ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/Phaser.java
(Generate patch)

Comparing jsr166/src/jsr166y/Phaser.java (file contents):
Revision 1.8 by jsr166, Mon Jan 5 05:50:47 2009 UTC vs.
Revision 1.43 by dl, Mon Aug 24 23:08:18 2009 UTC

# Line 5 | Line 5
5   */
6  
7   package jsr166y;
8 +
9   import java.util.concurrent.*;
10 < import java.util.concurrent.atomic.*;
10 >
11 > import java.util.concurrent.atomic.AtomicReference;
12   import java.util.concurrent.locks.LockSupport;
11 import sun.misc.Unsafe;
12 import java.lang.reflect.*;
13  
14   /**
15 < * A reusable synchronization barrier, similar in functionality to a
16 < * {@link java.util.concurrent.CyclicBarrier} and {@link
17 < * java.util.concurrent.CountDownLatch} but supporting more flexible
18 < * usage.
15 > * A reusable synchronization barrier, similar in functionality to
16 > * {@link java.util.concurrent.CyclicBarrier CyclicBarrier} and
17 > * {@link java.util.concurrent.CountDownLatch CountDownLatch}
18 > * but supporting more flexible usage.
19 > *
20 > * <p> <b>Registration.</b> Unlike the case for other barriers, the
21 > * number of parties <em>registered</em> to synchronize on a phaser
22 > * may vary over time.  Tasks may be registered at any time (using
23 > * methods {@link #register}, {@link #bulkRegister}, or forms of
24 > * constructors establishing initial numbers of parties), and
25 > * optionally deregistered upon any arrival (using {@link
26 > * #arriveAndDeregister}).  As is the case with most basic
27 > * synchronization constructs, registration and deregistration affect
28 > * only internal counts; they do not establish any further internal
29 > * bookkeeping, so tasks cannot query whether they are registered.
30 > * (However, you can introduce such bookkeeping by subclassing this
31 > * class.)
32 > *
33 > * <p> <b>Synchronization.</b> Like a {@code CyclicBarrier}, a {@code
34 > * Phaser} may be repeatedly awaited.  Method {@link
35 > * #arriveAndAwaitAdvance} has effect analogous to {@link
36 > * java.util.concurrent.CyclicBarrier#await CyclicBarrier.await}. Each
37 > * generation of a {@code Phaser} has an associated phase number. The
38 > * phase number starts at zero, and advances when all parties arrive
39 > * at the barrier, wrapping around to zero after reaching {@code
40 > * Integer.MAX_VALUE}. The use of phase numbers enables independent
41 > * control of actions upon arrival at a barrier and upon awaiting
42 > * others, via two kinds of methods that may be invoked by any
43 > * registered party:
44   *
45   * <ul>
46   *
47 < * <li> The number of parties synchronizing on a phaser may vary over
48 < * time.  A task may register to be a party at any time, and may
49 < * deregister upon arriving at the barrier.  As is the case with most
50 < * basic synchronization constructs, registration and deregistration
51 < * affect only internal counts; they do not establish any further
52 < * internal bookkeeping, so tasks cannot query whether they are
53 < * registered. (However, you can introduce such bookkeeping in by
54 < * subclassing this class.)
55 < *
56 < * <li> Each generation has an associated phase value, starting at
57 < * zero, and advancing when all parties reach the barrier (wrapping
58 < * around to zero after reaching {@code Integer.MAX_VALUE}).
59 < *
60 < * <li> Like a CyclicBarrier, a Phaser may be repeatedly awaited.
61 < * Method {@code arriveAndAwaitAdvance} has effect analogous to
62 < * {@code CyclicBarrier.await}.  However, Phasers separate two
63 < * aspects of coordination, that may also be invoked independently:
64 < *
65 < * <ul>
47 > *   <li> <b>Arrival.</b> Methods {@link #arrive} and
48 > *       {@link #arriveAndDeregister} record arrival at a
49 > *       barrier. These methods do not block, but return an associated
50 > *       <em>arrival phase number</em>; that is, the phase number of
51 > *       the barrier to which the arrival applied. When the final
52 > *       party for a given phase arrives, an optional barrier action
53 > *       is performed and the phase advances.  Barrier actions,
54 > *       performed by the party triggering a phase advance, are
55 > *       arranged by overriding method {@link #onAdvance(int, int)},
56 > *       which also controls termination. Overriding this method is
57 > *       similar to, but more flexible than, providing a barrier
58 > *       action to a {@code CyclicBarrier}.
59 > *
60 > *   <li> <b>Waiting.</b> Method {@link #awaitAdvance} requires an
61 > *       argument indicating an arrival phase number, and returns when
62 > *       the barrier advances to (or is already at) a different phase.
63 > *       Unlike similar constructions using {@code CyclicBarrier},
64 > *       method {@code awaitAdvance} continues to wait even if the
65 > *       waiting thread is interrupted. Interruptible and timeout
66 > *       versions are also available, but exceptions encountered while
67 > *       tasks wait interruptibly or with timeout do not change the
68 > *       state of the barrier. If necessary, you can perform any
69 > *       associated recovery within handlers of those exceptions,
70 > *       often after invoking {@code forceTermination}.  Phasers may
71 > *       also be used by tasks executing in a {@link ForkJoinPool},
72 > *       which will ensure sufficient parallelism to execute tasks
73 > *       when others are blocked waiting for a phase to advance.
74   *
42 *   <li> Arriving at a barrier. Methods {@code arrive} and
43 *       {@code arriveAndDeregister} do not block, but return
44 *       the phase value current upon entry to the method.
45 *
46 *   <li> Awaiting others. Method {@code awaitAdvance} requires an
47 *       argument indicating the entry phase, and returns when the
48 *       barrier advances to a new phase.
75   * </ul>
76   *
77 < *
78 < * <li> Barrier actions, performed by the task triggering a phase
79 < * advance while others may be waiting, are arranged by overriding
80 < * method {@code onAdvance}, that also controls termination.
81 < * Overriding this method may be used to similar but more flexible
82 < * effect as providing a barrier action to a CyclicBarrier.
83 < *
58 < * <li> Phasers may enter a <em>termination</em> state in which all
59 < * await actions immediately return, indicating (via a negative phase
60 < * value) that execution is complete.  Termination is triggered by
61 < * executing the overridable {@code onAdvance} method that is invoked
62 < * each time the barrier is about to be tripped. When a Phaser is
63 < * controlling an action with a fixed number of iterations, it is
77 > * <p> <b>Termination.</b> A {@code Phaser} may enter a
78 > * <em>termination</em> state in which all synchronization methods
79 > * immediately return without updating phaser state or waiting for
80 > * advance, and indicating (via a negative phase value) that execution
81 > * is complete.  Termination is triggered when an invocation of {@code
82 > * onAdvance} returns {@code true}.  As illustrated below, when
83 > * phasers control actions with a fixed number of iterations, it is
84   * often convenient to override this method to cause termination when
85 < * the current phase number reaches a threshold. Method
86 < * {@code forceTermination} is also available to abruptly release
87 < * waiting threads and allow them to terminate.
85 > * the current phase number reaches a threshold. Method {@link
86 > * #forceTermination} is also available to abruptly release waiting
87 > * threads and allow them to terminate.
88   *
89 < * <li> Phasers may be tiered to reduce contention. Phasers with large
89 > * <p> <b>Tiering.</b> Phasers may be <em>tiered</em> (i.e., arranged
90 > * in tree structures) to reduce contention. Phasers with large
91   * numbers of parties that would otherwise experience heavy
92 < * synchronization contention costs may instead be arranged in trees.
93 < * This will typically greatly increase throughput even though it
94 < * incurs somewhat greater per-operation overhead.
95 < *
96 < * <li> By default, {@code awaitAdvance} continues to wait even if
97 < * the waiting thread is interrupted. And unlike the case in
98 < * CyclicBarriers, exceptions encountered while tasks wait
99 < * interruptibly or with timeout do not change the state of the
100 < * barrier. If necessary, you can perform any associated recovery
101 < * within handlers of those exceptions, often after invoking
102 < * {@code forceTermination}.
103 < *
104 < * </ul>
92 > * synchronization contention costs may instead be set up so that
93 > * groups of sub-phasers share a common parent.  This may greatly
94 > * increase throughput even though it incurs greater per-operation
95 > * overhead.
96 > *
97 > * <p><b>Monitoring.</b> While synchronization methods may be invoked
98 > * only by registered parties, the current state of a phaser may be
99 > * monitored by any caller.  At any given moment there are {@link
100 > * #getRegisteredParties} parties in total, of which {@link
101 > * #getArrivedParties} have arrived at the current phase ({@link
102 > * #getPhase}).  When the remaining ({@link #getUnarrivedParties})
103 > * parties arrive, the phase advances.  The values returned by these
104 > * methods may reflect transient states and so are not in general
105 > * useful for synchronization control.  Method {@link #toString}
106 > * returns snapshots of these state queries in a form convenient for
107 > * informal monitoring.
108   *
109   * <p><b>Sample usages:</b>
110   *
111 < * <p>A Phaser may be used instead of a {@code CountDownLatch} to control
112 < * a one-shot action serving a variable number of parties. The typical
113 < * idiom is for the method setting this up to first register, then
114 < * start the actions, then deregister, as in:
115 < *
116 < * <pre>
117 < *  void runTasks(List&lt;Runnable&gt; list) {
118 < *    final Phaser phaser = new Phaser(1); // "1" to register self
119 < *    for (Runnable r : list) {
120 < *      phaser.register();
121 < *      new Thread() {
122 < *        public void run() {
123 < *          phaser.arriveAndAwaitAdvance(); // await all creation
124 < *          r.run();
125 < *          phaser.arriveAndDeregister();   // signal completion
126 < *        }
127 < *      }.start();
111 > * <p>A {@code Phaser} may be used instead of a {@code CountDownLatch}
112 > * to control a one-shot action serving a variable number of
113 > * parties. The typical idiom is for the method setting this up to
114 > * first register, then start the actions, then deregister, as in:
115 > *
116 > *  <pre> {@code
117 > * void runTasks(List<Runnable> tasks) {
118 > *   final Phaser phaser = new Phaser(1); // "1" to register self
119 > *   // create and start threads
120 > *   for (Runnable task : tasks) {
121 > *     phaser.register();
122 > *     new Thread() {
123 > *       public void run() {
124 > *         phaser.arriveAndAwaitAdvance(); // await all creation
125 > *         task.run();
126 > *       }
127 > *     }.start();
128   *   }
129   *
130 < *   doSomethingOnBehalfOfWorkers();
131 < *   phaser.arrive(); // allow threads to start
132 < *   int p = phaser.arriveAndDeregister(); // deregister self  ...
109 < *   p = phaser.awaitAdvance(p); // ... and await arrival
110 < *   otherActions(); // do other things while tasks execute
111 < *   phaser.awaitAdvance(p); // await final completion
112 < * }
113 < * </pre>
130 > *   // allow threads to start and deregister self
131 > *   phaser.arriveAndDeregister();
132 > * }}</pre>
133   *
134   * <p>One way to cause a set of threads to repeatedly perform actions
135   * for a given number of iterations is to override {@code onAdvance}:
136   *
137 < * <pre>
138 < *  void startTasks(List&lt;Runnable&gt; list, final int iterations) {
139 < *    final Phaser phaser = new Phaser() {
140 < *       public boolean onAdvance(int phase, int registeredParties) {
141 < *         return phase &gt;= iterations || registeredParties == 0;
137 > *  <pre> {@code
138 > * void startTasks(List<Runnable> tasks, final int iterations) {
139 > *   final Phaser phaser = new Phaser() {
140 > *     protected boolean onAdvance(int phase, int registeredParties) {
141 > *       return phase >= iterations || registeredParties == 0;
142 > *     }
143 > *   };
144 > *   phaser.register();
145 > *   for (Runnable task : tasks) {
146 > *     phaser.register();
147 > *     new Thread() {
148 > *       public void run() {
149 > *         do {
150 > *           task.run();
151 > *           phaser.arriveAndAwaitAdvance();
152 > *         } while(!phaser.isTerminated();
153   *       }
154 < *    };
125 < *    phaser.register();
126 < *    for (Runnable r : list) {
127 < *      phaser.register();
128 < *      new Thread() {
129 < *        public void run() {
130 < *           do {
131 < *             r.run();
132 < *             phaser.arriveAndAwaitAdvance();
133 < *           } while(!phaser.isTerminated();
134 < *        }
135 < *      }.start();
154 > *     }.start();
155   *   }
156   *   phaser.arriveAndDeregister(); // deregister self, don't wait
157 < * }
158 < * </pre>
157 > * }}</pre>
158 > *
159 > * If the main task must later await termination, it
160 > * may re-register and then execute a similar loop:
161 > * <pre> {@code
162 > *   // ...
163 > *   phaser.register();
164 > *   while (!phaser.isTerminated())
165 > *     phaser.arriveAndAwaitAdvance();
166 > * }</pre>
167 > *
168 > * Related constructions may be used to await particular phase numbers
169 > * in contexts where you are sure that the phase will never wrap around
170 > * {@code Integer.MAX_VALUE}. For example:
171 > *
172 > * <pre> {@code
173 > *   void awaitPhase(Phaser phaser, int phase) {
174 > *     int p = phaser.register(); // assumes caller not already registered
175 > *     while (p < phase) {
176 > *       if (phaser.isTerminated())
177 > *         // ... deal with unexpected termination
178 > *       else
179 > *         p = phaser.arriveAndAwaitAdvance();
180 > *     }
181 > *     phaser.arriveAndDeregister();
182 > *   }
183 > * }</pre>
184 > *
185   *
186 < * <p> To create a set of tasks using a tree of Phasers,
186 > * <p>To create a set of tasks using a tree of phasers,
187   * you could use code of the following form, assuming a
188 < * Task class with a constructor accepting a Phaser that
188 > * Task class with a constructor accepting a phaser that
189   * it registers for upon construction:
190 < * <pre>
191 < *  void build(Task[] actions, int lo, int hi, Phaser b) {
192 < *    int step = (hi - lo) / TASKS_PER_PHASER;
193 < *    if (step &gt; 1) {
194 < *       int i = lo;
195 < *       while (i &lt; hi) {
196 < *         int r = Math.min(i + step, hi);
197 < *         build(actions, i, r, new Phaser(b));
198 < *         i = r;
199 < *       }
200 < *    }
201 < *    else {
202 < *      for (int i = lo; i &lt; hi; ++i)
203 < *        actions[i] = new Task(b);
204 < *        // assumes new Task(b) performs b.register()
205 < *    }
206 < *  }
207 < *  // .. initially called, for n tasks via
163 < *  build(new Task[n], 0, n, new Phaser());
164 < * </pre>
190 > *  <pre> {@code
191 > * void build(Task[] actions, int lo, int hi, Phaser b) {
192 > *   int step = (hi - lo) / TASKS_PER_PHASER;
193 > *   if (step > 1) {
194 > *     int i = lo;
195 > *     while (i < hi) {
196 > *       int r = Math.min(i + step, hi);
197 > *       build(actions, i, r, new Phaser(b));
198 > *       i = r;
199 > *     }
200 > *   } else {
201 > *     for (int i = lo; i < hi; ++i)
202 > *       actions[i] = new Task(b);
203 > *       // assumes new Task(b) performs b.register()
204 > *   }
205 > * }
206 > * // .. initially called, for n tasks via
207 > * build(new Task[n], 0, n, new Phaser());}</pre>
208   *
209   * The best value of {@code TASKS_PER_PHASER} depends mainly on
210   * expected barrier synchronization rates. A value as low as four may
# Line 172 | Line 215 | import java.lang.reflect.*;
215   *
216   * <p><b>Implementation notes</b>: This implementation restricts the
217   * maximum number of parties to 65535. Attempts to register additional
218 < * parties result in IllegalStateExceptions. However, you can and
218 > * parties result in {@code IllegalStateException}. However, you can and
219   * should create tiered phasers to accommodate arbitrarily large sets
220   * of participants.
221 + *
222 + * @since 1.7
223 + * @author Doug Lea
224   */
225   public class Phaser {
226      /*
# Line 199 | Line 245 | public class Phaser {
245       * and encoding simple, and keeping race windows short.
246       *
247       * Note: there are some cheats in arrive() that rely on unarrived
248 <     * being lowest 16 bits.
248 >     * count being lowest 16 bits.
249       */
250      private volatile long state;
251  
252 <    private static final int ushortBits = 16;
253 <    private static final int ushortMask =  (1 << ushortBits) - 1;
208 <    private static final int phaseMask = 0x7fffffff;
252 >    private static final int ushortMask = 0xffff;
253 >    private static final int phaseMask  = 0x7fffffff;
254  
255      private static int unarrivedOf(long s) {
256 <        return (int)(s & ushortMask);
256 >        return (int) (s & ushortMask);
257      }
258  
259      private static int partiesOf(long s) {
260 <        return (int)(s & (ushortMask << 16)) >>> 16;
260 >        return ((int) s) >>> 16;
261      }
262  
263      private static int phaseOf(long s) {
264 <        return (int)(s >>> 32);
264 >        return (int) (s >>> 32);
265      }
266  
267      private static int arrivedOf(long s) {
# Line 224 | Line 269 | public class Phaser {
269      }
270  
271      private static long stateFor(int phase, int parties, int unarrived) {
272 <        return (((long)phase) << 32) | ((parties << 16) | unarrived);
272 >        return ((((long) phase) << 32) | (((long) parties) << 16) |
273 >                (long) unarrived);
274      }
275  
276      private static long trippedStateFor(int phase, int parties) {
277 <        return (((long)phase) << 32) | ((parties << 16) | parties);
277 >        long lp = (long) parties;
278 >        return (((long) phase) << 32) | (lp << 16) | lp;
279      }
280  
281 <    private static IllegalStateException badBounds(int parties, int unarrived) {
282 <        return new IllegalStateException
283 <            ("Attempt to set " + unarrived +
284 <             " unarrived of " + parties + " parties");
281 >    /**
282 >     * Returns message string for bad bounds exceptions.
283 >     */
284 >    private static String badBounds(int parties, int unarrived) {
285 >        return ("Attempt to set " + unarrived +
286 >                " unarrived of " + parties + " parties");
287      }
288  
289      /**
# Line 243 | Line 292 | public class Phaser {
292      private final Phaser parent;
293  
294      /**
295 <     * The root of Phaser tree. Equals this if not in a tree.  Used to
295 >     * The root of phaser tree. Equals this if not in a tree.  Used to
296       * support faster state push-down.
297       */
298      private final Phaser root;
# Line 251 | Line 300 | public class Phaser {
300      // Wait queues
301  
302      /**
303 <     * Heads of Treiber stacks waiting for nonFJ threads. To eliminate
303 >     * Heads of Treiber stacks for waiting threads. To eliminate
304       * contention while releasing some threads while adding others, we
305       * use two of them, alternating across even and odd phases.
306       */
# Line 259 | Line 308 | public class Phaser {
308      private final AtomicReference<QNode> oddQ  = new AtomicReference<QNode>();
309  
310      private AtomicReference<QNode> queueFor(int phase) {
311 <        return (phase & 1) == 0? evenQ : oddQ;
311 >        return ((phase & 1) == 0) ? evenQ : oddQ;
312      }
313  
314      /**
# Line 267 | Line 316 | public class Phaser {
316       * root if necessary.
317       */
318      private long getReconciledState() {
319 <        return parent == null? state : reconcileState();
319 >        return (parent == null) ? state : reconcileState();
320      }
321  
322      /**
# Line 294 | Line 343 | public class Phaser {
343      }
344  
345      /**
346 <     * Creates a new Phaser without any initially registered parties,
347 <     * initial phase number 0, and no parent.
346 >     * Creates a new phaser without any initially registered parties,
347 >     * initial phase number 0, and no parent. Any thread using this
348 >     * phaser will need to first register for it.
349       */
350      public Phaser() {
351          this(null);
352      }
353  
354      /**
355 <     * Creates a new Phaser with the given numbers of registered
355 >     * Creates a new phaser with the given numbers of registered
356       * unarrived parties, initial phase number 0, and no parent.
357 <     * @param parties the number of parties required to trip barrier.
357 >     *
358 >     * @param parties the number of parties required to trip barrier
359       * @throws IllegalArgumentException if parties less than zero
360 <     * or greater than the maximum number of parties supported.
360 >     * or greater than the maximum number of parties supported
361       */
362      public Phaser(int parties) {
363          this(null, parties);
364      }
365  
366      /**
367 <     * Creates a new Phaser with the given parent, without any
367 >     * Creates a new phaser with the given parent, without any
368       * initially registered parties. If parent is non-null this phaser
369       * is registered with the parent and its initial phase number is
370       * the same as that of parent phaser.
371 <     * @param parent the parent phaser.
371 >     *
372 >     * @param parent the parent phaser
373       */
374      public Phaser(Phaser parent) {
375          int phase = 0;
# Line 332 | Line 384 | public class Phaser {
384      }
385  
386      /**
387 <     * Creates a new Phaser with the given parent and numbers of
388 <     * registered unarrived parties. If parent is non-null this phaser
387 >     * Creates a new phaser with the given parent and numbers of
388 >     * registered unarrived parties. If parent is non-null, this phaser
389       * is registered with the parent and its initial phase number is
390       * the same as that of parent phaser.
391 <     * @param parent the parent phaser.
392 <     * @param parties the number of parties required to trip barrier.
391 >     *
392 >     * @param parent the parent phaser
393 >     * @param parties the number of parties required to trip barrier
394       * @throws IllegalArgumentException if parties less than zero
395 <     * or greater than the maximum number of parties supported.
395 >     * or greater than the maximum number of parties supported
396       */
397      public Phaser(Phaser parent, int parties) {
398          if (parties < 0 || parties > ushortMask)
# Line 357 | Line 410 | public class Phaser {
410  
411      /**
412       * Adds a new unarrived party to this phaser.
413 <     * @return the current barrier phase number upon registration
413 >     *
414 >     * @return the arrival phase number to which this registration applied
415       * @throws IllegalStateException if attempting to register more
416 <     * than the maximum supported number of parties.
416 >     * than the maximum supported number of parties
417       */
418      public int register() {
419          return doRegister(1);
# Line 367 | Line 421 | public class Phaser {
421  
422      /**
423       * Adds the given number of new unarrived parties to this phaser.
424 <     * @param parties the number of parties required to trip barrier.
425 <     * @return the current barrier phase number upon registration
424 >     *
425 >     * @param parties the number of parties required to trip barrier
426 >     * @return the arrival phase number to which this registration applied
427       * @throws IllegalStateException if attempting to register more
428 <     * than the maximum supported number of parties.
428 >     * than the maximum supported number of parties
429       */
430      public int bulkRegister(int parties) {
431          if (parties < 0)
# Line 393 | Line 448 | public class Phaser {
448              if (phase < 0)
449                  break;
450              if (parties > ushortMask || unarrived > ushortMask)
451 <                throw badBounds(parties, unarrived);
451 >                throw new IllegalStateException(badBounds(parties, unarrived));
452              if (phase == phaseOf(root.state) &&
453                  casState(s, stateFor(phase, parties, unarrived)))
454                  break;
# Line 403 | Line 458 | public class Phaser {
458  
459      /**
460       * Arrives at the barrier, but does not wait for others.  (You can
461 <     * in turn wait for others via {@link #awaitAdvance}).
461 >     * in turn wait for others via {@link #awaitAdvance}).  It is an
462 >     * unenforced usage error for an unregistered party to invoke this
463 >     * method.
464       *
465 <     * @return the barrier phase number upon entry to this method, or a
409 <     * negative value if terminated;
465 >     * @return the arrival phase number, or a negative value if terminated
466       * @throws IllegalStateException if not terminated and the number
467 <     * of unarrived parties would become negative.
467 >     * of unarrived parties would become negative
468       */
469      public int arrive() {
470          int phase;
471          for (;;) {
472              long s = state;
473              phase = phaseOf(s);
474 +            if (phase < 0)
475 +                break;
476              int parties = partiesOf(s);
477              int unarrived = unarrivedOf(s) - 1;
478              if (unarrived > 0) {        // Not the last arrival
# Line 426 | Line 484 | public class Phaser {
484                  if (par == null) {      // directly trip
485                      if (casState
486                          (s,
487 <                         trippedStateFor(onAdvance(phase, parties)? -1 :
487 >                         trippedStateFor(onAdvance(phase, parties) ? -1 :
488                                           ((phase + 1) & phaseMask), parties))) {
489                          releaseWaiters(phase);
490                          break;
# Line 440 | Line 498 | public class Phaser {
498                      }
499                  }
500              }
443            else if (phase < 0) // Don't throw exception if terminated
444                break;
501              else if (phase != phaseOf(root.state)) // or if unreconciled
502                  reconcileState();
503              else
504 <                throw badBounds(parties, unarrived);
504 >                throw new IllegalStateException(badBounds(parties, unarrived));
505          }
506          return phase;
507      }
508  
509      /**
510 <     * Arrives at the barrier, and deregisters from it, without
511 <     * waiting for others. Deregistration reduces number of parties
510 >     * Arrives at the barrier and deregisters from it without waiting
511 >     * for others. Deregistration reduces the number of parties
512       * required to trip the barrier in future phases.  If this phaser
513       * has a parent, and deregistration causes this phaser to have
514 <     * zero parties, this phaser is also deregistered from its parent.
514 >     * zero parties, this phaser also arrives at and is deregistered
515 >     * from its parent.  It is an unenforced usage error for an
516 >     * unregistered party to invoke this method.
517       *
518 <     * @return the current barrier phase number upon entry to
461 <     * this method, or a negative value if terminated;
518 >     * @return the arrival phase number, or a negative value if terminated
519       * @throws IllegalStateException if not terminated and the number
520 <     * of registered or unarrived parties would become negative.
520 >     * of registered or unarrived parties would become negative
521       */
522      public int arriveAndDeregister() {
523          // similar code to arrive, but too different to merge
# Line 469 | Line 526 | public class Phaser {
526          for (;;) {
527              long s = state;
528              phase = phaseOf(s);
529 +            if (phase < 0)
530 +                break;
531              int parties = partiesOf(s) - 1;
532              int unarrived = unarrivedOf(s) - 1;
533              if (parties >= 0) {
# Line 487 | Line 546 | public class Phaser {
546                  if (unarrived == 0) {
547                      if (casState
548                          (s,
549 <                         trippedStateFor(onAdvance(phase, parties)? -1 :
549 >                         trippedStateFor(onAdvance(phase, parties) ? -1 :
550                                           ((phase + 1) & phaseMask), parties))) {
551                          releaseWaiters(phase);
552                          break;
553                      }
554                      continue;
555                  }
497                if (phase < 0)
498                    break;
556                  if (par != null && phase != phaseOf(root.state)) {
557                      reconcileState();
558                      continue;
559                  }
560              }
561 <            throw badBounds(parties, unarrived);
561 >            throw new IllegalStateException(badBounds(parties, unarrived));
562          }
563          return phase;
564      }
565  
566      /**
567       * Arrives at the barrier and awaits others. Equivalent in effect
568 <     * to {@code awaitAdvance(arrive())}.  If you instead need to
569 <     * await with interruption of timeout, and/or deregister upon
570 <     * arrival, you can arrange them using analogous constructions.
571 <     * @return the phase on entry to this method
568 >     * to {@code awaitAdvance(arrive())}.  If you need to await with
569 >     * interruption or timeout, you can arrange this with an analogous
570 >     * construction using one of the other forms of the awaitAdvance
571 >     * method.  If instead you need to deregister upon arrival use
572 >     * {@code arriveAndDeregister}. It is an unenforced usage error
573 >     * for an unregistered party to invoke this method.
574 >     *
575 >     * @return the arrival phase number, or a negative number if terminated
576       * @throws IllegalStateException if not terminated and the number
577 <     * of unarrived parties would become negative.
577 >     * of unarrived parties would become negative
578       */
579      public int arriveAndAwaitAdvance() {
580          return awaitAdvance(arrive());
581      }
582  
583      /**
584 <     * Awaits the phase of the barrier to advance from the given
585 <     * value, or returns immediately if argument is negative or this
586 <     * barrier is terminated.
587 <     * @param phase the phase on entry to this method
588 <     * @return the phase on exit from this method
584 >     * Awaits the phase of the barrier to advance from the given phase
585 >     * value, returning immediately if the current phase of the
586 >     * barrier is not equal to the given phase value or this barrier
587 >     * is terminated.  It is an unenforced usage error for an
588 >     * unregistered party to invoke this method.
589 >     *
590 >     * @param phase an arrival phase number, or negative value if
591 >     * terminated; this argument is normally the value returned by a
592 >     * previous call to {@code arrive} or its variants
593 >     * @return the next arrival phase number, or a negative value
594 >     * if terminated or argument is negative
595       */
596      public int awaitAdvance(int phase) {
597          if (phase < 0)
# Line 533 | Line 600 | public class Phaser {
600          int p = phaseOf(s);
601          if (p != phase)
602              return p;
603 <        if (unarrivedOf(s) == 0)
603 >        if (unarrivedOf(s) == 0 && parent != null)
604              parent.awaitAdvance(phase);
605          // Fall here even if parent waited, to reconcile and help release
606          return untimedWait(phase);
607      }
608  
609      /**
610 <     * Awaits the phase of the barrier to advance from the given
611 <     * value, or returns immediately if argument is negative or this
612 <     * barrier is terminated, or throws InterruptedException if
613 <     * interrupted while waiting.
614 <     * @param phase the phase on entry to this method
615 <     * @return the phase on exit from this method
610 >     * Awaits the phase of the barrier to advance from the given phase
611 >     * value, throwing {@code InterruptedException} if interrupted
612 >     * while waiting, or returning immediately if the current phase of
613 >     * the barrier is not equal to the given phase value or this
614 >     * barrier is terminated. It is an unenforced usage error for an
615 >     * unregistered party to invoke this method.
616 >     *
617 >     * @param phase an arrival phase number, or negative value if
618 >     * terminated; this argument is normally the value returned by a
619 >     * previous call to {@code arrive} or its variants
620 >     * @return the next arrival phase number, or a negative value
621 >     * if terminated or argument is negative
622       * @throws InterruptedException if thread interrupted while waiting
623       */
624 <    public int awaitAdvanceInterruptibly(int phase) throws InterruptedException {
624 >    public int awaitAdvanceInterruptibly(int phase)
625 >        throws InterruptedException {
626          if (phase < 0)
627              return phase;
628          long s = getReconciledState();
629          int p = phaseOf(s);
630          if (p != phase)
631              return p;
632 <        if (unarrivedOf(s) != 0)
632 >        if (unarrivedOf(s) == 0 && parent != null)
633              parent.awaitAdvanceInterruptibly(phase);
634          return interruptibleWait(phase);
635      }
636  
637      /**
638 <     * Awaits the phase of the barrier to advance from the given value
639 <     * or the given timeout elapses, or returns immediately if
640 <     * argument is negative or this barrier is terminated.
641 <     * @param phase the phase on entry to this method
642 <     * @return the phase on exit from this method
638 >     * Awaits the phase of the barrier to advance from the given phase
639 >     * value or the given timeout to elapse, throwing {@code
640 >     * InterruptedException} if interrupted while waiting, or
641 >     * returning immediately if the current phase of the barrier is
642 >     * not equal to the given phase value or this barrier is
643 >     * terminated.  It is an unenforced usage error for an
644 >     * unregistered party to invoke this method.
645 >     *
646 >     * @param phase an arrival phase number, or negative value if
647 >     * terminated; this argument is normally the value returned by a
648 >     * previous call to {@code arrive} or its variants
649 >     * @param timeout how long to wait before giving up, in units of
650 >     *        {@code unit}
651 >     * @param unit a {@code TimeUnit} determining how to interpret the
652 >     *        {@code timeout} parameter
653 >     * @return the next arrival phase number, or a negative value
654 >     * if terminated or argument is negative
655       * @throws InterruptedException if thread interrupted while waiting
656       * @throws TimeoutException if timed out while waiting
657       */
658 <    public int awaitAdvanceInterruptibly(int phase, long timeout, TimeUnit unit)
658 >    public int awaitAdvanceInterruptibly(int phase,
659 >                                         long timeout, TimeUnit unit)
660          throws InterruptedException, TimeoutException {
661          if (phase < 0)
662              return phase;
# Line 577 | Line 664 | public class Phaser {
664          int p = phaseOf(s);
665          if (p != phase)
666              return p;
667 <        if (unarrivedOf(s) == 0)
667 >        if (unarrivedOf(s) == 0 && parent != null)
668              parent.awaitAdvanceInterruptibly(phase, timeout, unit);
669          return timedWait(phase, unit.toNanos(timeout));
670      }
# Line 610 | Line 697 | public class Phaser {
697       * Returns the current phase number. The maximum phase number is
698       * {@code Integer.MAX_VALUE}, after which it restarts at
699       * zero. Upon termination, the phase number is negative.
700 +     *
701       * @return the phase number, or a negative value if terminated
702       */
703      public final int getPhase() {
# Line 617 | Line 705 | public class Phaser {
705      }
706  
707      /**
620     * Returns true if the current phase number equals the given phase.
621     * @param phase the phase
622     * @return true if the current phase number equals the given phase.
623     */
624    public final boolean hasPhase(int phase) {
625        return phaseOf(getReconciledState()) == phase;
626    }
627
628    /**
708       * Returns the number of parties registered at this barrier.
709 +     *
710       * @return the number of parties
711       */
712      public int getRegisteredParties() {
# Line 634 | Line 714 | public class Phaser {
714      }
715  
716      /**
717 <     * Returns the number of parties that have arrived at the current
718 <     * phase of this barrier.
717 >     * Returns the number of registered parties that have arrived at
718 >     * the current phase of this barrier.
719 >     *
720       * @return the number of arrived parties
721       */
722      public int getArrivedParties() {
# Line 645 | Line 726 | public class Phaser {
726      /**
727       * Returns the number of registered parties that have not yet
728       * arrived at the current phase of this barrier.
729 +     *
730       * @return the number of unarrived parties
731       */
732      public int getUnarrivedParties() {
# Line 652 | Line 734 | public class Phaser {
734      }
735  
736      /**
737 <     * Returns the parent of this phaser, or null if none.
738 <     * @return the parent of this phaser, or null if none.
737 >     * Returns the parent of this phaser, or {@code null} if none.
738 >     *
739 >     * @return the parent of this phaser, or {@code null} if none
740       */
741      public Phaser getParent() {
742          return parent;
# Line 662 | Line 745 | public class Phaser {
745      /**
746       * Returns the root ancestor of this phaser, which is the same as
747       * this phaser if it has no parent.
748 <     * @return the root ancestor of this phaser.
748 >     *
749 >     * @return the root ancestor of this phaser
750       */
751      public Phaser getRoot() {
752          return root;
753      }
754  
755      /**
756 <     * Returns true if this barrier has been terminated.
757 <     * @return true if this barrier has been terminated
756 >     * Returns {@code true} if this barrier has been terminated.
757 >     *
758 >     * @return {@code true} if this barrier has been terminated
759       */
760      public boolean isTerminated() {
761          return getPhase() < 0;
762      }
763  
764      /**
765 <     * Overridable method to perform an action upon phase advance, and
766 <     * to control termination. This method is invoked whenever the
767 <     * barrier is tripped (and thus all other waiting parties are
768 <     * dormant). If it returns true, then, rather than advance the
769 <     * phase number, this barrier will be set to a final termination
770 <     * state, and subsequent calls to {@code isTerminated} will
771 <     * return true.
765 >     * Overridable method to perform an action upon impending phase
766 >     * advance, and to control termination. This method is invoked
767 >     * upon arrival of the party tripping the barrier (when all other
768 >     * waiting parties are dormant).  If this method returns {@code
769 >     * true}, then, rather than advance the phase number, this barrier
770 >     * will be set to a final termination state, and subsequent calls
771 >     * to {@link #isTerminated} will return true. Any (unchecked)
772 >     * Exception or Error thrown by an invocation of this method is
773 >     * propagated to the party attempting to trip the barrier, in
774 >     * which case no advance occurs.
775 >     *
776 >     * <p>The arguments to this method provide the state of the phaser
777 >     * prevailing for the current transition. (When called from within
778 >     * an implementation of {@code onAdvance} the values returned by
779 >     * methods such as {@code getPhase} may or may not reliably
780 >     * indicate the state to which this transition applies.)
781       *
782 <     * <p> The default version returns true when the number of
782 >     * <p>The default version returns {@code true} when the number of
783       * registered parties is zero. Normally, overrides that arrange
784       * termination for other reasons should also preserve this
785       * property.
786       *
787 <     * <p> You may override this method to perform an action with side
788 <     * effects visible to participating tasks, but it is in general
789 <     * only sensible to do so in designs where all parties register
790 <     * before any arrive, and all {@code awaitAdvance} at each phase.
791 <     * Otherwise, you cannot ensure lack of interference. In
792 <     * particular, this method may be invoked more than once per
793 <     * transition if other parties successfully register while the
700 <     * invocation of this method is in progress, thus postponing the
701 <     * transition until those parties also arrive, re-triggering this
702 <     * method.
787 >     * <p>You may override this method to perform an action with side
788 >     * effects visible to participating tasks, but doing so requires
789 >     * care: Method {@code onAdvance} may be invoked more than once
790 >     * per transition.  Further, unless all parties register before
791 >     * any arrive, and all {@link #awaitAdvance} at each phase, then
792 >     * you cannot ensure lack of interference from other parties
793 >     * during the invocation of this method.
794       *
795       * @param phase the phase number on entering the barrier
796 <     * @param registeredParties the current number of registered
797 <     * parties.
707 <     * @return true if this barrier should terminate
796 >     * @param registeredParties the current number of registered parties
797 >     * @return {@code true} if this barrier should terminate
798       */
799      protected boolean onAdvance(int phase, int registeredParties) {
800          return registeredParties <= 0;
# Line 713 | Line 803 | public class Phaser {
803      /**
804       * Returns a string identifying this phaser, as well as its
805       * state.  The state, in brackets, includes the String {@code
806 <     * "phase ="} followed by the phase number, {@code "parties ="}
806 >     * "phase = "} followed by the phase number, {@code "parties = "}
807       * followed by the number of registered parties, and {@code
808 <     * "arrived ="} followed by the number of arrived parties
808 >     * "arrived = "} followed by the number of arrived parties.
809       *
810       * @return a string identifying this barrier, as well as its state
811       */
812      public String toString() {
813          long s = getReconciledState();
814 <        return super.toString() + "[phase = " + phaseOf(s) + " parties = " + partiesOf(s) + " arrived = " + arrivedOf(s) + "]";
814 >        return super.toString() +
815 >            "[phase = " + phaseOf(s) +
816 >            " parties = " + partiesOf(s) +
817 >            " arrived = " + arrivedOf(s) + "]";
818      }
819  
820      // methods for waiting
821  
729    /** The number of CPUs, for spin control */
730    static final int NCPUS = Runtime.getRuntime().availableProcessors();
731
732    /**
733     * The number of times to spin before blocking in timed waits.
734     * The value is empirically derived.
735     */
736    static final int maxTimedSpins = (NCPUS < 2)? 0 : 32;
737
738    /**
739     * The number of times to spin before blocking in untimed waits.
740     * This is greater than timed value because untimed waits spin
741     * faster since they don't need to check times on each spin.
742     */
743    static final int maxUntimedSpins = maxTimedSpins * 32;
744
745    /**
746     * The number of nanoseconds for which it is faster to spin
747     * rather than to use timed park. A rough estimate suffices.
748     */
749    static final long spinForTimeoutThreshold = 1000L;
750
822      /**
823 <     * Wait nodes for Treiber stack representing wait queue for non-FJ
753 <     * tasks.
823 >     * Wait nodes for Treiber stack representing wait queue
824       */
825 <    static final class QNode {
826 <        QNode next;
825 >    static final class QNode implements ForkJoinPool.ManagedBlocker {
826 >        final Phaser phaser;
827 >        final int phase;
828 >        final long startTime;
829 >        final long nanos;
830 >        final boolean timed;
831 >        final boolean interruptible;
832 >        volatile boolean wasInterrupted = false;
833          volatile Thread thread; // nulled to cancel wait
834 <        QNode() {
834 >        QNode next;
835 >        QNode(Phaser phaser, int phase, boolean interruptible,
836 >              boolean timed, long startTime, long nanos) {
837 >            this.phaser = phaser;
838 >            this.phase = phase;
839 >            this.timed = timed;
840 >            this.interruptible = interruptible;
841 >            this.startTime = startTime;
842 >            this.nanos = nanos;
843              thread = Thread.currentThread();
844          }
845 +        public boolean isReleasable() {
846 +            return (thread == null ||
847 +                    phaser.getPhase() != phase ||
848 +                    (interruptible && wasInterrupted) ||
849 +                    (timed && (nanos - (System.nanoTime() - startTime)) <= 0));
850 +        }
851 +        public boolean block() {
852 +            if (Thread.interrupted()) {
853 +                wasInterrupted = true;
854 +                if (interruptible)
855 +                    return true;
856 +            }
857 +            if (!timed)
858 +                LockSupport.park(this);
859 +            else {
860 +                long waitTime = nanos - (System.nanoTime() - startTime);
861 +                if (waitTime <= 0)
862 +                    return true;
863 +                LockSupport.parkNanos(this, waitTime);
864 +            }
865 +            return isReleasable();
866 +        }
867          void signal() {
868              Thread t = thread;
869              if (t != null) {
# Line 765 | Line 871 | public class Phaser {
871                  LockSupport.unpark(t);
872              }
873          }
874 +        boolean doWait() {
875 +            if (thread != null) {
876 +                try {
877 +                    ForkJoinPool.managedBlock(this, false);
878 +                } catch (InterruptedException ie) {
879 +                }
880 +            }
881 +            return wasInterrupted;
882 +        }
883 +
884      }
885  
886      /**
887 <     * Removes and signals waiting threads from wait queue
887 >     * Removes and signals waiting threads from wait queue.
888       */
889      private void releaseWaiters(int phase) {
890          AtomicReference<QNode> head = queueFor(phase);
# Line 780 | Line 896 | public class Phaser {
896      }
897  
898      /**
899 +     * Tries to enqueue given node in the appropriate wait queue.
900 +     *
901 +     * @return true if successful
902 +     */
903 +    private boolean tryEnqueue(QNode node) {
904 +        AtomicReference<QNode> head = queueFor(node.phase);
905 +        return head.compareAndSet(node.next = head.get(), node);
906 +    }
907 +
908 +    /**
909       * Enqueues node and waits unless aborted or signalled.
910 +     *
911 +     * @return current phase
912       */
913      private int untimedWait(int phase) {
786        int spins = maxUntimedSpins;
914          QNode node = null;
788        boolean interrupted = false;
915          boolean queued = false;
916 +        boolean interrupted = false;
917          int p;
918          while ((p = getPhase()) == phase) {
919 <            interrupted = Thread.interrupted();
920 <            if (node != null) {
921 <                if (!queued) {
922 <                    AtomicReference<QNode> head = queueFor(phase);
923 <                    queued = head.compareAndSet(node.next = head.get(), node);
924 <                }
798 <                else if (node.thread != null)
799 <                    LockSupport.park(this);
800 <            }
801 <            else if (spins <= 0)
802 <                node = new QNode();
919 >            if (Thread.interrupted())
920 >                interrupted = true;
921 >            else if (node == null)
922 >                node = new QNode(this, phase, false, false, 0, 0);
923 >            else if (!queued)
924 >                queued = tryEnqueue(node);
925              else
926 <                --spins;
926 >                interrupted = node.doWait();
927          }
928          if (node != null)
929              node.thread = null;
930 +        releaseWaiters(phase);
931          if (interrupted)
932              Thread.currentThread().interrupt();
810        releaseWaiters(phase);
933          return p;
934      }
935  
936      /**
937 <     * Messier interruptible version
937 >     * Interruptible version
938 >     * @return current phase
939       */
940      private int interruptibleWait(int phase) throws InterruptedException {
818        int spins = maxUntimedSpins;
941          QNode node = null;
942          boolean queued = false;
943          boolean interrupted = false;
944          int p;
945 <        while ((p = getPhase()) == phase) {
946 <            if (interrupted = Thread.interrupted())
947 <                break;
948 <            if (node != null) {
949 <                if (!queued) {
950 <                    AtomicReference<QNode> head = queueFor(phase);
951 <                    queued = head.compareAndSet(node.next = head.get(), node);
830 <                }
831 <                else if (node.thread != null)
832 <                    LockSupport.park(this);
833 <            }
834 <            else if (spins <= 0)
835 <                node = new QNode();
945 >        while ((p = getPhase()) == phase && !interrupted) {
946 >            if (Thread.interrupted())
947 >                interrupted = true;
948 >            else if (node == null)
949 >                node = new QNode(this, phase, true, false, 0, 0);
950 >            else if (!queued)
951 >                queued = tryEnqueue(node);
952              else
953 <                --spins;
953 >                interrupted = node.doWait();
954          }
955          if (node != null)
956              node.thread = null;
957 +        if (p != phase || (p = getPhase()) != phase)
958 +            releaseWaiters(phase);
959          if (interrupted)
960              throw new InterruptedException();
843        releaseWaiters(phase);
961          return p;
962      }
963  
964      /**
965 <     * Even messier timeout version.
965 >     * Timeout version.
966 >     * @return current phase
967       */
968      private int timedWait(int phase, long nanos)
969          throws InterruptedException, TimeoutException {
970 +        long startTime = System.nanoTime();
971 +        QNode node = null;
972 +        boolean queued = false;
973 +        boolean interrupted = false;
974          int p;
975 <        if ((p = getPhase()) == phase) {
976 <            long lastTime = System.nanoTime();
977 <            int spins = maxTimedSpins;
978 <            QNode node = null;
979 <            boolean queued = false;
980 <            boolean interrupted = false;
981 <            while ((p = getPhase()) == phase) {
982 <                if (interrupted = Thread.interrupted())
983 <                    break;
984 <                long now = System.nanoTime();
985 <                if ((nanos -= now - lastTime) <= 0)
864 <                    break;
865 <                lastTime = now;
866 <                if (node != null) {
867 <                    if (!queued) {
868 <                        AtomicReference<QNode> head = queueFor(phase);
869 <                        queued = head.compareAndSet(node.next = head.get(), node);
870 <                    }
871 <                    else if (node.thread != null &&
872 <                             nanos > spinForTimeoutThreshold) {
873 <                        LockSupport.parkNanos(this, nanos);
874 <                    }
875 <                }
876 <                else if (spins <= 0)
877 <                    node = new QNode();
878 <                else
879 <                    --spins;
880 <            }
881 <            if (node != null)
882 <                node.thread = null;
883 <            if (interrupted)
884 <                throw new InterruptedException();
885 <            if (p == phase && (p = getPhase()) == phase)
886 <                throw new TimeoutException();
975 >        while ((p = getPhase()) == phase && !interrupted) {
976 >            if (Thread.interrupted())
977 >                interrupted = true;
978 >            else if (nanos - (System.nanoTime() - startTime) <= 0)
979 >                break;
980 >            else if (node == null)
981 >                node = new QNode(this, phase, true, true, startTime, nanos);
982 >            else if (!queued)
983 >                queued = tryEnqueue(node);
984 >            else
985 >                interrupted = node.doWait();
986          }
987 <        releaseWaiters(phase);
987 >        if (node != null)
988 >            node.thread = null;
989 >        if (p != phase || (p = getPhase()) != phase)
990 >            releaseWaiters(phase);
991 >        if (interrupted)
992 >            throw new InterruptedException();
993 >        if (p == phase)
994 >            throw new TimeoutException();
995          return p;
996      }
997  
998 <    // Temporary Unsafe mechanics for preliminary release
998 >    // Unsafe mechanics
999  
1000 <    static final Unsafe _unsafe;
1001 <    static final long stateOffset;
1000 >    private static final sun.misc.Unsafe UNSAFE = getUnsafe();
1001 >    private static final long stateOffset =
1002 >        objectFieldOffset("state", Phaser.class);
1003  
1004 <    static {
1004 >    private final boolean casState(long cmp, long val) {
1005 >        return UNSAFE.compareAndSwapLong(this, stateOffset, cmp, val);
1006 >    }
1007 >
1008 >    private static long objectFieldOffset(String field, Class<?> klazz) {
1009          try {
1010 <            if (Phaser.class.getClassLoader() != null) {
1011 <                Field f = Unsafe.class.getDeclaredField("theUnsafe");
1012 <                f.setAccessible(true);
1013 <                _unsafe = (Unsafe)f.get(null);
1014 <            }
1015 <            else
905 <                _unsafe = Unsafe.getUnsafe();
906 <            stateOffset = _unsafe.objectFieldOffset
907 <                (Phaser.class.getDeclaredField("state"));
908 <        } catch (Exception e) {
909 <            throw new RuntimeException("Could not initialize intrinsics", e);
1010 >            return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
1011 >        } catch (NoSuchFieldException e) {
1012 >            // Convert Exception to corresponding Error
1013 >            NoSuchFieldError error = new NoSuchFieldError(field);
1014 >            error.initCause(e);
1015 >            throw error;
1016          }
1017      }
1018  
1019 <    final boolean casState(long cmp, long val) {
1020 <        return _unsafe.compareAndSwapLong(this, stateOffset, cmp, val);
1019 >    /**
1020 >     * Returns a sun.misc.Unsafe.  Suitable for use in a 3rd party package.
1021 >     * Replace with a simple call to Unsafe.getUnsafe when integrating
1022 >     * into a jdk.
1023 >     *
1024 >     * @return a sun.misc.Unsafe
1025 >     */
1026 >    private static sun.misc.Unsafe getUnsafe() {
1027 >        try {
1028 >            return sun.misc.Unsafe.getUnsafe();
1029 >        } catch (SecurityException se) {
1030 >            try {
1031 >                return java.security.AccessController.doPrivileged
1032 >                    (new java.security
1033 >                     .PrivilegedExceptionAction<sun.misc.Unsafe>() {
1034 >                        public sun.misc.Unsafe run() throws Exception {
1035 >                            java.lang.reflect.Field f = sun.misc
1036 >                                .Unsafe.class.getDeclaredField("theUnsafe");
1037 >                            f.setAccessible(true);
1038 >                            return (sun.misc.Unsafe) f.get(null);
1039 >                        }});
1040 >            } catch (java.security.PrivilegedActionException e) {
1041 >                throw new RuntimeException("Could not initialize intrinsics",
1042 >                                           e.getCause());
1043 >            }
1044 >        }
1045      }
1046   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines