ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/Phaser.java
(Generate patch)

Comparing jsr166/src/jsr166y/Phaser.java (file contents):
Revision 1.43 by dl, Mon Aug 24 23:08:18 2009 UTC vs.
Revision 1.56 by dl, Wed Nov 17 10:48:59 2010 UTC

# Line 6 | Line 6
6  
7   package jsr166y;
8  
9 < import java.util.concurrent.*;
10 <
9 > import java.util.concurrent.TimeUnit;
10 > import java.util.concurrent.TimeoutException;
11   import java.util.concurrent.atomic.AtomicReference;
12   import java.util.concurrent.locks.LockSupport;
13  
# Line 109 | Line 109 | import java.util.concurrent.locks.LockSu
109   * <p><b>Sample usages:</b>
110   *
111   * <p>A {@code Phaser} may be used instead of a {@code CountDownLatch}
112 < * to control a one-shot action serving a variable number of
113 < * parties. The typical idiom is for the method setting this up to
114 < * first register, then start the actions, then deregister, as in:
112 > * to control a one-shot action serving a variable number of parties.
113 > * The typical idiom is for the method setting this up to first
114 > * register, then start the actions, then deregister, as in:
115   *
116   *  <pre> {@code
117   * void runTasks(List<Runnable> tasks) {
# Line 142 | Line 142 | import java.util.concurrent.locks.LockSu
142   *     }
143   *   };
144   *   phaser.register();
145 < *   for (Runnable task : tasks) {
145 > *   for (final Runnable task : tasks) {
146   *     phaser.register();
147   *     new Thread() {
148   *       public void run() {
149   *         do {
150   *           task.run();
151   *           phaser.arriveAndAwaitAdvance();
152 < *         } while(!phaser.isTerminated();
152 > *         } while (!phaser.isTerminated());
153   *       }
154   *     }.start();
155   *   }
# Line 158 | Line 158 | import java.util.concurrent.locks.LockSu
158   *
159   * If the main task must later await termination, it
160   * may re-register and then execute a similar loop:
161 < * <pre> {@code
161 > *  <pre> {@code
162   *   // ...
163   *   phaser.register();
164   *   while (!phaser.isTerminated())
165 < *     phaser.arriveAndAwaitAdvance();
166 < * }</pre>
165 > *     phaser.arriveAndAwaitAdvance();}</pre>
166   *
167 < * Related constructions may be used to await particular phase numbers
167 > * <p>Related constructions may be used to await particular phase numbers
168   * in contexts where you are sure that the phase will never wrap around
169   * {@code Integer.MAX_VALUE}. For example:
170   *
171 < * <pre> {@code
172 < *   void awaitPhase(Phaser phaser, int phase) {
173 < *     int p = phaser.register(); // assumes caller not already registered
174 < *     while (p < phase) {
175 < *       if (phaser.isTerminated())
176 < *         // ... deal with unexpected termination
177 < *       else
178 < *         p = phaser.arriveAndAwaitAdvance();
180 < *     }
181 < *     phaser.arriveAndDeregister();
171 > *  <pre> {@code
172 > * void awaitPhase(Phaser phaser, int phase) {
173 > *   int p = phaser.register(); // assumes caller not already registered
174 > *   while (p < phase) {
175 > *     if (phaser.isTerminated())
176 > *       // ... deal with unexpected termination
177 > *     else
178 > *       p = phaser.arriveAndAwaitAdvance();
179   *   }
180 < * }</pre>
180 > *   phaser.arriveAndDeregister();
181 > * }}</pre>
182   *
183   *
184   * <p>To create a set of tasks using a tree of phasers,
185   * you could use code of the following form, assuming a
186   * Task class with a constructor accepting a phaser that
187 < * it registers for upon construction:
187 > * it registers with upon construction:
188 > *
189   *  <pre> {@code
190 < * void build(Task[] actions, int lo, int hi, Phaser b) {
191 < *   int step = (hi - lo) / TASKS_PER_PHASER;
192 < *   if (step > 1) {
193 < *     int i = lo;
194 < *     while (i < hi) {
196 < *       int r = Math.min(i + step, hi);
197 < *       build(actions, i, r, new Phaser(b));
198 < *       i = r;
190 > * void build(Task[] actions, int lo, int hi, Phaser ph) {
191 > *   if (hi - lo > TASKS_PER_PHASER) {
192 > *     for (int i = lo; i < hi; i += TASKS_PER_PHASER) {
193 > *       int j = Math.min(i + TASKS_PER_PHASER, hi);
194 > *       build(actions, i, j, new Phaser(ph));
195   *     }
196   *   } else {
197   *     for (int i = lo; i < hi; ++i)
198 < *       actions[i] = new Task(b);
199 < *       // assumes new Task(b) performs b.register()
198 > *       actions[i] = new Task(ph);
199 > *       // assumes new Task(ph) performs ph.register()
200   *   }
201   * }
202   * // .. initially called, for n tasks via
# Line 211 | Line 207 | import java.util.concurrent.locks.LockSu
207   * be appropriate for extremely small per-barrier task bodies (thus
208   * high rates), or up to hundreds for extremely large ones.
209   *
214 * </pre>
215 *
210   * <p><b>Implementation notes</b>: This implementation restricts the
211   * maximum number of parties to 65535. Attempts to register additional
212   * parties result in {@code IllegalStateException}. However, you can and
# Line 233 | Line 227 | public class Phaser {
227       * Barrier state representation. Conceptually, a barrier contains
228       * four values:
229       *
230 <     * * parties -- the number of parties to wait (16 bits)
231 <     * * unarrived -- the number of parties yet to hit barrier (16 bits)
232 <     * * phase -- the generation of the barrier (31 bits)
233 <     * * terminated -- set if barrier is terminated (1 bit)
230 >     * * unarrived -- the number of parties yet to hit barrier (bits  0-15)
231 >     * * parties -- the number of parties to wait              (bits 16-31)
232 >     * * phase -- the generation of the barrier                (bits 32-62)
233 >     * * terminated -- set if barrier is terminated            (bit  63 / sign)
234       *
235       * However, to efficiently maintain atomicity, these values are
236       * packed into a single (atomic) long. Termination uses the sign
237       * bit of 32 bit representation of phase, so phase is set to -1 on
238       * termination. Good performance relies on keeping state decoding
239       * and encoding simple, and keeping race windows short.
246     *
247     * Note: there are some cheats in arrive() that rely on unarrived
248     * count being lowest 16 bits.
240       */
241      private volatile long state;
242  
243 <    private static final int ushortMask = 0xffff;
244 <    private static final int phaseMask  = 0x7fffffff;
243 >    private static final int  MAX_PARTIES    = 0xffff;
244 >    private static final int  MAX_PHASE      = 0x7fffffff;
245 >    private static final int  PARTIES_SHIFT  = 16;
246 >    private static final int  PHASE_SHIFT    = 32;
247 >    private static final int  UNARRIVED_MASK = 0xffff;
248 >    private static final int  PARTIES_MASK   = 0xffff0000;
249 >    private static final long LPARTIES_MASK  = 0xffff0000L; // long version
250 >    private static final long ONE_ARRIVAL    = 1L;
251 >    private static final long ONE_PARTY      = 1L << PARTIES_SHIFT;
252 >    private static final long TERMINATION_PHASE  = -1L << PHASE_SHIFT;
253 >
254 >    // The following unpacking methods are usually manually inlined
255  
256      private static int unarrivedOf(long s) {
257 <        return (int) (s & ushortMask);
257 >        return (int)s & UNARRIVED_MASK;
258      }
259  
260      private static int partiesOf(long s) {
261 <        return ((int) s) >>> 16;
261 >        return (int)s >>> PARTIES_SHIFT;
262      }
263  
264      private static int phaseOf(long s) {
265 <        return (int) (s >>> 32);
265 >        return (int) (s >>> PHASE_SHIFT);
266      }
267  
268      private static int arrivedOf(long s) {
269          return partiesOf(s) - unarrivedOf(s);
270      }
271  
271    private static long stateFor(int phase, int parties, int unarrived) {
272        return ((((long) phase) << 32) | (((long) parties) << 16) |
273                (long) unarrived);
274    }
275
276    private static long trippedStateFor(int phase, int parties) {
277        long lp = (long) parties;
278        return (((long) phase) << 32) | (lp << 16) | lp;
279    }
280
281    /**
282     * Returns message string for bad bounds exceptions.
283     */
284    private static String badBounds(int parties, int unarrived) {
285        return ("Attempt to set " + unarrived +
286                " unarrived of " + parties + " parties");
287    }
288
272      /**
273       * The parent of this phaser, or null if none
274       */
# Line 297 | Line 280 | public class Phaser {
280       */
281      private final Phaser root;
282  
300    // Wait queues
301
283      /**
284       * Heads of Treiber stacks for waiting threads. To eliminate
285 <     * contention while releasing some threads while adding others, we
285 >     * contention when releasing some threads while adding others, we
286       * use two of them, alternating across even and odd phases.
287 +     * Subphasers share queues with root to speed up releases.
288       */
289 <    private final AtomicReference<QNode> evenQ = new AtomicReference<QNode>();
290 <    private final AtomicReference<QNode> oddQ  = new AtomicReference<QNode>();
289 >    private final AtomicReference<QNode> evenQ;
290 >    private final AtomicReference<QNode> oddQ;
291  
292      private AtomicReference<QNode> queueFor(int phase) {
293          return ((phase & 1) == 0) ? evenQ : oddQ;
294      }
295  
296      /**
297 <     * Returns current state, first resolving lagged propagation from
298 <     * root if necessary.
297 >     * Main implementation for methods arrive and arriveAndDeregister.
298 >     * Manually tuned to speed up and minimize race windows for the
299 >     * common case of just decrementing unarrived field.
300 >     *
301 >     * @param adj - adjustment to apply to state -- either
302 >     * ONE_ARRIVAL (for arrive) or
303 >     * ONE_ARRIVAL|ONE_PARTY (for arriveAndDeregister)
304       */
305 <    private long getReconciledState() {
306 <        return (parent == null) ? state : reconcileState();
305 >    private int doArrive(long adj) {
306 >        for (;;) {
307 >            long s;
308 >            int phase, unarrived;
309 >            if ((phase = (int)((s = state) >>> PHASE_SHIFT)) < 0)
310 >                return phase;
311 >            else if ((unarrived = (int)s & UNARRIVED_MASK) == 0)
312 >                checkBadArrive(s);
313 >            else if (UNSAFE.compareAndSwapLong(this, stateOffset, s, s-=adj)) {
314 >                if (unarrived == 1) {
315 >                    Phaser par;
316 >                    long p = s & LPARTIES_MASK; // unshifted parties field
317 >                    long lu = p >>> PARTIES_SHIFT;
318 >                    int u = (int)lu;
319 >                    int nextPhase = (phase + 1) & MAX_PHASE;
320 >                    long next = ((long)nextPhase << PHASE_SHIFT) | p | lu;
321 >                    if ((par = parent) == null) {
322 >                        if (onAdvance(phase, u))
323 >                            next |= TERMINATION_PHASE; // obliterate phase
324 >                        UNSAFE.compareAndSwapLong(this, stateOffset, s, next);
325 >                        releaseWaiters(phase);
326 >                    }
327 >                    else {
328 >                        par.doArrive(u == 0?
329 >                                     ONE_ARRIVAL|ONE_PARTY : ONE_ARRIVAL);
330 >                        if ((int)(par.state >>> PHASE_SHIFT) != nextPhase ||
331 >                            ((int)(state >>> PHASE_SHIFT) != nextPhase &&
332 >                             !UNSAFE.compareAndSwapLong(this, stateOffset,
333 >                                                        s, next)))
334 >                            reconcileState();
335 >                    }
336 >                }
337 >                return phase;
338 >            }
339 >        }
340      }
341  
342      /**
343 <     * Recursively resolves state.
343 >     * Rechecks state and throws bounds exceptions on arrival -- called
344 >     * only if unarrived is apparently zero.
345 >     */
346 >    private void checkBadArrive(long s) {
347 >        if (reconcileState() == s)
348 >            throw new IllegalStateException
349 >                ("Attempted arrival of unregistered party for " +
350 >                 stateToString(s));
351 >    }
352 >
353 >    /**
354 >     * Implementation of register, bulkRegister
355 >     *
356 >     * @param registrations number to add to both parties and unarrived fields
357 >     */
358 >    private int doRegister(int registrations) {
359 >        long adj = (long)registrations; // adjustment to state
360 >        adj |= adj << PARTIES_SHIFT;
361 >        Phaser par = parent;
362 >        for (;;) {
363 >            int phase, parties;
364 >            long s = par == null? state : reconcileState();
365 >            if ((phase = (int)(s >>> PHASE_SHIFT)) < 0)
366 >                return phase;
367 >            if ((parties = (int)s >>> PARTIES_SHIFT) != 0 &&
368 >                ((int)s & UNARRIVED_MASK) == 0)
369 >                internalAwaitAdvance(phase, null); // wait for onAdvance
370 >            else if (parties + registrations > MAX_PARTIES)
371 >                throw new IllegalStateException(badRegister(s));
372 >            else if (UNSAFE.compareAndSwapLong(this, stateOffset, s, s + adj))
373 >                return phase;
374 >        }
375 >    }
376 >
377 >    /**
378 >     * Returns message string for out of bounds exceptions on registration.
379 >     */
380 >    private String badRegister(long s) {
381 >        return "Attempt to register more than " +
382 >            MAX_PARTIES + " parties for " + stateToString(s);
383 >    }
384 >
385 >    /**
386 >     * Recursively resolves lagged phase propagation from root if necessary.
387       */
388      private long reconcileState() {
389 <        Phaser p = parent;
390 <        long s = state;
391 <        if (p != null) {
392 <            while (unarrivedOf(s) == 0 && phaseOf(s) != phaseOf(root.state)) {
393 <                long parentState = p.getReconciledState();
394 <                int parentPhase = phaseOf(parentState);
395 <                int phase = phaseOf(s = state);
396 <                if (phase != parentPhase) {
397 <                    long next = trippedStateFor(parentPhase, partiesOf(s));
398 <                    if (casState(s, next)) {
399 <                        releaseWaiters(phase);
400 <                        s = next;
401 <                    }
402 <                }
389 >        Phaser par = parent;
390 >        if (par == null)
391 >            return state;
392 >        Phaser rt = root;
393 >        for (;;) {
394 >            long s, u;
395 >            int phase, rPhase, pPhase;
396 >            if ((phase = (int)((s = state)>>> PHASE_SHIFT)) < 0 ||
397 >                (rPhase = (int)(rt.state >>> PHASE_SHIFT)) == phase)
398 >                return s;
399 >            long pState = par.parent == null? par.state : par.reconcileState();
400 >            if (state == s) {
401 >                if ((rPhase < 0 || ((int)s & UNARRIVED_MASK) == 0) &&
402 >                    ((pPhase = (int)(pState >>> PHASE_SHIFT)) < 0 ||
403 >                     pPhase == ((phase + 1) & MAX_PHASE)))
404 >                    UNSAFE.compareAndSwapLong
405 >                        (this, stateOffset, s,
406 >                         (((long) pPhase) << PHASE_SHIFT) |
407 >                         (u = s & LPARTIES_MASK) |
408 >                         (u >>> PARTIES_SHIFT)); // reset unarrived to parties
409 >                else
410 >                    releaseWaiters(phase); // help release others
411              }
412          }
342        return s;
413      }
414  
415      /**
# Line 348 | Line 418 | public class Phaser {
418       * phaser will need to first register for it.
419       */
420      public Phaser() {
421 <        this(null);
421 >        this(null, 0);
422      }
423  
424      /**
425 <     * Creates a new phaser with the given numbers of registered
425 >     * Creates a new phaser with the given number of registered
426       * unarrived parties, initial phase number 0, and no parent.
427       *
428       * @param parties the number of parties required to trip barrier
# Line 372 | Line 442 | public class Phaser {
442       * @param parent the parent phaser
443       */
444      public Phaser(Phaser parent) {
445 <        int phase = 0;
376 <        this.parent = parent;
377 <        if (parent != null) {
378 <            this.root = parent.root;
379 <            phase = parent.register();
380 <        }
381 <        else
382 <            this.root = this;
383 <        this.state = trippedStateFor(phase, 0);
445 >        this(parent, 0);
446      }
447  
448      /**
449 <     * Creates a new phaser with the given parent and numbers of
449 >     * Creates a new phaser with the given parent and number of
450       * registered unarrived parties. If parent is non-null, this phaser
451       * is registered with the parent and its initial phase number is
452       * the same as that of parent phaser.
# Line 395 | Line 457 | public class Phaser {
457       * or greater than the maximum number of parties supported
458       */
459      public Phaser(Phaser parent, int parties) {
460 <        if (parties < 0 || parties > ushortMask)
460 >        if (parties >>> PARTIES_SHIFT != 0)
461              throw new IllegalArgumentException("Illegal number of parties");
462 <        int phase = 0;
462 >        int phase;
463          this.parent = parent;
464          if (parent != null) {
465 <            this.root = parent.root;
465 >            Phaser r = parent.root;
466 >            this.root = r;
467 >            this.evenQ = r.evenQ;
468 >            this.oddQ = r.oddQ;
469              phase = parent.register();
470          }
471 <        else
471 >        else {
472              this.root = this;
473 <        this.state = trippedStateFor(phase, parties);
473 >            this.evenQ = new AtomicReference<QNode>();
474 >            this.oddQ = new AtomicReference<QNode>();
475 >            phase = 0;
476 >        }
477 >        long p = (long)parties;
478 >        this.state = (((long)phase) << PHASE_SHIFT) | p | (p << PARTIES_SHIFT);
479      }
480  
481      /**
482       * Adds a new unarrived party to this phaser.
483 +     * If an ongoing invocation of {@link #onAdvance} is in progress,
484 +     * this method may wait until its completion before registering.
485       *
486       * @return the arrival phase number to which this registration applied
487       * @throws IllegalStateException if attempting to register more
# Line 421 | Line 493 | public class Phaser {
493  
494      /**
495       * Adds the given number of new unarrived parties to this phaser.
496 +     * If an ongoing invocation of {@link #onAdvance} is in progress,
497 +     * this method may wait until its completion before registering.
498       *
499 <     * @param parties the number of parties required to trip barrier
499 >     * @param parties the number of additional parties required to trip barrier
500       * @return the arrival phase number to which this registration applied
501       * @throws IllegalStateException if attempting to register more
502       * than the maximum supported number of parties
503 +     * @throws IllegalArgumentException if {@code parties < 0}
504       */
505      public int bulkRegister(int parties) {
506          if (parties < 0)
507              throw new IllegalArgumentException();
508 +        if (parties > MAX_PARTIES)
509 +            throw new IllegalStateException(badRegister(state));
510          if (parties == 0)
511              return getPhase();
512          return doRegister(parties);
513      }
514  
515      /**
439     * Shared code for register, bulkRegister
440     */
441    private int doRegister(int registrations) {
442        int phase;
443        for (;;) {
444            long s = getReconciledState();
445            phase = phaseOf(s);
446            int unarrived = unarrivedOf(s) + registrations;
447            int parties = partiesOf(s) + registrations;
448            if (phase < 0)
449                break;
450            if (parties > ushortMask || unarrived > ushortMask)
451                throw new IllegalStateException(badBounds(parties, unarrived));
452            if (phase == phaseOf(root.state) &&
453                casState(s, stateFor(phase, parties, unarrived)))
454                break;
455        }
456        return phase;
457    }
458
459    /**
516       * Arrives at the barrier, but does not wait for others.  (You can
517       * in turn wait for others via {@link #awaitAdvance}).  It is an
518       * unenforced usage error for an unregistered party to invoke this
# Line 467 | Line 523 | public class Phaser {
523       * of unarrived parties would become negative
524       */
525      public int arrive() {
526 <        int phase;
471 <        for (;;) {
472 <            long s = state;
473 <            phase = phaseOf(s);
474 <            if (phase < 0)
475 <                break;
476 <            int parties = partiesOf(s);
477 <            int unarrived = unarrivedOf(s) - 1;
478 <            if (unarrived > 0) {        // Not the last arrival
479 <                if (casState(s, s - 1)) // s-1 adds one arrival
480 <                    break;
481 <            }
482 <            else if (unarrived == 0) {  // the last arrival
483 <                Phaser par = parent;
484 <                if (par == null) {      // directly trip
485 <                    if (casState
486 <                        (s,
487 <                         trippedStateFor(onAdvance(phase, parties) ? -1 :
488 <                                         ((phase + 1) & phaseMask), parties))) {
489 <                        releaseWaiters(phase);
490 <                        break;
491 <                    }
492 <                }
493 <                else {                  // cascade to parent
494 <                    if (casState(s, s - 1)) { // zeroes unarrived
495 <                        par.arrive();
496 <                        reconcileState();
497 <                        break;
498 <                    }
499 <                }
500 <            }
501 <            else if (phase != phaseOf(root.state)) // or if unreconciled
502 <                reconcileState();
503 <            else
504 <                throw new IllegalStateException(badBounds(parties, unarrived));
505 <        }
506 <        return phase;
526 >        return doArrive(ONE_ARRIVAL);
527      }
528  
529      /**
# Line 520 | Line 540 | public class Phaser {
540       * of registered or unarrived parties would become negative
541       */
542      public int arriveAndDeregister() {
543 <        // similar code to arrive, but too different to merge
524 <        Phaser par = parent;
525 <        int phase;
526 <        for (;;) {
527 <            long s = state;
528 <            phase = phaseOf(s);
529 <            if (phase < 0)
530 <                break;
531 <            int parties = partiesOf(s) - 1;
532 <            int unarrived = unarrivedOf(s) - 1;
533 <            if (parties >= 0) {
534 <                if (unarrived > 0 || (unarrived == 0 && par != null)) {
535 <                    if (casState
536 <                        (s,
537 <                         stateFor(phase, parties, unarrived))) {
538 <                        if (unarrived == 0) {
539 <                            par.arriveAndDeregister();
540 <                            reconcileState();
541 <                        }
542 <                        break;
543 <                    }
544 <                    continue;
545 <                }
546 <                if (unarrived == 0) {
547 <                    if (casState
548 <                        (s,
549 <                         trippedStateFor(onAdvance(phase, parties) ? -1 :
550 <                                         ((phase + 1) & phaseMask), parties))) {
551 <                        releaseWaiters(phase);
552 <                        break;
553 <                    }
554 <                    continue;
555 <                }
556 <                if (par != null && phase != phaseOf(root.state)) {
557 <                    reconcileState();
558 <                    continue;
559 <                }
560 <            }
561 <            throw new IllegalStateException(badBounds(parties, unarrived));
562 <        }
563 <        return phase;
543 >        return doArrive(ONE_ARRIVAL|ONE_PARTY);
544      }
545  
546      /**
547       * Arrives at the barrier and awaits others. Equivalent in effect
548       * to {@code awaitAdvance(arrive())}.  If you need to await with
549       * interruption or timeout, you can arrange this with an analogous
550 <     * construction using one of the other forms of the awaitAdvance
551 <     * method.  If instead you need to deregister upon arrival use
552 <     * {@code arriveAndDeregister}. It is an unenforced usage error
553 <     * for an unregistered party to invoke this method.
550 >     * construction using one of the other forms of the {@code
551 >     * awaitAdvance} method.  If instead you need to deregister upon
552 >     * arrival, use {@link #arriveAndDeregister}. It is an unenforced
553 >     * usage error for an unregistered party to invoke this method.
554       *
555       * @return the arrival phase number, or a negative number if terminated
556       * @throws IllegalStateException if not terminated and the number
# Line 584 | Line 564 | public class Phaser {
564       * Awaits the phase of the barrier to advance from the given phase
565       * value, returning immediately if the current phase of the
566       * barrier is not equal to the given phase value or this barrier
567 <     * is terminated.  It is an unenforced usage error for an
588 <     * unregistered party to invoke this method.
567 >     * is terminated.
568       *
569       * @param phase an arrival phase number, or negative value if
570       * terminated; this argument is normally the value returned by a
# Line 594 | Line 573 | public class Phaser {
573       * if terminated or argument is negative
574       */
575      public int awaitAdvance(int phase) {
576 +        int p;
577          if (phase < 0)
578              return phase;
579 <        long s = getReconciledState();
580 <        int p = phaseOf(s);
581 <        if (p != phase)
579 >        else if ((p = (int)((parent == null? state : reconcileState())
580 >                            >>> PHASE_SHIFT)) == phase)
581 >            return internalAwaitAdvance(phase, null);
582 >        else
583              return p;
603        if (unarrivedOf(s) == 0 && parent != null)
604            parent.awaitAdvance(phase);
605        // Fall here even if parent waited, to reconcile and help release
606        return untimedWait(phase);
584      }
585  
586      /**
# Line 611 | Line 588 | public class Phaser {
588       * value, throwing {@code InterruptedException} if interrupted
589       * while waiting, or returning immediately if the current phase of
590       * the barrier is not equal to the given phase value or this
591 <     * barrier is terminated. It is an unenforced usage error for an
615 <     * unregistered party to invoke this method.
591 >     * barrier is terminated.
592       *
593       * @param phase an arrival phase number, or negative value if
594       * terminated; this argument is normally the value returned by a
# Line 623 | Line 599 | public class Phaser {
599       */
600      public int awaitAdvanceInterruptibly(int phase)
601          throws InterruptedException {
602 +        int p;
603          if (phase < 0)
604              return phase;
605 <        long s = getReconciledState();
606 <        int p = phaseOf(s);
607 <        if (p != phase)
608 <            return p;
609 <        if (unarrivedOf(s) == 0 && parent != null)
610 <            parent.awaitAdvanceInterruptibly(phase);
611 <        return interruptibleWait(phase);
605 >        if ((p = (int)((parent == null? state : reconcileState())
606 >                       >>> PHASE_SHIFT)) == phase) {
607 >            QNode node = new QNode(this, phase, true, false, 0L);
608 >            p = internalAwaitAdvance(phase, node);
609 >            if (node.wasInterrupted)
610 >                throw new InterruptedException();
611 >        }
612 >        return p;
613      }
614  
615      /**
# Line 640 | Line 618 | public class Phaser {
618       * InterruptedException} if interrupted while waiting, or
619       * returning immediately if the current phase of the barrier is
620       * not equal to the given phase value or this barrier is
621 <     * terminated.  It is an unenforced usage error for an
644 <     * unregistered party to invoke this method.
621 >     * terminated.
622       *
623       * @param phase an arrival phase number, or negative value if
624       * terminated; this argument is normally the value returned by a
# Line 658 | Line 635 | public class Phaser {
635      public int awaitAdvanceInterruptibly(int phase,
636                                           long timeout, TimeUnit unit)
637          throws InterruptedException, TimeoutException {
638 +        long nanos = unit.toNanos(timeout);
639 +        int p;
640          if (phase < 0)
641              return phase;
642 <        long s = getReconciledState();
643 <        int p = phaseOf(s);
644 <        if (p != phase)
645 <            return p;
646 <        if (unarrivedOf(s) == 0 && parent != null)
647 <            parent.awaitAdvanceInterruptibly(phase, timeout, unit);
648 <        return timedWait(phase, unit.toNanos(timeout));
642 >        if ((p = (int)((parent == null? state : reconcileState())
643 >                       >>> PHASE_SHIFT)) == phase) {
644 >            QNode node = new QNode(this, phase, true, true, nanos);
645 >            p = internalAwaitAdvance(phase, node);
646 >            if (node.wasInterrupted)
647 >                throw new InterruptedException();
648 >            else if (p == phase)
649 >                throw new TimeoutException();
650 >        }
651 >        return p;
652      }
653  
654      /**
655 <     * Forces this barrier to enter termination state. Counts of
656 <     * arrived and registered parties are unaffected. If this phaser
657 <     * has a parent, it too is terminated. This method may be useful
658 <     * for coordinating recovery after one or more tasks encounter
659 <     * unexpected exceptions.
655 >     * Forces this barrier to enter termination state.  Counts of
656 >     * arrived and registered parties are unaffected.  If this phaser
657 >     * is a member of a tiered set of phasers, then all of the phasers
658 >     * in the set are terminated.  If this phaser is already
659 >     * terminated, this method has no effect.  This method may be
660 >     * useful for coordinating recovery after one or more tasks
661 >     * encounter unexpected exceptions.
662       */
663      public void forceTermination() {
664 <        for (;;) {
665 <            long s = getReconciledState();
666 <            int phase = phaseOf(s);
667 <            int parties = partiesOf(s);
668 <            int unarrived = unarrivedOf(s);
669 <            if (phase < 0 ||
670 <                casState(s, stateFor(-1, parties, unarrived))) {
687 <                releaseWaiters(0);
664 >        // Only need to change root state
665 >        final Phaser root = this.root;
666 >        long s;
667 >        while ((s = root.state) >= 0) {
668 >            if (UNSAFE.compareAndSwapLong(root, stateOffset,
669 >                                          s, s | TERMINATION_PHASE)) {
670 >                releaseWaiters(0); // signal all threads
671                  releaseWaiters(1);
689                if (parent != null)
690                    parent.forceTermination();
672                  return;
673              }
674          }
# Line 701 | Line 682 | public class Phaser {
682       * @return the phase number, or a negative value if terminated
683       */
684      public final int getPhase() {
685 <        return phaseOf(getReconciledState());
685 >        return (int)((parent==null? state : reconcileState()) >>> PHASE_SHIFT);
686      }
687  
688      /**
# Line 710 | Line 691 | public class Phaser {
691       * @return the number of parties
692       */
693      public int getRegisteredParties() {
694 <        return partiesOf(state);
694 >        return partiesOf(parent==null? state : reconcileState());
695      }
696  
697      /**
# Line 720 | Line 701 | public class Phaser {
701       * @return the number of arrived parties
702       */
703      public int getArrivedParties() {
704 <        return arrivedOf(state);
704 >        return arrivedOf(parent==null? state : reconcileState());
705      }
706  
707      /**
# Line 730 | Line 711 | public class Phaser {
711       * @return the number of unarrived parties
712       */
713      public int getUnarrivedParties() {
714 <        return unarrivedOf(state);
714 >        return unarrivedOf(parent==null? state : reconcileState());
715      }
716  
717      /**
# Line 758 | Line 739 | public class Phaser {
739       * @return {@code true} if this barrier has been terminated
740       */
741      public boolean isTerminated() {
742 <        return getPhase() < 0;
742 >        return (parent == null? state : reconcileState()) < 0;
743      }
744  
745      /**
# Line 774 | Line 755 | public class Phaser {
755       * which case no advance occurs.
756       *
757       * <p>The arguments to this method provide the state of the phaser
758 <     * prevailing for the current transition. (When called from within
759 <     * an implementation of {@code onAdvance} the values returned by
760 <     * methods such as {@code getPhase} may or may not reliably
761 <     * indicate the state to which this transition applies.)
758 >     * prevailing for the current transition.  The effects of invoking
759 >     * arrival, registration, and waiting methods on this Phaser from
760 >     * within {@code onAdvance} are unspecified and should not be
761 >     * relied on.
762 >     *
763 >     * <p>If this Phaser is a member of a tiered set of Phasers, then
764 >     * {@code onAdvance} is invoked only for its root Phaser on each
765 >     * advance.
766       *
767       * <p>The default version returns {@code true} when the number of
768       * registered parties is zero. Normally, overrides that arrange
769       * termination for other reasons should also preserve this
770       * property.
771       *
787     * <p>You may override this method to perform an action with side
788     * effects visible to participating tasks, but doing so requires
789     * care: Method {@code onAdvance} may be invoked more than once
790     * per transition.  Further, unless all parties register before
791     * any arrive, and all {@link #awaitAdvance} at each phase, then
792     * you cannot ensure lack of interference from other parties
793     * during the invocation of this method.
794     *
772       * @param phase the phase number on entering the barrier
773       * @param registeredParties the current number of registered parties
774       * @return {@code true} if this barrier should terminate
# Line 810 | Line 787 | public class Phaser {
787       * @return a string identifying this barrier, as well as its state
788       */
789      public String toString() {
790 <        long s = getReconciledState();
790 >        return stateToString(reconcileState());
791 >    }
792 >
793 >    /**
794 >     * Implementation of toString and string-based error messages
795 >     */
796 >    private String stateToString(long s) {
797          return super.toString() +
798              "[phase = " + phaseOf(s) +
799              " parties = " + partiesOf(s) +
800              " arrived = " + arrivedOf(s) + "]";
801      }
802  
803 <    // methods for waiting
803 >    // Waiting mechanics
804 >
805 >    /**
806 >     * Removes and signals threads from queue for phase
807 >     */
808 >    private void releaseWaiters(int phase) {
809 >        AtomicReference<QNode> head = queueFor(phase);
810 >        QNode q;
811 >        int p;
812 >        while ((q = head.get()) != null &&
813 >               ((p = q.phase) == phase ||
814 >                (int)(root.state >>> PHASE_SHIFT) != p)) {
815 >            if (head.compareAndSet(q, q.next))
816 >                q.signal();
817 >        }
818 >    }
819 >
820 >    /**
821 >     * Tries to enqueue given node in the appropriate wait queue.
822 >     *
823 >     * @return true if successful
824 >     */
825 >    private boolean tryEnqueue(int phase, QNode node) {
826 >        releaseWaiters(phase-1); // ensure old queue clean
827 >        AtomicReference<QNode> head = queueFor(phase);
828 >        QNode q = head.get();
829 >        return ((q == null || q.phase == phase) &&
830 >                (int)(root.state >>> PHASE_SHIFT) == phase &&
831 >                head.compareAndSet(node.next = q, node));
832 >    }
833 >
834 >    /** The number of CPUs, for spin control */
835 >    private static final int NCPU = Runtime.getRuntime().availableProcessors();
836 >
837 >    /**
838 >     * The number of times to spin before blocking while waiting for
839 >     * advance, per arrival while waiting. On multiprocessors, fully
840 >     * blocking and waking up a large number of threads all at once is
841 >     * usually a very slow process, so we use rechargeable spins to
842 >     * avoid it when threads regularly arrive: When a thread in
843 >     * internalAwaitAdvance notices another arrival before blocking,
844 >     * and there appear to be enough CPUs available, it spins
845 >     * SPINS_PER_ARRIVAL more times before blocking. Plus, even on
846 >     * uniprocessors, there is at least one intervening Thread.yield
847 >     * before blocking. The value trades off good-citizenship vs big
848 >     * unnecessary slowdowns.
849 >     */
850 >    static final int SPINS_PER_ARRIVAL = (NCPU < 2) ? 1 : 1 << 8;
851 >
852 >    /**
853 >     * Possibly blocks and waits for phase to advance unless aborted.
854 >     *
855 >     * @param phase current phase
856 >     * @param node if non-null, the wait node to track interrupt and timeout;
857 >     * if null, denotes noninterruptible wait
858 >     * @return current phase
859 >     */
860 >    private int internalAwaitAdvance(int phase, QNode node) {
861 >        Phaser current = this;       // to eventually wait at root if tiered
862 >        boolean queued = false;      // true when node is enqueued
863 >        int lastUnarrived = -1;      // to increase spins upon change
864 >        int spins = SPINS_PER_ARRIVAL;
865 >        for (;;) {
866 >            int p, unarrived;
867 >            Phaser par;
868 >            long s = current.state;
869 >            if ((p = (int)(s >>> PHASE_SHIFT)) != phase) {
870 >                if (node != null)
871 >                    node.onRelease();
872 >                releaseWaiters(phase);
873 >                return p;
874 >            }
875 >            else if ((unarrived = (int)s & UNARRIVED_MASK) == 0 &&
876 >                     (par = current.parent) != null) {
877 >                current = par;       // if all arrived, use parent
878 >                par = par.parent;
879 >                lastUnarrived = -1;
880 >            }
881 >            else if (unarrived != lastUnarrived) {
882 >                if ((lastUnarrived = unarrived) < NCPU)
883 >                    spins += SPINS_PER_ARRIVAL;
884 >            }
885 >            else if (spins > 0) {
886 >                if (--spins == (SPINS_PER_ARRIVAL >>> 1))
887 >                    Thread.yield();  // yield midway through spin
888 >            }
889 >            else if (node == null)   // must be noninterruptible
890 >                node = new QNode(this, phase, false, false, 0L);
891 >            else if (node.isReleasable()) {
892 >                if ((int)(reconcileState() >>> PHASE_SHIFT) == phase)
893 >                    return phase;    // aborted
894 >            }
895 >            else if (!queued)
896 >                queued = tryEnqueue(phase, node);
897 >            else {
898 >                try {
899 >                    ForkJoinPool.managedBlock(node);
900 >                } catch (InterruptedException ie) {
901 >                    node.wasInterrupted = true;
902 >                }
903 >            }
904 >        }
905 >    }
906  
907      /**
908       * Wait nodes for Treiber stack representing wait queue
# Line 825 | Line 910 | public class Phaser {
910      static final class QNode implements ForkJoinPool.ManagedBlocker {
911          final Phaser phaser;
912          final int phase;
828        final long startTime;
829        final long nanos;
830        final boolean timed;
913          final boolean interruptible;
914 <        volatile boolean wasInterrupted = false;
914 >        final boolean timed;
915 >        boolean wasInterrupted;
916 >        long nanos;
917 >        long lastTime;
918          volatile Thread thread; // nulled to cancel wait
919          QNode next;
920 +
921          QNode(Phaser phaser, int phase, boolean interruptible,
922 <              boolean timed, long startTime, long nanos) {
922 >              boolean timed, long nanos) {
923              this.phaser = phaser;
924              this.phase = phase;
839            this.timed = timed;
925              this.interruptible = interruptible;
841            this.startTime = startTime;
926              this.nanos = nanos;
927 +            this.timed = timed;
928 +            this.lastTime = timed? System.nanoTime() : 0L;
929              thread = Thread.currentThread();
930          }
931 +
932          public boolean isReleasable() {
933 <            return (thread == null ||
934 <                    phaser.getPhase() != phase ||
935 <                    (interruptible && wasInterrupted) ||
936 <                    (timed && (nanos - (System.nanoTime() - startTime)) <= 0));
933 >            Thread t = thread;
934 >            if (t != null) {
935 >                if (phaser.getPhase() != phase)
936 >                    t = null;
937 >                else {
938 >                    if (Thread.interrupted())
939 >                        wasInterrupted = true;
940 >                    if (interruptible && wasInterrupted)
941 >                        t = null;
942 >                    else if (timed) {
943 >                        if (nanos > 0) {
944 >                            long now = System.nanoTime();
945 >                            nanos -= now - lastTime;
946 >                            lastTime = now;
947 >                        }
948 >                        if (nanos <= 0)
949 >                            t = null;
950 >                    }
951 >                }
952 >                if (t != null)
953 >                    return false;
954 >                thread = null;
955 >            }
956 >            return true;
957          }
958 +
959          public boolean block() {
960 <            if (Thread.interrupted()) {
961 <                wasInterrupted = true;
962 <                if (interruptible)
855 <                    return true;
856 <            }
857 <            if (!timed)
960 >            if (isReleasable())
961 >                return true;
962 >            else if (!timed)
963                  LockSupport.park(this);
964 <            else {
965 <                long waitTime = nanos - (System.nanoTime() - startTime);
861 <                if (waitTime <= 0)
862 <                    return true;
863 <                LockSupport.parkNanos(this, waitTime);
864 <            }
964 >            else if (nanos > 0)
965 >                LockSupport.parkNanos(this, nanos);
966              return isReleasable();
967          }
968 +
969          void signal() {
970              Thread t = thread;
971              if (t != null) {
# Line 871 | Line 973 | public class Phaser {
973                  LockSupport.unpark(t);
974              }
975          }
874        boolean doWait() {
875            if (thread != null) {
876                try {
877                    ForkJoinPool.managedBlock(this, false);
878                } catch (InterruptedException ie) {
879                }
880            }
881            return wasInterrupted;
882        }
976  
977 <    }
978 <
979 <    /**
980 <     * Removes and signals waiting threads from wait queue.
981 <     */
889 <    private void releaseWaiters(int phase) {
890 <        AtomicReference<QNode> head = queueFor(phase);
891 <        QNode q;
892 <        while ((q = head.get()) != null) {
893 <            if (head.compareAndSet(q, q.next))
894 <                q.signal();
977 >        void onRelease() { // actions upon return from internalAwaitAdvance
978 >            if (!interruptible && wasInterrupted)
979 >                Thread.currentThread().interrupt();
980 >            if (thread != null)
981 >                thread = null;
982          }
896    }
897
898    /**
899     * Tries to enqueue given node in the appropriate wait queue.
900     *
901     * @return true if successful
902     */
903    private boolean tryEnqueue(QNode node) {
904        AtomicReference<QNode> head = queueFor(node.phase);
905        return head.compareAndSet(node.next = head.get(), node);
906    }
983  
908    /**
909     * Enqueues node and waits unless aborted or signalled.
910     *
911     * @return current phase
912     */
913    private int untimedWait(int phase) {
914        QNode node = null;
915        boolean queued = false;
916        boolean interrupted = false;
917        int p;
918        while ((p = getPhase()) == phase) {
919            if (Thread.interrupted())
920                interrupted = true;
921            else if (node == null)
922                node = new QNode(this, phase, false, false, 0, 0);
923            else if (!queued)
924                queued = tryEnqueue(node);
925            else
926                interrupted = node.doWait();
927        }
928        if (node != null)
929            node.thread = null;
930        releaseWaiters(phase);
931        if (interrupted)
932            Thread.currentThread().interrupt();
933        return p;
934    }
935
936    /**
937     * Interruptible version
938     * @return current phase
939     */
940    private int interruptibleWait(int phase) throws InterruptedException {
941        QNode node = null;
942        boolean queued = false;
943        boolean interrupted = false;
944        int p;
945        while ((p = getPhase()) == phase && !interrupted) {
946            if (Thread.interrupted())
947                interrupted = true;
948            else if (node == null)
949                node = new QNode(this, phase, true, false, 0, 0);
950            else if (!queued)
951                queued = tryEnqueue(node);
952            else
953                interrupted = node.doWait();
954        }
955        if (node != null)
956            node.thread = null;
957        if (p != phase || (p = getPhase()) != phase)
958            releaseWaiters(phase);
959        if (interrupted)
960            throw new InterruptedException();
961        return p;
962    }
963
964    /**
965     * Timeout version.
966     * @return current phase
967     */
968    private int timedWait(int phase, long nanos)
969        throws InterruptedException, TimeoutException {
970        long startTime = System.nanoTime();
971        QNode node = null;
972        boolean queued = false;
973        boolean interrupted = false;
974        int p;
975        while ((p = getPhase()) == phase && !interrupted) {
976            if (Thread.interrupted())
977                interrupted = true;
978            else if (nanos - (System.nanoTime() - startTime) <= 0)
979                break;
980            else if (node == null)
981                node = new QNode(this, phase, true, true, startTime, nanos);
982            else if (!queued)
983                queued = tryEnqueue(node);
984            else
985                interrupted = node.doWait();
986        }
987        if (node != null)
988            node.thread = null;
989        if (p != phase || (p = getPhase()) != phase)
990            releaseWaiters(phase);
991        if (interrupted)
992            throw new InterruptedException();
993        if (p == phase)
994            throw new TimeoutException();
995        return p;
984      }
985  
986      // Unsafe mechanics
# Line 1001 | Line 989 | public class Phaser {
989      private static final long stateOffset =
990          objectFieldOffset("state", Phaser.class);
991  
1004    private final boolean casState(long cmp, long val) {
1005        return UNSAFE.compareAndSwapLong(this, stateOffset, cmp, val);
1006    }
1007
992      private static long objectFieldOffset(String field, Class<?> klazz) {
993          try {
994              return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines