ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/Phaser.java
(Generate patch)

Comparing jsr166/src/jsr166y/Phaser.java (file contents):
Revision 1.3 by jsr166, Fri Jul 25 18:11:53 2008 UTC vs.
Revision 1.44 by dl, Tue Aug 25 16:32:28 2009 UTC

# Line 5 | Line 5
5   */
6  
7   package jsr166y;
8 < import jsr166y.forkjoin.*;
8 >
9   import java.util.concurrent.*;
10 < import java.util.concurrent.atomic.*;
10 >
11 > import java.util.concurrent.atomic.AtomicReference;
12   import java.util.concurrent.locks.LockSupport;
13  
14   /**
15 < * A reusable synchronization barrier, similar in functionality to a
16 < * {@link java.util.concurrent.CyclicBarrier}, but supporting more
17 < * flexible usage.
15 > * A reusable synchronization barrier, similar in functionality to
16 > * {@link java.util.concurrent.CyclicBarrier CyclicBarrier} and
17 > * {@link java.util.concurrent.CountDownLatch CountDownLatch}
18 > * but supporting more flexible usage.
19   *
20 < * <ul>
20 > * <p> <b>Registration.</b> Unlike the case for other barriers, the
21 > * number of parties <em>registered</em> to synchronize on a phaser
22 > * may vary over time.  Tasks may be registered at any time (using
23 > * methods {@link #register}, {@link #bulkRegister}, or forms of
24 > * constructors establishing initial numbers of parties), and
25 > * optionally deregistered upon any arrival (using {@link
26 > * #arriveAndDeregister}).  As is the case with most basic
27 > * synchronization constructs, registration and deregistration affect
28 > * only internal counts; they do not establish any further internal
29 > * bookkeeping, so tasks cannot query whether they are registered.
30 > * (However, you can introduce such bookkeeping by subclassing this
31 > * class.)
32   *
33 < * <li> The number of parties synchronizing on the barrier may vary
34 < * over time.  A task may register to be a party in a barrier at any
35 < * time, and may deregister upon arriving at the barrier.  As is the
36 < * case with most basic synchronization constructs, registration
37 < * and deregistration affect only internal counts; they do not
38 < * establish any further internal bookkeeping, so tasks cannot query
39 < * whether they are registered.
40 < *
41 < * <li> Each generation has an associated phase value, starting at
42 < * zero, and advancing when all parties reach the barrier (wrapping
43 < * around to zero after reaching <tt>Integer.MAX_VALUE</tt>).
31 < *
32 < * <li> Like a CyclicBarrier, a Phaser may be repeatedly awaited.
33 < * Method <tt>arriveAndAwaitAdvance</tt> has effect analogous to
34 < * <tt>CyclicBarrier.await</tt>.  However, Phasers separate two
35 < * aspects of coordination, that may be invoked independently:
33 > * <p> <b>Synchronization.</b> Like a {@code CyclicBarrier}, a {@code
34 > * Phaser} may be repeatedly awaited.  Method {@link
35 > * #arriveAndAwaitAdvance} has effect analogous to {@link
36 > * java.util.concurrent.CyclicBarrier#await CyclicBarrier.await}. Each
37 > * generation of a {@code Phaser} has an associated phase number. The
38 > * phase number starts at zero, and advances when all parties arrive
39 > * at the barrier, wrapping around to zero after reaching {@code
40 > * Integer.MAX_VALUE}. The use of phase numbers enables independent
41 > * control of actions upon arrival at a barrier and upon awaiting
42 > * others, via two kinds of methods that may be invoked by any
43 > * registered party:
44   *
45   * <ul>
46   *
47 < *   <li> Arriving at a barrier. Methods <tt>arrive</tt> and
48 < *       <tt>arriveAndDeregister</tt> do not block, but return
49 < *       the phase value on entry to the method.
50 < *
51 < *   <li> Awaiting others. Method <tt>awaitAdvance</tt> requires an
52 < *       argument indicating the entry phase, and returns when the
53 < *       barrier advances to a new phase.
47 > *   <li> <b>Arrival.</b> Methods {@link #arrive} and
48 > *       {@link #arriveAndDeregister} record arrival at a
49 > *       barrier. These methods do not block, but return an associated
50 > *       <em>arrival phase number</em>; that is, the phase number of
51 > *       the barrier to which the arrival applied. When the final
52 > *       party for a given phase arrives, an optional barrier action
53 > *       is performed and the phase advances.  Barrier actions,
54 > *       performed by the party triggering a phase advance, are
55 > *       arranged by overriding method {@link #onAdvance(int, int)},
56 > *       which also controls termination. Overriding this method is
57 > *       similar to, but more flexible than, providing a barrier
58 > *       action to a {@code CyclicBarrier}.
59 > *
60 > *   <li> <b>Waiting.</b> Method {@link #awaitAdvance} requires an
61 > *       argument indicating an arrival phase number, and returns when
62 > *       the barrier advances to (or is already at) a different phase.
63 > *       Unlike similar constructions using {@code CyclicBarrier},
64 > *       method {@code awaitAdvance} continues to wait even if the
65 > *       waiting thread is interrupted. Interruptible and timeout
66 > *       versions are also available, but exceptions encountered while
67 > *       tasks wait interruptibly or with timeout do not change the
68 > *       state of the barrier. If necessary, you can perform any
69 > *       associated recovery within handlers of those exceptions,
70 > *       often after invoking {@code forceTermination}.  Phasers may
71 > *       also be used by tasks executing in a {@link ForkJoinPool},
72 > *       which will ensure sufficient parallelism to execute tasks
73 > *       when others are blocked waiting for a phase to advance.
74 > *
75   * </ul>
76   *
77 + * <p> <b>Termination.</b> A {@code Phaser} may enter a
78 + * <em>termination</em> state in which all synchronization methods
79 + * immediately return without updating phaser state or waiting for
80 + * advance, and indicating (via a negative phase value) that execution
81 + * is complete.  Termination is triggered when an invocation of {@code
82 + * onAdvance} returns {@code true}.  As illustrated below, when
83 + * phasers control actions with a fixed number of iterations, it is
84 + * often convenient to override this method to cause termination when
85 + * the current phase number reaches a threshold. Method {@link
86 + * #forceTermination} is also available to abruptly release waiting
87 + * threads and allow them to terminate.
88   *
89 < * <li> Barrier actions, performed by the task triggering a phase
90 < * advance while others may be waiting, are arranged by overriding
91 < * method <tt>onAdvance</tt>, that also controls termination.
92 < *
93 < * <li> Phasers may enter a <em>termination</em> state in which all
94 < * await actions immediately return, indicating (via a negative phase
95 < * value) that execution is complete.  Termination is triggered by
56 < * executing the overridable <tt>onAdvance</tt> method that is invoked
57 < * each time the barrier is tripped. When a Phaser is controlling an
58 < * action with a fixed number of iterations, it is often convenient to
59 < * override this method to cause termination when the current phase
60 < * number reaches a threshold.  Method <tt>forceTermination</tt> is
61 < * also available to assist recovery actions upon failure.
62 < *
63 < * <li> Unlike most synchronizers, a Phaser may also be used with
64 < * ForkJoinTasks (as well as plain threads).
65 < *
66 < * <li> By default, <tt>awaitAdvance</tt> continues to wait even if
67 < * the current thread is interrupted. And unlike the case in
68 < * CyclicBarriers, exceptions encountered while tasks wait
69 < * interruptibly or with timeout do not change the state of the
70 < * barrier. If necessary, you can perform any associated recovery
71 < * within handlers of those exceptions.
89 > * <p> <b>Tiering.</b> Phasers may be <em>tiered</em> (i.e., arranged
90 > * in tree structures) to reduce contention. Phasers with large
91 > * numbers of parties that would otherwise experience heavy
92 > * synchronization contention costs may instead be set up so that
93 > * groups of sub-phasers share a common parent.  This may greatly
94 > * increase throughput even though it incurs greater per-operation
95 > * overhead.
96   *
97 < * </ul>
97 > * <p><b>Monitoring.</b> While synchronization methods may be invoked
98 > * only by registered parties, the current state of a phaser may be
99 > * monitored by any caller.  At any given moment there are {@link
100 > * #getRegisteredParties} parties in total, of which {@link
101 > * #getArrivedParties} have arrived at the current phase ({@link
102 > * #getPhase}).  When the remaining ({@link #getUnarrivedParties})
103 > * parties arrive, the phase advances.  The values returned by these
104 > * methods may reflect transient states and so are not in general
105 > * useful for synchronization control.  Method {@link #toString}
106 > * returns snapshots of these state queries in a form convenient for
107 > * informal monitoring.
108 > *
109 > * <p><b>Sample usages:</b>
110 > *
111 > * <p>A {@code Phaser} may be used instead of a {@code CountDownLatch}
112 > * to control a one-shot action serving a variable number of
113 > * parties. The typical idiom is for the method setting this up to
114 > * first register, then start the actions, then deregister, as in:
115 > *
116 > *  <pre> {@code
117 > * void runTasks(List<Runnable> tasks) {
118 > *   final Phaser phaser = new Phaser(1); // "1" to register self
119 > *   // create and start threads
120 > *   for (Runnable task : tasks) {
121 > *     phaser.register();
122 > *     new Thread() {
123 > *       public void run() {
124 > *         phaser.arriveAndAwaitAdvance(); // await all creation
125 > *         task.run();
126 > *       }
127 > *     }.start();
128 > *   }
129 > *
130 > *   // allow threads to start and deregister self
131 > *   phaser.arriveAndDeregister();
132 > * }}</pre>
133 > *
134 > * <p>One way to cause a set of threads to repeatedly perform actions
135 > * for a given number of iterations is to override {@code onAdvance}:
136 > *
137 > *  <pre> {@code
138 > * void startTasks(List<Runnable> tasks, final int iterations) {
139 > *   final Phaser phaser = new Phaser() {
140 > *     protected boolean onAdvance(int phase, int registeredParties) {
141 > *       return phase >= iterations || registeredParties == 0;
142 > *     }
143 > *   };
144 > *   phaser.register();
145 > *   for (Runnable task : tasks) {
146 > *     phaser.register();
147 > *     new Thread() {
148 > *       public void run() {
149 > *         do {
150 > *           task.run();
151 > *           phaser.arriveAndAwaitAdvance();
152 > *         } while(!phaser.isTerminated();
153 > *       }
154 > *     }.start();
155 > *   }
156 > *   phaser.arriveAndDeregister(); // deregister self, don't wait
157 > * }}</pre>
158   *
159 < * <p><b>Sample usage:</b>
159 > * If the main task must later await termination, it
160 > * may re-register and then execute a similar loop:
161 > * <pre> {@code
162 > *   // ...
163 > *   phaser.register();
164 > *   while (!phaser.isTerminated())
165 > *     phaser.arriveAndAwaitAdvance();
166 > * }</pre>
167   *
168 < * <p>[todo: non-FJ example]
168 > * Related constructions may be used to await particular phase numbers
169 > * in contexts where you are sure that the phase will never wrap around
170 > * {@code Integer.MAX_VALUE}. For example:
171   *
172 < * <p> A Phaser may be used to support a style of programming in
173 < * which a task waits for others to complete, without otherwise
174 < * needing to keep track of which tasks it is waiting for. This is
175 < * similar to the "sync" construct in Cilk and "clocks" in X10.
176 < * Special constructions based on such barriers are available using
177 < * the <tt>LinkedAsyncAction</tt> and <tt>CyclicAction</tt> classes,
178 < * but they can be useful in other contexts as well.  For a simple
179 < * (but not very useful) example, here is a variant of Fibonacci:
180 < *
181 < * <pre>
89 < * class BarrierFibonacci extends RecursiveAction {
90 < *   int argument, result;
91 < *   final Phaser parentBarrier;
92 < *   BarrierFibonacci(int n, Phaser parentBarrier) {
93 < *     this.argument = n;
94 < *     this.parentBarrier = parentBarrier;
95 < *     parentBarrier.register();
172 > * <pre> {@code
173 > *   void awaitPhase(Phaser phaser, int phase) {
174 > *     int p = phaser.register(); // assumes caller not already registered
175 > *     while (p < phase) {
176 > *       if (phaser.isTerminated())
177 > *         // ... deal with unexpected termination
178 > *       else
179 > *         p = phaser.arriveAndAwaitAdvance();
180 > *     }
181 > *     phaser.arriveAndDeregister();
182   *   }
183 < *   protected void compute() {
184 < *     int n = argument;
185 < *     if (n &lt;= 1)
186 < *        result = n;
187 < *     else {
188 < *        Phaser childBarrier = new Phaser(1);
189 < *        BarrierFibonacci f1 = new BarrierFibonacci(n - 1, childBarrier);
190 < *        BarrierFibonacci f2 = new BarrierFibonacci(n - 2, childBarrier);
191 < *        f1.fork();
192 < *        f2.fork();
193 < *        childBarrier.arriveAndAwait();
194 < *        result = f1.result + f2.result;
183 > * }</pre>
184 > *
185 > *
186 > * <p>To create a set of tasks using a tree of phasers,
187 > * you could use code of the following form, assuming a
188 > * Task class with a constructor accepting a phaser that
189 > * it registers for upon construction:
190 > *  <pre> {@code
191 > * void build(Task[] actions, int lo, int hi, Phaser ph) {
192 > *   if (hi - lo > TASKS_PER_PHASER) {
193 > *     for (int i = lo; i < hi; i += TASKS_PER_PHASER) {
194 > *       int j = Math.min(i + TASKS_PER_PHASER, hi);
195 > *       build(actions, i, j, new Phaser(ph));
196   *     }
197 < *     parentBarrier.arriveAndDeregister();
197 > *   } else {
198 > *     for (int i = lo; i < hi; ++i)
199 > *       actions[i] = new Task(ph);
200 > *       // assumes new Task(ph) performs ph.register()
201   *   }
202   * }
203 + * // .. initially called, for n tasks via
204 + * build(new Task[n], 0, n, new Phaser());}</pre>
205 + *
206 + * The best value of {@code TASKS_PER_PHASER} depends mainly on
207 + * expected barrier synchronization rates. A value as low as four may
208 + * be appropriate for extremely small per-barrier task bodies (thus
209 + * high rates), or up to hundreds for extremely large ones.
210 + *
211   * </pre>
212   *
213   * <p><b>Implementation notes</b>: This implementation restricts the
214 < * maximum number of parties to 65535. Attempts to register
215 < * additional parties result in IllegalStateExceptions.
214 > * maximum number of parties to 65535. Attempts to register additional
215 > * parties result in {@code IllegalStateException}. However, you can and
216 > * should create tiered phasers to accommodate arbitrarily large sets
217 > * of participants.
218 > *
219 > * @since 1.7
220 > * @author Doug Lea
221   */
222   public class Phaser {
223      /*
224       * This class implements an extension of X10 "clocks".  Thanks to
225 <     * Vijay Saraswat for the idea of applying it to ForkJoinTasks,
226 <     * and to Vivek Sarkar for enhancements to extend functionality.
225 >     * Vijay Saraswat for the idea, and to Vivek Sarkar for
226 >     * enhancements to extend functionality.
227       */
228  
229      /**
# Line 133 | Line 236 | public class Phaser {
236       * * terminated -- set if barrier is terminated (1 bit)
237       *
238       * However, to efficiently maintain atomicity, these values are
239 <     * packed into a single AtomicLong. Termination uses the sign bit
240 <     * of 32 bit representation of phase, so phase is set to -1 on
241 <     * termination.
242 <     */
243 <    private final AtomicLong state;
244 <
245 <    /**
143 <     * Head of Treiber stack for waiting nonFJ threads.
239 >     * packed into a single (atomic) long. Termination uses the sign
240 >     * bit of 32 bit representation of phase, so phase is set to -1 on
241 >     * termination. Good performance relies on keeping state decoding
242 >     * and encoding simple, and keeping race windows short.
243 >     *
244 >     * Note: there are some cheats in arrive() that rely on unarrived
245 >     * count being lowest 16 bits.
246       */
247 <    private final AtomicReference<QNode> head = new AtomicReference<QNode>();
247 >    private volatile long state;
248  
249 <    private static final int ushortBits = 16;
250 <    private static final int ushortMask =  (1 << ushortBits) - 1;
149 <    private static final int phaseMask = 0x7fffffff;
249 >    private static final int ushortMask = 0xffff;
250 >    private static final int phaseMask  = 0x7fffffff;
251  
252      private static int unarrivedOf(long s) {
253 <        return (int)(s & ushortMask);
253 >        return (int) (s & ushortMask);
254      }
255  
256      private static int partiesOf(long s) {
257 <        return (int)(s & (ushortMask << 16)) >>> 16;
257 >        return ((int) s) >>> 16;
258      }
259  
260      private static int phaseOf(long s) {
261 <        return (int)(s >>> 32);
261 >        return (int) (s >>> 32);
262      }
263  
264      private static int arrivedOf(long s) {
# Line 165 | Line 266 | public class Phaser {
266      }
267  
268      private static long stateFor(int phase, int parties, int unarrived) {
269 <        return (((long)phase) << 32) | ((parties << 16) | unarrived);
269 >        return ((((long) phase) << 32) | (((long) parties) << 16) |
270 >                (long) unarrived);
271      }
272  
273 <    private static IllegalStateException badBounds(int parties, int unarrived) {
274 <        return new IllegalStateException("Attempt to set " + unarrived +
275 <                                         " unarrived of " + parties + " parties");
273 >    private static long trippedStateFor(int phase, int parties) {
274 >        long lp = (long) parties;
275 >        return (((long) phase) << 32) | (lp << 16) | lp;
276      }
277  
278      /**
279 <     * Creates a new Phaser without any initially registered parties,
280 <     * and initial phase number 0.
279 >     * Returns message string for bad bounds exceptions.
280 >     */
281 >    private static String badBounds(int parties, int unarrived) {
282 >        return ("Attempt to set " + unarrived +
283 >                " unarrived of " + parties + " parties");
284 >    }
285 >
286 >    /**
287 >     * The parent of this phaser, or null if none
288 >     */
289 >    private final Phaser parent;
290 >
291 >    /**
292 >     * The root of phaser tree. Equals this if not in a tree.  Used to
293 >     * support faster state push-down.
294 >     */
295 >    private final Phaser root;
296 >
297 >    // Wait queues
298 >
299 >    /**
300 >     * Heads of Treiber stacks for waiting threads. To eliminate
301 >     * contention while releasing some threads while adding others, we
302 >     * use two of them, alternating across even and odd phases.
303 >     */
304 >    private final AtomicReference<QNode> evenQ = new AtomicReference<QNode>();
305 >    private final AtomicReference<QNode> oddQ  = new AtomicReference<QNode>();
306 >
307 >    private AtomicReference<QNode> queueFor(int phase) {
308 >        return ((phase & 1) == 0) ? evenQ : oddQ;
309 >    }
310 >
311 >    /**
312 >     * Returns current state, first resolving lagged propagation from
313 >     * root if necessary.
314 >     */
315 >    private long getReconciledState() {
316 >        return (parent == null) ? state : reconcileState();
317 >    }
318 >
319 >    /**
320 >     * Recursively resolves state.
321 >     */
322 >    private long reconcileState() {
323 >        Phaser p = parent;
324 >        long s = state;
325 >        if (p != null) {
326 >            while (unarrivedOf(s) == 0 && phaseOf(s) != phaseOf(root.state)) {
327 >                long parentState = p.getReconciledState();
328 >                int parentPhase = phaseOf(parentState);
329 >                int phase = phaseOf(s = state);
330 >                if (phase != parentPhase) {
331 >                    long next = trippedStateFor(parentPhase, partiesOf(s));
332 >                    if (casState(s, next)) {
333 >                        releaseWaiters(phase);
334 >                        s = next;
335 >                    }
336 >                }
337 >            }
338 >        }
339 >        return s;
340 >    }
341 >
342 >    /**
343 >     * Creates a new phaser without any initially registered parties,
344 >     * initial phase number 0, and no parent. Any thread using this
345 >     * phaser will need to first register for it.
346       */
347      public Phaser() {
348 <        state = new AtomicLong(stateFor(0, 0, 0));
348 >        this(null);
349      }
350  
351      /**
352 <     * Creates a new Phaser with the given numbers of registered
353 <     * unarrived parties and initial phase number 0.
354 <     * @param parties the number of parties required to trip barrier.
352 >     * Creates a new phaser with the given numbers of registered
353 >     * unarrived parties, initial phase number 0, and no parent.
354 >     *
355 >     * @param parties the number of parties required to trip barrier
356       * @throws IllegalArgumentException if parties less than zero
357 <     * or greater than the maximum number of parties supported.
357 >     * or greater than the maximum number of parties supported
358       */
359      public Phaser(int parties) {
360 +        this(null, parties);
361 +    }
362 +
363 +    /**
364 +     * Creates a new phaser with the given parent, without any
365 +     * initially registered parties. If parent is non-null this phaser
366 +     * is registered with the parent and its initial phase number is
367 +     * the same as that of parent phaser.
368 +     *
369 +     * @param parent the parent phaser
370 +     */
371 +    public Phaser(Phaser parent) {
372 +        int phase = 0;
373 +        this.parent = parent;
374 +        if (parent != null) {
375 +            this.root = parent.root;
376 +            phase = parent.register();
377 +        }
378 +        else
379 +            this.root = this;
380 +        this.state = trippedStateFor(phase, 0);
381 +    }
382 +
383 +    /**
384 +     * Creates a new phaser with the given parent and numbers of
385 +     * registered unarrived parties. If parent is non-null, this phaser
386 +     * is registered with the parent and its initial phase number is
387 +     * the same as that of parent phaser.
388 +     *
389 +     * @param parent the parent phaser
390 +     * @param parties the number of parties required to trip barrier
391 +     * @throws IllegalArgumentException if parties less than zero
392 +     * or greater than the maximum number of parties supported
393 +     */
394 +    public Phaser(Phaser parent, int parties) {
395          if (parties < 0 || parties > ushortMask)
396              throw new IllegalArgumentException("Illegal number of parties");
397 <        state = new AtomicLong(stateFor(0, parties, parties));
397 >        int phase = 0;
398 >        this.parent = parent;
399 >        if (parent != null) {
400 >            this.root = parent.root;
401 >            phase = parent.register();
402 >        }
403 >        else
404 >            this.root = this;
405 >        this.state = trippedStateFor(phase, parties);
406      }
407  
408      /**
409       * Adds a new unarrived party to this phaser.
410 <     * @return the current barrier phase number upon registration
410 >     *
411 >     * @return the arrival phase number to which this registration applied
412 >     * @throws IllegalStateException if attempting to register more
413 >     * than the maximum supported number of parties
414 >     */
415 >    public int register() {
416 >        return doRegister(1);
417 >    }
418 >
419 >    /**
420 >     * Adds the given number of new unarrived parties to this phaser.
421 >     *
422 >     * @param parties the number of parties required to trip barrier
423 >     * @return the arrival phase number to which this registration applied
424       * @throws IllegalStateException if attempting to register more
425 <     * than the maximum supported number of parties.
425 >     * than the maximum supported number of parties
426       */
427 <    public int register() { // increment both parties and unarrived
428 <        final AtomicLong state = this.state;
427 >    public int bulkRegister(int parties) {
428 >        if (parties < 0)
429 >            throw new IllegalArgumentException();
430 >        if (parties == 0)
431 >            return getPhase();
432 >        return doRegister(parties);
433 >    }
434 >
435 >    /**
436 >     * Shared code for register, bulkRegister
437 >     */
438 >    private int doRegister(int registrations) {
439 >        int phase;
440          for (;;) {
441 <            long s = state.get();
442 <            int phase = phaseOf(s);
443 <            int parties = partiesOf(s) + 1;
444 <            int unarrived = unarrivedOf(s) + 1;
441 >            long s = getReconciledState();
442 >            phase = phaseOf(s);
443 >            int unarrived = unarrivedOf(s) + registrations;
444 >            int parties = partiesOf(s) + registrations;
445 >            if (phase < 0)
446 >                break;
447              if (parties > ushortMask || unarrived > ushortMask)
448 <                throw badBounds(parties, unarrived);
449 <            if (state.compareAndSet(s, stateFor(phase, parties, unarrived)))
450 <                return phase;
448 >                throw new IllegalStateException(badBounds(parties, unarrived));
449 >            if (phase == phaseOf(root.state) &&
450 >                casState(s, stateFor(phase, parties, unarrived)))
451 >                break;
452          }
453 +        return phase;
454      }
455  
456      /**
457       * Arrives at the barrier, but does not wait for others.  (You can
458 <     * in turn wait for others via {@link #awaitAdvance}).
458 >     * in turn wait for others via {@link #awaitAdvance}).  It is an
459 >     * unenforced usage error for an unregistered party to invoke this
460 >     * method.
461       *
462 <     * @return the current barrier phase number upon entry to
463 <     * this method, or a negative value if terminated;
464 <     * @throws IllegalStateException if the number of unarrived
224 <     * parties would become negative.
462 >     * @return the arrival phase number, or a negative value if terminated
463 >     * @throws IllegalStateException if not terminated and the number
464 >     * of unarrived parties would become negative
465       */
466 <    public int arrive() { // decrement unarrived. If zero, trip
467 <        final AtomicLong state = this.state;
466 >    public int arrive() {
467 >        int phase;
468          for (;;) {
469 <            long s = state.get();
470 <            int phase = phaseOf(s);
469 >            long s = state;
470 >            phase = phaseOf(s);
471 >            if (phase < 0)
472 >                break;
473              int parties = partiesOf(s);
474              int unarrived = unarrivedOf(s) - 1;
475 <            if (unarrived < 0)
476 <                throw badBounds(parties, unarrived);
477 <            if (unarrived == 0 && phase >= 0) {
236 <                trip(phase, parties);
237 <                return phase;
475 >            if (unarrived > 0) {        // Not the last arrival
476 >                if (casState(s, s - 1)) // s-1 adds one arrival
477 >                    break;
478              }
479 <            if (state.compareAndSet(s, stateFor(phase, parties, unarrived)))
480 <                return phase;
479 >            else if (unarrived == 0) {  // the last arrival
480 >                Phaser par = parent;
481 >                if (par == null) {      // directly trip
482 >                    if (casState
483 >                        (s,
484 >                         trippedStateFor(onAdvance(phase, parties) ? -1 :
485 >                                         ((phase + 1) & phaseMask), parties))) {
486 >                        releaseWaiters(phase);
487 >                        break;
488 >                    }
489 >                }
490 >                else {                  // cascade to parent
491 >                    if (casState(s, s - 1)) { // zeroes unarrived
492 >                        par.arrive();
493 >                        reconcileState();
494 >                        break;
495 >                    }
496 >                }
497 >            }
498 >            else if (phase != phaseOf(root.state)) // or if unreconciled
499 >                reconcileState();
500 >            else
501 >                throw new IllegalStateException(badBounds(parties, unarrived));
502          }
503 +        return phase;
504      }
505  
506      /**
507 <     * Arrives at the barrier, and deregisters from it, without
508 <     * waiting for others.
507 >     * Arrives at the barrier and deregisters from it without waiting
508 >     * for others. Deregistration reduces the number of parties
509 >     * required to trip the barrier in future phases.  If this phaser
510 >     * has a parent, and deregistration causes this phaser to have
511 >     * zero parties, this phaser also arrives at and is deregistered
512 >     * from its parent.  It is an unenforced usage error for an
513 >     * unregistered party to invoke this method.
514       *
515 <     * @return the current barrier phase number upon entry to
516 <     * this method, or a negative value if terminated;
517 <     * @throws IllegalStateException if the number of registered or
518 <     * unarrived parties would become negative.
519 <     */
520 <    public int arriveAndDeregister() { // Same as arrive, plus decrement parties
521 <        final AtomicLong state = this.state;
515 >     * @return the arrival phase number, or a negative value if terminated
516 >     * @throws IllegalStateException if not terminated and the number
517 >     * of registered or unarrived parties would become negative
518 >     */
519 >    public int arriveAndDeregister() {
520 >        // similar code to arrive, but too different to merge
521 >        Phaser par = parent;
522 >        int phase;
523          for (;;) {
524 <            long s = state.get();
525 <            int phase = phaseOf(s);
524 >            long s = state;
525 >            phase = phaseOf(s);
526 >            if (phase < 0)
527 >                break;
528              int parties = partiesOf(s) - 1;
529              int unarrived = unarrivedOf(s) - 1;
530 <            if (parties < 0 || unarrived < 0)
531 <                throw badBounds(parties, unarrived);
532 <            if (unarrived == 0 && phase >= 0) {
533 <                trip(phase, parties);
534 <                return phase;
530 >            if (parties >= 0) {
531 >                if (unarrived > 0 || (unarrived == 0 && par != null)) {
532 >                    if (casState
533 >                        (s,
534 >                         stateFor(phase, parties, unarrived))) {
535 >                        if (unarrived == 0) {
536 >                            par.arriveAndDeregister();
537 >                            reconcileState();
538 >                        }
539 >                        break;
540 >                    }
541 >                    continue;
542 >                }
543 >                if (unarrived == 0) {
544 >                    if (casState
545 >                        (s,
546 >                         trippedStateFor(onAdvance(phase, parties) ? -1 :
547 >                                         ((phase + 1) & phaseMask), parties))) {
548 >                        releaseWaiters(phase);
549 >                        break;
550 >                    }
551 >                    continue;
552 >                }
553 >                if (par != null && phase != phaseOf(root.state)) {
554 >                    reconcileState();
555 >                    continue;
556 >                }
557              }
558 <            if (state.compareAndSet(s, stateFor(phase, parties, unarrived)))
267 <                return phase;
558 >            throw new IllegalStateException(badBounds(parties, unarrived));
559          }
560 +        return phase;
561      }
562  
563      /**
564 <     * Arrives at the barrier and awaits others. Unlike other arrival
565 <     * methods, this method returns the arrival index of the
566 <     * caller. The caller tripping the barrier returns zero, the
567 <     * previous caller 1, and so on.
568 <     * @return the arrival index
569 <     * @throws IllegalStateException if the number of unarrived
570 <     * parties would become negative.
564 >     * Arrives at the barrier and awaits others. Equivalent in effect
565 >     * to {@code awaitAdvance(arrive())}.  If you need to await with
566 >     * interruption or timeout, you can arrange this with an analogous
567 >     * construction using one of the other forms of the awaitAdvance
568 >     * method.  If instead you need to deregister upon arrival use
569 >     * {@code arriveAndDeregister}. It is an unenforced usage error
570 >     * for an unregistered party to invoke this method.
571 >     *
572 >     * @return the arrival phase number, or a negative number if terminated
573 >     * @throws IllegalStateException if not terminated and the number
574 >     * of unarrived parties would become negative
575       */
576      public int arriveAndAwaitAdvance() {
577 <        final AtomicLong state = this.state;
282 <        for (;;) {
283 <            long s = state.get();
284 <            int phase = phaseOf(s);
285 <            int parties = partiesOf(s);
286 <            int unarrived = unarrivedOf(s) - 1;
287 <            if (unarrived < 0)
288 <                throw badBounds(parties, unarrived);
289 <            if (unarrived == 0 && phase >= 0) {
290 <                trip(phase, parties);
291 <                return 0;
292 <            }
293 <            if (state.compareAndSet(s, stateFor(phase, parties, unarrived))) {
294 <                awaitAdvance(phase);
295 <                return unarrived;
296 <            }
297 <        }
577 >        return awaitAdvance(arrive());
578      }
579  
580      /**
581 <     * Awaits the phase of the barrier to advance from the given
582 <     * value, or returns immediately if this barrier is terminated.
583 <     * @param phase the phase on entry to this method
584 <     * @return the phase on exit from this method
581 >     * Awaits the phase of the barrier to advance from the given phase
582 >     * value, returning immediately if the current phase of the
583 >     * barrier is not equal to the given phase value or this barrier
584 >     * is terminated.  It is an unenforced usage error for an
585 >     * unregistered party to invoke this method.
586 >     *
587 >     * @param phase an arrival phase number, or negative value if
588 >     * terminated; this argument is normally the value returned by a
589 >     * previous call to {@code arrive} or its variants
590 >     * @return the next arrival phase number, or a negative value
591 >     * if terminated or argument is negative
592       */
593      public int awaitAdvance(int phase) {
594          if (phase < 0)
595              return phase;
596 <        Thread current = Thread.currentThread();
597 <        if (current instanceof ForkJoinWorkerThread)
598 <            return helpingWait(phase);
599 <        if (untimedWait(current, phase, false))
600 <            current.interrupt();
601 <        return phaseOf(state.get());
596 >        long s = getReconciledState();
597 >        int p = phaseOf(s);
598 >        if (p != phase)
599 >            return p;
600 >        if (unarrivedOf(s) == 0 && parent != null)
601 >            parent.awaitAdvance(phase);
602 >        // Fall here even if parent waited, to reconcile and help release
603 >        return untimedWait(phase);
604      }
605  
606      /**
607 <     * Awaits the phase of the barrier to advance from the given
608 <     * value, or returns immediately if this barrier is terminated, or
609 <     * throws InterruptedException if interrupted while waiting.
610 <     * @param phase the phase on entry to this method
611 <     * @return the phase on exit from this method
607 >     * Awaits the phase of the barrier to advance from the given phase
608 >     * value, throwing {@code InterruptedException} if interrupted
609 >     * while waiting, or returning immediately if the current phase of
610 >     * the barrier is not equal to the given phase value or this
611 >     * barrier is terminated. It is an unenforced usage error for an
612 >     * unregistered party to invoke this method.
613 >     *
614 >     * @param phase an arrival phase number, or negative value if
615 >     * terminated; this argument is normally the value returned by a
616 >     * previous call to {@code arrive} or its variants
617 >     * @return the next arrival phase number, or a negative value
618 >     * if terminated or argument is negative
619       * @throws InterruptedException if thread interrupted while waiting
620       */
621 <    public int awaitAdvanceInterruptibly(int phase) throws InterruptedException {
621 >    public int awaitAdvanceInterruptibly(int phase)
622 >        throws InterruptedException {
623          if (phase < 0)
624              return phase;
625 <        Thread current = Thread.currentThread();
626 <        if (current instanceof ForkJoinWorkerThread)
627 <            return helpingWait(phase);
628 <        else if (Thread.interrupted() || untimedWait(current, phase, true))
629 <            throw new InterruptedException();
630 <        else
631 <            return phaseOf(state.get());
625 >        long s = getReconciledState();
626 >        int p = phaseOf(s);
627 >        if (p != phase)
628 >            return p;
629 >        if (unarrivedOf(s) == 0 && parent != null)
630 >            parent.awaitAdvanceInterruptibly(phase);
631 >        return interruptibleWait(phase);
632      }
633  
634      /**
635 <     * Awaits the phase of the barrier to advance from the given value
636 <     * or the given timeout elapses, or returns immediately if this
637 <     * barrier is terminated.
638 <     * @param phase the phase on entry to this method
639 <     * @return the phase on exit from this method
635 >     * Awaits the phase of the barrier to advance from the given phase
636 >     * value or the given timeout to elapse, throwing {@code
637 >     * InterruptedException} if interrupted while waiting, or
638 >     * returning immediately if the current phase of the barrier is
639 >     * not equal to the given phase value or this barrier is
640 >     * terminated.  It is an unenforced usage error for an
641 >     * unregistered party to invoke this method.
642 >     *
643 >     * @param phase an arrival phase number, or negative value if
644 >     * terminated; this argument is normally the value returned by a
645 >     * previous call to {@code arrive} or its variants
646 >     * @param timeout how long to wait before giving up, in units of
647 >     *        {@code unit}
648 >     * @param unit a {@code TimeUnit} determining how to interpret the
649 >     *        {@code timeout} parameter
650 >     * @return the next arrival phase number, or a negative value
651 >     * if terminated or argument is negative
652       * @throws InterruptedException if thread interrupted while waiting
653       * @throws TimeoutException if timed out while waiting
654       */
655 <    public int awaitAdvanceInterruptibly(int phase, long timeout, TimeUnit unit)
655 >    public int awaitAdvanceInterruptibly(int phase,
656 >                                         long timeout, TimeUnit unit)
657          throws InterruptedException, TimeoutException {
658          if (phase < 0)
659              return phase;
660 <        long nanos = unit.toNanos(timeout);
661 <        Thread current = Thread.currentThread();
662 <        if (current instanceof ForkJoinWorkerThread)
663 <            return timedHelpingWait(phase, nanos);
664 <        timedWait(current, phase, nanos);
665 <        return phaseOf(state.get());
660 >        long s = getReconciledState();
661 >        int p = phaseOf(s);
662 >        if (p != phase)
663 >            return p;
664 >        if (unarrivedOf(s) == 0 && parent != null)
665 >            parent.awaitAdvanceInterruptibly(phase, timeout, unit);
666 >        return timedWait(phase, unit.toNanos(timeout));
667      }
668  
669      /**
670       * Forces this barrier to enter termination state. Counts of
671 <     * arrived and registered parties are unaffected. This method may
672 <     * be useful for coordinating recovery after one or more tasks
673 <     * encounter unexpected exceptions.
671 >     * arrived and registered parties are unaffected. If this phaser
672 >     * has a parent, it too is terminated. This method may be useful
673 >     * for coordinating recovery after one or more tasks encounter
674 >     * unexpected exceptions.
675       */
676      public void forceTermination() {
365        final AtomicLong state = this.state;
677          for (;;) {
678 <            long s = state.get();
678 >            long s = getReconciledState();
679              int phase = phaseOf(s);
680              int parties = partiesOf(s);
681              int unarrived = unarrivedOf(s);
682              if (phase < 0 ||
683 <                state.compareAndSet(s, stateFor(-1, parties, unarrived))) {
684 <                if (head.get() != null)
685 <                    releaseWaiters(-1);
683 >                casState(s, stateFor(-1, parties, unarrived))) {
684 >                releaseWaiters(0);
685 >                releaseWaiters(1);
686 >                if (parent != null)
687 >                    parent.forceTermination();
688                  return;
689              }
690          }
691      }
692  
693      /**
381     * Resets the barrier with the given numbers of registered unarrived
382     * parties and phase number 0. This method allows repeated reuse
383     * of this barrier, but only if it is somehow known not to be in
384     * use for other purposes.
385     * @param parties the number of parties required to trip barrier.
386     * @throws IllegalArgumentException if parties less than zero
387     * or greater than the maximum number of parties supported.
388     */
389    public void reset(int parties) {
390        if (parties < 0 || parties > ushortMask)
391            throw new IllegalArgumentException("Illegal number of parties");
392        state.set(stateFor(0, parties, parties));
393        if (head.get() != null)
394            releaseWaiters(0);
395    }
396
397    /**
694       * Returns the current phase number. The maximum phase number is
695 <     * <tt>Integer.MAX_VALUE</tt>, after which it restarts at
695 >     * {@code Integer.MAX_VALUE}, after which it restarts at
696       * zero. Upon termination, the phase number is negative.
697 +     *
698       * @return the phase number, or a negative value if terminated
699       */
700 <    public int getPhase() {
701 <        return phaseOf(state.get());
700 >    public final int getPhase() {
701 >        return phaseOf(getReconciledState());
702      }
703  
704      /**
705       * Returns the number of parties registered at this barrier.
706 +     *
707       * @return the number of parties
708       */
709      public int getRegisteredParties() {
710 <        return partiesOf(state.get());
710 >        return partiesOf(state);
711      }
712  
713      /**
714 <     * Returns the number of parties that have arrived at the current
715 <     * phase of this barrier.
714 >     * Returns the number of registered parties that have arrived at
715 >     * the current phase of this barrier.
716 >     *
717       * @return the number of arrived parties
718       */
719      public int getArrivedParties() {
720 <        return arrivedOf(state.get());
720 >        return arrivedOf(state);
721      }
722  
723      /**
724       * Returns the number of registered parties that have not yet
725       * arrived at the current phase of this barrier.
726 +     *
727       * @return the number of unarrived parties
728       */
729      public int getUnarrivedParties() {
730 <        return unarrivedOf(state.get());
730 >        return unarrivedOf(state);
731      }
732  
733      /**
734 <     * Returns true if this barrier has been terminated.
735 <     * @return true if this barrier has been terminated
734 >     * Returns the parent of this phaser, or {@code null} if none.
735 >     *
736 >     * @return the parent of this phaser, or {@code null} if none
737 >     */
738 >    public Phaser getParent() {
739 >        return parent;
740 >    }
741 >
742 >    /**
743 >     * Returns the root ancestor of this phaser, which is the same as
744 >     * this phaser if it has no parent.
745 >     *
746 >     * @return the root ancestor of this phaser
747 >     */
748 >    public Phaser getRoot() {
749 >        return root;
750 >    }
751 >
752 >    /**
753 >     * Returns {@code true} if this barrier has been terminated.
754 >     *
755 >     * @return {@code true} if this barrier has been terminated
756       */
757      public boolean isTerminated() {
758 <        return phaseOf(state.get()) < 0;
758 >        return getPhase() < 0;
759      }
760  
761      /**
762 <     * Overridable method to perform an action upon phase advance, and
763 <     * to control termination. This method is invoked whenever the
764 <     * barrier is tripped (and thus all other waiting parties are
765 <     * dormant). If it returns true, then, rather than advance the
766 <     * phase number, this barrier will be set to a final termination
767 <     * state, and subsequent calls to <tt>isTerminated</tt> will
768 <     * return true.
762 >     * Overridable method to perform an action upon impending phase
763 >     * advance, and to control termination. This method is invoked
764 >     * upon arrival of the party tripping the barrier (when all other
765 >     * waiting parties are dormant).  If this method returns {@code
766 >     * true}, then, rather than advance the phase number, this barrier
767 >     * will be set to a final termination state, and subsequent calls
768 >     * to {@link #isTerminated} will return true. Any (unchecked)
769 >     * Exception or Error thrown by an invocation of this method is
770 >     * propagated to the party attempting to trip the barrier, in
771 >     * which case no advance occurs.
772 >     *
773 >     * <p>The arguments to this method provide the state of the phaser
774 >     * prevailing for the current transition. (When called from within
775 >     * an implementation of {@code onAdvance} the values returned by
776 >     * methods such as {@code getPhase} may or may not reliably
777 >     * indicate the state to which this transition applies.)
778       *
779 <     * <p> The default version returns true when the number of
779 >     * <p>The default version returns {@code true} when the number of
780       * registered parties is zero. Normally, overrides that arrange
781       * termination for other reasons should also preserve this
782       * property.
783       *
784 +     * <p>You may override this method to perform an action with side
785 +     * effects visible to participating tasks, but doing so requires
786 +     * care: Method {@code onAdvance} may be invoked more than once
787 +     * per transition.  Further, unless all parties register before
788 +     * any arrive, and all {@link #awaitAdvance} at each phase, then
789 +     * you cannot ensure lack of interference from other parties
790 +     * during the invocation of this method.
791 +     *
792       * @param phase the phase number on entering the barrier
793 <     * @param registeredParties the current number of registered
794 <     * parties.
458 <     * @return true if this barrier should terminate
793 >     * @param registeredParties the current number of registered parties
794 >     * @return {@code true} if this barrier should terminate
795       */
796      protected boolean onAdvance(int phase, int registeredParties) {
797          return registeredParties <= 0;
798      }
799  
800      /**
801 <     * Returns a string identifying this barrier, as well as its
801 >     * Returns a string identifying this phaser, as well as its
802       * state.  The state, in brackets, includes the String {@code
803 <     * "phase ="} followed by the phase number, {@code "parties ="}
803 >     * "phase = "} followed by the phase number, {@code "parties = "}
804       * followed by the number of registered parties, and {@code
805 <     * "arrived ="} followed by the number of arrived parties
805 >     * "arrived = "} followed by the number of arrived parties.
806       *
807       * @return a string identifying this barrier, as well as its state
808       */
809      public String toString() {
810 <        long s = state.get();
811 <        return super.toString() + "[phase = " + phaseOf(s) + " parties = " + partiesOf(s) + " arrived = " + arrivedOf(s) + "]";
810 >        long s = getReconciledState();
811 >        return super.toString() +
812 >            "[phase = " + phaseOf(s) +
813 >            " parties = " + partiesOf(s) +
814 >            " arrived = " + arrivedOf(s) + "]";
815      }
816  
817 <    // methods for tripping and waiting
817 >    // methods for waiting
818  
819      /**
820 <     * Advance the current phase (or terminate)
820 >     * Wait nodes for Treiber stack representing wait queue
821       */
822 <    private void trip(int phase, int parties) {
823 <        int next = onAdvance(phase, parties)? -1 : ((phase + 1) & phaseMask);
824 <        state.set(stateFor(next, parties, parties));
825 <        if (head.get() != null)
826 <            releaseWaiters(next);
827 <    }
828 <
829 <    private int helpingWait(int phase) {
830 <        final AtomicLong state = this.state;
831 <        int p;
832 <        while ((p = phaseOf(state.get())) == phase) {
833 <            ForkJoinTask<?> t = ForkJoinWorkerThread.pollTask();
834 <            if (t != null) {
835 <                if ((p = phaseOf(state.get())) == phase)
836 <                    t.exec();
837 <                else {   // push task and exit if barrier advanced
838 <                    t.fork();
839 <                    break;
840 <                }
502 <            }
822 >    static final class QNode implements ForkJoinPool.ManagedBlocker {
823 >        final Phaser phaser;
824 >        final int phase;
825 >        final long startTime;
826 >        final long nanos;
827 >        final boolean timed;
828 >        final boolean interruptible;
829 >        volatile boolean wasInterrupted = false;
830 >        volatile Thread thread; // nulled to cancel wait
831 >        QNode next;
832 >        QNode(Phaser phaser, int phase, boolean interruptible,
833 >              boolean timed, long startTime, long nanos) {
834 >            this.phaser = phaser;
835 >            this.phase = phase;
836 >            this.timed = timed;
837 >            this.interruptible = interruptible;
838 >            this.startTime = startTime;
839 >            this.nanos = nanos;
840 >            thread = Thread.currentThread();
841          }
842 <        return p;
843 <    }
844 <
845 <    private int timedHelpingWait(int phase, long nanos) throws TimeoutException {
846 <        final AtomicLong state = this.state;
847 <        long lastTime = System.nanoTime();
848 <        int p;
849 <        while ((p = phaseOf(state.get())) == phase) {
850 <            long now = System.nanoTime();
851 <            nanos -= now - lastTime;
852 <            lastTime = now;
515 <            if (nanos <= 0) {
516 <                if ((p = phaseOf(state.get())) == phase)
517 <                    throw new TimeoutException();
518 <                else
519 <                    break;
842 >        public boolean isReleasable() {
843 >            return (thread == null ||
844 >                    phaser.getPhase() != phase ||
845 >                    (interruptible && wasInterrupted) ||
846 >                    (timed && (nanos - (System.nanoTime() - startTime)) <= 0));
847 >        }
848 >        public boolean block() {
849 >            if (Thread.interrupted()) {
850 >                wasInterrupted = true;
851 >                if (interruptible)
852 >                    return true;
853              }
854 <            ForkJoinTask<?> t = ForkJoinWorkerThread.pollTask();
854 >            if (!timed)
855 >                LockSupport.park(this);
856 >            else {
857 >                long waitTime = nanos - (System.nanoTime() - startTime);
858 >                if (waitTime <= 0)
859 >                    return true;
860 >                LockSupport.parkNanos(this, waitTime);
861 >            }
862 >            return isReleasable();
863 >        }
864 >        void signal() {
865 >            Thread t = thread;
866              if (t != null) {
867 <                if ((p = phaseOf(state.get())) == phase)
868 <                    t.exec();
869 <                else {   // push task and exit if barrier advanced
870 <                    t.fork();
871 <                    break;
867 >                thread = null;
868 >                LockSupport.unpark(t);
869 >            }
870 >        }
871 >        boolean doWait() {
872 >            if (thread != null) {
873 >                try {
874 >                    ForkJoinPool.managedBlock(this, false);
875 >                } catch (InterruptedException ie) {
876                  }
877              }
878 +            return wasInterrupted;
879          }
880 <        return p;
880 >
881      }
882  
883      /**
884 <     * Wait nodes for Treiber stack representing wait queue for non-FJ
536 <     * tasks. The waiting scheme is an adaptation of the one used in
537 <     * forkjoin.PoolBarrier.
884 >     * Removes and signals waiting threads from wait queue.
885       */
886 <    static final class QNode {
887 <        QNode next;
888 <        volatile Thread thread; // nulled to cancel wait
889 <        final int phase;
890 <        QNode(Thread t, int c) {
891 <            thread = t;
545 <            phase = c;
546 <        }
547 <    }
548 <
549 <    private void releaseWaiters(int currentPhase) {
550 <        final AtomicReference<QNode> head = this.head;
551 <        QNode p;
552 <        while ((p = head.get()) != null && p.phase != currentPhase) {
553 <            if (head.compareAndSet(p, null)) {
554 <                do {
555 <                    Thread t = p.thread;
556 <                    if (t != null) {
557 <                        p.thread = null;
558 <                        LockSupport.unpark(t);
559 <                    }
560 <                } while ((p = p.next) != null);
561 <            }
886 >    private void releaseWaiters(int phase) {
887 >        AtomicReference<QNode> head = queueFor(phase);
888 >        QNode q;
889 >        while ((q = head.get()) != null) {
890 >            if (head.compareAndSet(q, q.next))
891 >                q.signal();
892          }
893      }
894  
565    /** The number of CPUs, for spin control */
566    static final int NCPUS = Runtime.getRuntime().availableProcessors();
567
895      /**
896 <     * The number of times to spin before blocking in timed waits.
897 <     * The value is empirically derived.
898 <     */
572 <    static final int maxTimedSpins = (NCPUS < 2)? 0 : 32;
573 <
574 <    /**
575 <     * The number of times to spin before blocking in untimed waits.
576 <     * This is greater than timed value because untimed waits spin
577 <     * faster since they don't need to check times on each spin.
896 >     * Tries to enqueue given node in the appropriate wait queue.
897 >     *
898 >     * @return true if successful
899       */
900 <    static final int maxUntimedSpins = maxTimedSpins * 32;
900 >    private boolean tryEnqueue(QNode node) {
901 >        AtomicReference<QNode> head = queueFor(node.phase);
902 >        return head.compareAndSet(node.next = head.get(), node);
903 >    }
904  
905      /**
906 <     * The number of nanoseconds for which it is faster to spin
907 <     * rather than to use timed park. A rough estimate suffices.
906 >     * Enqueues node and waits unless aborted or signalled.
907 >     *
908 >     * @return current phase
909       */
910 <    static final long spinForTimeoutThreshold = 1000L;
910 >    private int untimedWait(int phase) {
911 >        QNode node = null;
912 >        boolean queued = false;
913 >        boolean interrupted = false;
914 >        int p;
915 >        while ((p = getPhase()) == phase) {
916 >            if (Thread.interrupted())
917 >                interrupted = true;
918 >            else if (node == null)
919 >                node = new QNode(this, phase, false, false, 0, 0);
920 >            else if (!queued)
921 >                queued = tryEnqueue(node);
922 >            else
923 >                interrupted = node.doWait();
924 >        }
925 >        if (node != null)
926 >            node.thread = null;
927 >        releaseWaiters(phase);
928 >        if (interrupted)
929 >            Thread.currentThread().interrupt();
930 >        return p;
931 >    }
932  
933      /**
934 <     * Enqueues node and waits unless aborted or signalled.
934 >     * Interruptible version
935 >     * @return current phase
936       */
937 <    private boolean untimedWait(Thread thread, int currentPhase,
591 <                               boolean abortOnInterrupt) {
592 <        final AtomicReference<QNode> head = this.head;
593 <        final AtomicLong state = this.state;
594 <        boolean wasInterrupted = false;
937 >    private int interruptibleWait(int phase) throws InterruptedException {
938          QNode node = null;
939          boolean queued = false;
940 <        int spins = maxUntimedSpins;
941 <        while (phaseOf(state.get()) == currentPhase) {
942 <            QNode h;
943 <            if (node != null && queued) {
944 <                if (node.thread != null) {
945 <                    LockSupport.park();
946 <                    if (Thread.interrupted()) {
947 <                        wasInterrupted = true;
948 <                        if (abortOnInterrupt)
606 <                            break;
607 <                    }
608 <                }
609 <            }
610 <            else if ((h = head.get()) != null && h.phase != currentPhase) {
611 <                if (phaseOf(state.get()) == currentPhase) { // must recheck
612 <                    if (head.compareAndSet(h, h.next)) {
613 <                        Thread t = h.thread; // help clear out old waiters
614 <                        if (t != null) {
615 <                            h.thread = null;
616 <                            LockSupport.unpark(t);
617 <                        }
618 <                    }
619 <                }
620 <                else
621 <                    break;
622 <            }
623 <            else if (node != null)
624 <                queued = head.compareAndSet(node.next = h, node);
625 <            else if (spins <= 0)
626 <                node = new QNode(thread, currentPhase);
940 >        boolean interrupted = false;
941 >        int p;
942 >        while ((p = getPhase()) == phase && !interrupted) {
943 >            if (Thread.interrupted())
944 >                interrupted = true;
945 >            else if (node == null)
946 >                node = new QNode(this, phase, true, false, 0, 0);
947 >            else if (!queued)
948 >                queued = tryEnqueue(node);
949              else
950 <                --spins;
950 >                interrupted = node.doWait();
951          }
952          if (node != null)
953              node.thread = null;
954 <        return wasInterrupted;
954 >        if (p != phase || (p = getPhase()) != phase)
955 >            releaseWaiters(phase);
956 >        if (interrupted)
957 >            throw new InterruptedException();
958 >        return p;
959      }
960  
961      /**
962 <     * Messier timeout version
962 >     * Timeout version.
963 >     * @return current phase
964       */
965 <    private void timedWait(Thread thread, int currentPhase, long nanos)
965 >    private int timedWait(int phase, long nanos)
966          throws InterruptedException, TimeoutException {
967 <        final AtomicReference<QNode> head = this.head;
641 <        final AtomicLong state = this.state;
642 <        long lastTime = System.nanoTime();
967 >        long startTime = System.nanoTime();
968          QNode node = null;
969          boolean queued = false;
970 <        int spins = maxTimedSpins;
971 <        while (phaseOf(state.get()) == currentPhase) {
972 <            QNode h;
973 <            long now = System.nanoTime();
974 <            nanos -= now - lastTime;
975 <            lastTime = now;
976 <            if (nanos <= 0) {
977 <                if (node != null)
978 <                    node.thread = null;
979 <                if (phaseOf(state.get()) == currentPhase)
980 <                    throw new TimeoutException();
656 <                else
657 <                    break;
658 <            }
659 <            else if (node != null && queued) {
660 <                if (node.thread != null &&
661 <                    nanos > spinForTimeoutThreshold) {
662 <                    //                LockSupport.parkNanos(this, nanos);
663 <                    LockSupport.parkNanos(nanos);
664 <                    if (Thread.interrupted()) {
665 <                        node.thread = null;
666 <                        throw new InterruptedException();
667 <                    }
668 <                }
669 <            }
670 <            else if ((h = head.get()) != null && h.phase != currentPhase) {
671 <                if (phaseOf(state.get()) == currentPhase) { // must recheck
672 <                    if (head.compareAndSet(h, h.next)) {
673 <                        Thread t = h.thread; // help clear out old waiters
674 <                        if (t != null) {
675 <                            h.thread = null;
676 <                            LockSupport.unpark(t);
677 <                        }
678 <                    }
679 <                }
680 <                else
681 <                    break;
682 <            }
683 <            else if (node != null)
684 <                queued = head.compareAndSet(node.next = h, node);
685 <            else if (spins <= 0)
686 <                node = new QNode(thread, currentPhase);
970 >        boolean interrupted = false;
971 >        int p;
972 >        while ((p = getPhase()) == phase && !interrupted) {
973 >            if (Thread.interrupted())
974 >                interrupted = true;
975 >            else if (nanos - (System.nanoTime() - startTime) <= 0)
976 >                break;
977 >            else if (node == null)
978 >                node = new QNode(this, phase, true, true, startTime, nanos);
979 >            else if (!queued)
980 >                queued = tryEnqueue(node);
981              else
982 <                --spins;
982 >                interrupted = node.doWait();
983          }
984          if (node != null)
985              node.thread = null;
986 +        if (p != phase || (p = getPhase()) != phase)
987 +            releaseWaiters(phase);
988 +        if (interrupted)
989 +            throw new InterruptedException();
990 +        if (p == phase)
991 +            throw new TimeoutException();
992 +        return p;
993 +    }
994 +
995 +    // Unsafe mechanics
996 +
997 +    private static final sun.misc.Unsafe UNSAFE = getUnsafe();
998 +    private static final long stateOffset =
999 +        objectFieldOffset("state", Phaser.class);
1000 +
1001 +    private final boolean casState(long cmp, long val) {
1002 +        return UNSAFE.compareAndSwapLong(this, stateOffset, cmp, val);
1003 +    }
1004 +
1005 +    private static long objectFieldOffset(String field, Class<?> klazz) {
1006 +        try {
1007 +            return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
1008 +        } catch (NoSuchFieldException e) {
1009 +            // Convert Exception to corresponding Error
1010 +            NoSuchFieldError error = new NoSuchFieldError(field);
1011 +            error.initCause(e);
1012 +            throw error;
1013 +        }
1014      }
1015  
1016 +    /**
1017 +     * Returns a sun.misc.Unsafe.  Suitable for use in a 3rd party package.
1018 +     * Replace with a simple call to Unsafe.getUnsafe when integrating
1019 +     * into a jdk.
1020 +     *
1021 +     * @return a sun.misc.Unsafe
1022 +     */
1023 +    private static sun.misc.Unsafe getUnsafe() {
1024 +        try {
1025 +            return sun.misc.Unsafe.getUnsafe();
1026 +        } catch (SecurityException se) {
1027 +            try {
1028 +                return java.security.AccessController.doPrivileged
1029 +                    (new java.security
1030 +                     .PrivilegedExceptionAction<sun.misc.Unsafe>() {
1031 +                        public sun.misc.Unsafe run() throws Exception {
1032 +                            java.lang.reflect.Field f = sun.misc
1033 +                                .Unsafe.class.getDeclaredField("theUnsafe");
1034 +                            f.setAccessible(true);
1035 +                            return (sun.misc.Unsafe) f.get(null);
1036 +                        }});
1037 +            } catch (java.security.PrivilegedActionException e) {
1038 +                throw new RuntimeException("Could not initialize intrinsics",
1039 +                                           e.getCause());
1040 +            }
1041 +        }
1042 +    }
1043   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines