((h = head.get()) != null && h.phase != currentPhase) {
671 <                if (phaseOf(state.get()) == currentPhase) { // must recheck
672 <                    if (head.compareAndSet(h, h.next)) {
673 <                        Thread t = h.thread; // help clear out old waiters
674 <                        if (t != null) {
675 <                            h.thread = null;
676 <                            LockSupport.unpark(t);
677 <                        }
678 <                    }
679 <                }
680 <                else
681 <                    break;
682 <            }
683 <            else if (node != null)
684 <                queued = head.compareAndSet(node.next = h, node);
685 <            else if (spins <= 0)
686 <                node = new QNode(thread, currentPhase);
972 >        boolean interrupted = false;
973 >        int p;
974 >        while ((p = getPhase()) == phase && !interrupted) {
975 >            if (Thread.interrupted())
976 >                interrupted = true;
977 >            else if (nanos - (System.nanoTime() - startTime) <= 0)
978 >                break;
979 >            else if (node == null)
980 >                node = new QNode(this, phase, true, true, startTime, nanos);
981 >            else if (!queued)
982 >                queued = tryEnqueue(node);
983              else
984 <                --spins;
984 >                interrupted = node.doWait();
985          }
986          if (node != null)
987              node.thread = null;
988 +        if (p != phase || (p = getPhase()) != phase)
989 +            releaseWaiters(phase);
990 +        if (interrupted)
991 +            throw new InterruptedException();
992 +        if (p == phase)
993 +            throw new TimeoutException();
994 +        return p;
995      }
996  
997 < }
997 >    // Unsafe mechanics
998  
999 +    private static final sun.misc.Unsafe UNSAFE = getUnsafe();
1000 +    private static final long stateOffset =
1001 +        objectFieldOffset("state", Phaser.class);
1002 +
1003 +    private final boolean casState(long cmp, long val) {
1004 +        return UNSAFE.compareAndSwapLong(this, stateOffset, cmp, val);
1005 +    }
1006 +
1007 +    private static long objectFieldOffset(String field, Class<?> klazz) {
1008 +        try {
1009 +            return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
1010 +        } catch (NoSuchFieldException e) {
1011 +            // Convert Exception to corresponding Error
1012 +            NoSuchFieldError error = new NoSuchFieldError(field);
1013 +            error.initCause(e);
1014 +            throw error;
1015 +        }
1016 +    }
1017 +
1018 +    /**
1019 +     * Returns a sun.misc.Unsafe.  Suitable for use in a 3rd party package.
1020 +     * Replace with a simple call to Unsafe.getUnsafe when integrating
1021 +     * into a jdk.
1022 +     *
1023 +     * @return a sun.misc.Unsafe
1024 +     */
1025 +    private static sun.misc.Unsafe getUnsafe() {
1026 +        try {
1027 +            return sun.misc.Unsafe.getUnsafe();
1028 +        } catch (SecurityException se) {
1029 +            try {
1030 +                return java.security.AccessController.doPrivileged
1031 +                    (new java.security
1032 +                     .PrivilegedExceptionAction<sun.misc.Unsafe>() {
1033 +                        public sun.misc.Unsafe run() throws Exception {
1034 +                            java.lang.reflect.Field f = sun.misc
1035 +                                .Unsafe.class.getDeclaredField("theUnsafe");
1036 +                            f.setAccessible(true);
1037 +                            return (sun.misc.Unsafe) f.get(null);
1038 +                        }});
1039 +            } catch (java.security.PrivilegedActionException e) {
1040 +                throw new RuntimeException("Could not initialize intrinsics",
1041 +                                           e.getCause());
1042 +            }
1043 +        }
1044 +    }
1045 + }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines