ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/Phaser.java
(Generate patch)

Comparing jsr166/src/jsr166y/Phaser.java (file contents):
Revision 1.44 by dl, Tue Aug 25 16:32:28 2009 UTC vs.
Revision 1.53 by jsr166, Sat Nov 13 05:59:25 2010 UTC

# Line 6 | Line 6
6  
7   package jsr166y;
8  
9 < import java.util.concurrent.*;
10 <
9 > import java.util.concurrent.TimeUnit;
10 > import java.util.concurrent.TimeoutException;
11   import java.util.concurrent.atomic.AtomicReference;
12   import java.util.concurrent.locks.LockSupport;
13  
# Line 109 | Line 109 | import java.util.concurrent.locks.LockSu
109   * <p><b>Sample usages:</b>
110   *
111   * <p>A {@code Phaser} may be used instead of a {@code CountDownLatch}
112 < * to control a one-shot action serving a variable number of
113 < * parties. The typical idiom is for the method setting this up to
114 < * first register, then start the actions, then deregister, as in:
112 > * to control a one-shot action serving a variable number of parties.
113 > * The typical idiom is for the method setting this up to first
114 > * register, then start the actions, then deregister, as in:
115   *
116   *  <pre> {@code
117   * void runTasks(List<Runnable> tasks) {
# Line 142 | Line 142 | import java.util.concurrent.locks.LockSu
142   *     }
143   *   };
144   *   phaser.register();
145 < *   for (Runnable task : tasks) {
145 > *   for (final Runnable task : tasks) {
146   *     phaser.register();
147   *     new Thread() {
148   *       public void run() {
149   *         do {
150   *           task.run();
151   *           phaser.arriveAndAwaitAdvance();
152 < *         } while(!phaser.isTerminated();
152 > *         } while (!phaser.isTerminated());
153   *       }
154   *     }.start();
155   *   }
# Line 158 | Line 158 | import java.util.concurrent.locks.LockSu
158   *
159   * If the main task must later await termination, it
160   * may re-register and then execute a similar loop:
161 < * <pre> {@code
161 > *  <pre> {@code
162   *   // ...
163   *   phaser.register();
164   *   while (!phaser.isTerminated())
165 < *     phaser.arriveAndAwaitAdvance();
166 < * }</pre>
165 > *     phaser.arriveAndAwaitAdvance();}</pre>
166   *
167 < * Related constructions may be used to await particular phase numbers
167 > * <p>Related constructions may be used to await particular phase numbers
168   * in contexts where you are sure that the phase will never wrap around
169   * {@code Integer.MAX_VALUE}. For example:
170   *
171 < * <pre> {@code
172 < *   void awaitPhase(Phaser phaser, int phase) {
173 < *     int p = phaser.register(); // assumes caller not already registered
174 < *     while (p < phase) {
175 < *       if (phaser.isTerminated())
176 < *         // ... deal with unexpected termination
177 < *       else
178 < *         p = phaser.arriveAndAwaitAdvance();
180 < *     }
181 < *     phaser.arriveAndDeregister();
171 > *  <pre> {@code
172 > * void awaitPhase(Phaser phaser, int phase) {
173 > *   int p = phaser.register(); // assumes caller not already registered
174 > *   while (p < phase) {
175 > *     if (phaser.isTerminated())
176 > *       // ... deal with unexpected termination
177 > *     else
178 > *       p = phaser.arriveAndAwaitAdvance();
179   *   }
180 < * }</pre>
180 > *   phaser.arriveAndDeregister();
181 > * }}</pre>
182   *
183   *
184   * <p>To create a set of tasks using a tree of phasers,
185   * you could use code of the following form, assuming a
186   * Task class with a constructor accepting a phaser that
187 < * it registers for upon construction:
187 > * it registers with upon construction:
188 > *
189   *  <pre> {@code
190   * void build(Task[] actions, int lo, int hi, Phaser ph) {
191   *   if (hi - lo > TASKS_PER_PHASER) {
# Line 208 | Line 207 | import java.util.concurrent.locks.LockSu
207   * be appropriate for extremely small per-barrier task bodies (thus
208   * high rates), or up to hundreds for extremely large ones.
209   *
211 * </pre>
212 *
210   * <p><b>Implementation notes</b>: This implementation restricts the
211   * maximum number of parties to 65535. Attempts to register additional
212   * parties result in {@code IllegalStateException}. However, you can and
# Line 230 | Line 227 | public class Phaser {
227       * Barrier state representation. Conceptually, a barrier contains
228       * four values:
229       *
230 <     * * parties -- the number of parties to wait (16 bits)
231 <     * * unarrived -- the number of parties yet to hit barrier (16 bits)
232 <     * * phase -- the generation of the barrier (31 bits)
233 <     * * terminated -- set if barrier is terminated (1 bit)
230 >     * * unarrived -- the number of parties yet to hit barrier (bits  0-15)
231 >     * * parties -- the number of parties to wait              (bits 16-31)
232 >     * * phase -- the generation of the barrier                (bits 32-62)
233 >     * * terminated -- set if barrier is terminated            (bit  63 / sign)
234       *
235       * However, to efficiently maintain atomicity, these values are
236       * packed into a single (atomic) long. Termination uses the sign
237       * bit of 32 bit representation of phase, so phase is set to -1 on
238       * termination. Good performance relies on keeping state decoding
239       * and encoding simple, and keeping race windows short.
243     *
244     * Note: there are some cheats in arrive() that rely on unarrived
245     * count being lowest 16 bits.
240       */
241      private volatile long state;
242  
243 <    private static final int ushortMask = 0xffff;
244 <    private static final int phaseMask  = 0x7fffffff;
243 >    private static final int  MAX_COUNT      = 0xffff;
244 >    private static final int  MAX_PHASE      = 0x7fffffff;
245 >    private static final int  PARTIES_SHIFT  = 16;
246 >    private static final int  PHASE_SHIFT    = 32;
247 >    private static final long UNARRIVED_MASK = 0xffffL;
248 >    private static final long PARTIES_MASK   = 0xffff0000L;
249 >    private static final long ONE_ARRIVAL    = 1L;
250 >    private static final long ONE_PARTY      = 1L << PARTIES_SHIFT;
251 >    private static final long TERMINATION_PHASE  = -1L << PHASE_SHIFT;
252 >
253 >    // The following unpacking methods are usually manually inlined
254  
255      private static int unarrivedOf(long s) {
256 <        return (int) (s & ushortMask);
256 >        return (int) (s & UNARRIVED_MASK);
257      }
258  
259      private static int partiesOf(long s) {
260 <        return ((int) s) >>> 16;
260 >        return ((int) (s & PARTIES_MASK)) >>> PARTIES_SHIFT;
261      }
262  
263      private static int phaseOf(long s) {
264 <        return (int) (s >>> 32);
264 >        return (int) (s >>> PHASE_SHIFT);
265      }
266  
267      private static int arrivedOf(long s) {
268          return partiesOf(s) - unarrivedOf(s);
269      }
270  
268    private static long stateFor(int phase, int parties, int unarrived) {
269        return ((((long) phase) << 32) | (((long) parties) << 16) |
270                (long) unarrived);
271    }
272
273    private static long trippedStateFor(int phase, int parties) {
274        long lp = (long) parties;
275        return (((long) phase) << 32) | (lp << 16) | lp;
276    }
277
278    /**
279     * Returns message string for bad bounds exceptions.
280     */
281    private static String badBounds(int parties, int unarrived) {
282        return ("Attempt to set " + unarrived +
283                " unarrived of " + parties + " parties");
284    }
285
271      /**
272       * The parent of this phaser, or null if none
273       */
# Line 294 | Line 279 | public class Phaser {
279       */
280      private final Phaser root;
281  
297    // Wait queues
298
282      /**
283       * Heads of Treiber stacks for waiting threads. To eliminate
284 <     * contention while releasing some threads while adding others, we
284 >     * contention when releasing some threads while adding others, we
285       * use two of them, alternating across even and odd phases.
286 +     * Subphasers share queues with root to speed up releases.
287       */
288 <    private final AtomicReference<QNode> evenQ = new AtomicReference<QNode>();
289 <    private final AtomicReference<QNode> oddQ  = new AtomicReference<QNode>();
288 >    private final AtomicReference<QNode> evenQ;
289 >    private final AtomicReference<QNode> oddQ;
290  
291      private AtomicReference<QNode> queueFor(int phase) {
292          return ((phase & 1) == 0) ? evenQ : oddQ;
293      }
294  
295      /**
296 <     * Returns current state, first resolving lagged propagation from
297 <     * root if necessary.
296 >     * Main implementation for methods arrive and arriveAndDeregister.
297 >     * Manually tuned to speed up and minimize race windows for the
298 >     * common case of just decrementing unarrived field.
299 >     *
300 >     * @param adj - adjustment to apply to state -- either
301 >     * ONE_ARRIVAL (for arrive) or
302 >     * ONE_ARRIVAL|ONE_PARTY (for arriveAndDeregister)
303 >     */
304 >    private int doArrive(long adj) {
305 >        long s;
306 >        int phase, unarrived;
307 >        while ((phase = (int)((s = state) >>> PHASE_SHIFT)) >= 0) {
308 >            if ((unarrived = (int)(s & UNARRIVED_MASK)) != 0) {
309 >                if (UNSAFE.compareAndSwapLong(this, stateOffset, s, s -= adj)) {
310 >                    if (unarrived == 1) {
311 >                        Phaser par;
312 >                        long p = s & PARTIES_MASK; // unshifted parties field
313 >                        long lu = p >>> PARTIES_SHIFT;
314 >                        int u = (int)lu;
315 >                        int nextPhase = (phase + 1) & MAX_PHASE;
316 >                        long next = ((long)nextPhase << PHASE_SHIFT) | p | lu;
317 >                        if ((par = parent) == null) {
318 >                            UNSAFE.compareAndSwapLong
319 >                                (this, stateOffset, s, onAdvance(phase, u)?
320 >                                 next | TERMINATION_PHASE : next);
321 >                            releaseWaiters(phase);
322 >                        }
323 >                        else {
324 >                            par.doArrive(u == 0?
325 >                                         ONE_ARRIVAL|ONE_PARTY : ONE_ARRIVAL);
326 >                            if ((int)(par.state >>> PHASE_SHIFT) != nextPhase ||
327 >                                ((int)(state >>> PHASE_SHIFT) != nextPhase &&
328 >                                 !UNSAFE.compareAndSwapLong(this, stateOffset,
329 >                                                            s, next)))
330 >                                reconcileState();
331 >                        }
332 >                    }
333 >                    break;
334 >                }
335 >            }
336 >            else if (state == s && reconcileState() == s) // recheck
337 >                throw new IllegalStateException(badArrive());
338 >        }
339 >        return phase;
340 >    }
341 >
342 >    /**
343 >     * Returns message string for bounds exceptions on arrival.
344 >     * Declared out of-line from doArrive to reduce string op bulk.
345 >     */
346 >    private String badArrive() {
347 >        return ("Attempted arrival of unregistered party for " +
348 >                this.toString());
349 >    }
350 >
351 >    /**
352 >     * Implementation of register, bulkRegister
353 >     *
354 >     * @param registrations number to add to both parties and unarrived fields
355 >     */
356 >    private int doRegister(int registrations) {
357 >        long adj = (long)registrations; // adjustment to state
358 >        adj |= adj << PARTIES_SHIFT;
359 >        Phaser par = parent;
360 >        long s;
361 >        int phase;
362 >        while ((phase = (int)((s = (par == null? state : reconcileState()))
363 >                              >>> PHASE_SHIFT)) >= 0) {
364 >            int parties = ((int)(s & PARTIES_MASK)) >>> PARTIES_SHIFT;
365 >            if (parties != 0 && (s & UNARRIVED_MASK) == 0)
366 >                internalAwaitAdvance(phase, null); // wait for onAdvance
367 >            else if (parties + registrations > MAX_COUNT)
368 >                throw new IllegalStateException(badRegister());
369 >            else if (UNSAFE.compareAndSwapLong(this, stateOffset, s, s + adj))
370 >                break;
371 >        }
372 >        return phase;
373 >    }
374 >
375 >    /**
376 >     * Returns message string for bounds exceptions on registration
377       */
378 <    private long getReconciledState() {
379 <        return (parent == null) ? state : reconcileState();
378 >    private String badRegister() {
379 >        return ("Attempt to register more than " + MAX_COUNT + " parties for "+
380 >                this.toString());
381      }
382  
383      /**
384 <     * Recursively resolves state.
384 >     * Recursively resolves lagged phase propagation from root if
385 >     * necessary.
386       */
387      private long reconcileState() {
388 <        Phaser p = parent;
389 <        long s = state;
390 <        if (p != null) {
391 <            while (unarrivedOf(s) == 0 && phaseOf(s) != phaseOf(root.state)) {
392 <                long parentState = p.getReconciledState();
393 <                int parentPhase = phaseOf(parentState);
394 <                int phase = phaseOf(s = state);
395 <                if (phase != parentPhase) {
396 <                    long next = trippedStateFor(parentPhase, partiesOf(s));
397 <                    if (casState(s, next)) {
398 <                        releaseWaiters(phase);
399 <                        s = next;
400 <                    }
388 >        Phaser par = parent;
389 >        if (par == null)
390 >            return state;
391 >        Phaser rt = root;
392 >        long s;
393 >        int phase, rPhase;
394 >        while ((phase = (int)((s = state) >>> PHASE_SHIFT)) >= 0 &&
395 >               (rPhase = (int)(rt.state >>> PHASE_SHIFT)) != phase) {
396 >            if (rPhase < 0 || (s & UNARRIVED_MASK) == 0) {
397 >                long ps = par.parent == null? par.state : par.reconcileState();
398 >                int pPhase = (int)(ps >>> PHASE_SHIFT);
399 >                if (pPhase < 0 || pPhase == ((phase + 1) & MAX_PHASE)) {
400 >                    if (state != s)
401 >                        continue;
402 >                    long p = s & PARTIES_MASK;
403 >                    long next = ((((long) pPhase) << PHASE_SHIFT) |
404 >                                 (p >>> PARTIES_SHIFT) | p);
405 >                    if (UNSAFE.compareAndSwapLong(this, stateOffset, s, next))
406 >                        return next;
407                  }
408              }
409 +            if (state == s)
410 +                releaseWaiters(phase); // help release others
411          }
412          return s;
413      }
# Line 345 | Line 418 | public class Phaser {
418       * phaser will need to first register for it.
419       */
420      public Phaser() {
421 <        this(null);
421 >        this(null, 0);
422      }
423  
424      /**
425 <     * Creates a new phaser with the given numbers of registered
425 >     * Creates a new phaser with the given number of registered
426       * unarrived parties, initial phase number 0, and no parent.
427       *
428       * @param parties the number of parties required to trip barrier
# Line 369 | Line 442 | public class Phaser {
442       * @param parent the parent phaser
443       */
444      public Phaser(Phaser parent) {
445 <        int phase = 0;
373 <        this.parent = parent;
374 <        if (parent != null) {
375 <            this.root = parent.root;
376 <            phase = parent.register();
377 <        }
378 <        else
379 <            this.root = this;
380 <        this.state = trippedStateFor(phase, 0);
445 >        this(parent, 0);
446      }
447  
448      /**
449 <     * Creates a new phaser with the given parent and numbers of
449 >     * Creates a new phaser with the given parent and number of
450       * registered unarrived parties. If parent is non-null, this phaser
451       * is registered with the parent and its initial phase number is
452       * the same as that of parent phaser.
# Line 392 | Line 457 | public class Phaser {
457       * or greater than the maximum number of parties supported
458       */
459      public Phaser(Phaser parent, int parties) {
460 <        if (parties < 0 || parties > ushortMask)
460 >        if (parties < 0 || parties > MAX_COUNT)
461              throw new IllegalArgumentException("Illegal number of parties");
462 <        int phase = 0;
462 >        int phase;
463          this.parent = parent;
464          if (parent != null) {
465 <            this.root = parent.root;
465 >            Phaser r = parent.root;
466 >            this.root = r;
467 >            this.evenQ = r.evenQ;
468 >            this.oddQ = r.oddQ;
469              phase = parent.register();
470          }
471 <        else
471 >        else {
472              this.root = this;
473 <        this.state = trippedStateFor(phase, parties);
473 >            this.evenQ = new AtomicReference<QNode>();
474 >            this.oddQ = new AtomicReference<QNode>();
475 >            phase = 0;
476 >        }
477 >        long p = (long)parties;
478 >        this.state = (((long) phase) << PHASE_SHIFT) | p | (p << PARTIES_SHIFT);
479      }
480  
481      /**
482       * Adds a new unarrived party to this phaser.
483 +     * If an ongoing invocation of {@link #onAdvance} is in progress,
484 +     * this method may wait until its completion before registering.
485       *
486       * @return the arrival phase number to which this registration applied
487       * @throws IllegalStateException if attempting to register more
# Line 418 | Line 493 | public class Phaser {
493  
494      /**
495       * Adds the given number of new unarrived parties to this phaser.
496 +     * If an ongoing invocation of {@link #onAdvance} is in progress,
497 +     * this method may wait until its completion before registering.
498       *
499 <     * @param parties the number of parties required to trip barrier
499 >     * @param parties the number of additional parties required to trip barrier
500       * @return the arrival phase number to which this registration applied
501       * @throws IllegalStateException if attempting to register more
502       * than the maximum supported number of parties
503 +     * @throws IllegalArgumentException if {@code parties < 0}
504       */
505      public int bulkRegister(int parties) {
506          if (parties < 0)
507              throw new IllegalArgumentException();
508 +        if (parties > MAX_COUNT)
509 +            throw new IllegalStateException(badRegister());
510          if (parties == 0)
511              return getPhase();
512          return doRegister(parties);
513      }
514  
515      /**
436     * Shared code for register, bulkRegister
437     */
438    private int doRegister(int registrations) {
439        int phase;
440        for (;;) {
441            long s = getReconciledState();
442            phase = phaseOf(s);
443            int unarrived = unarrivedOf(s) + registrations;
444            int parties = partiesOf(s) + registrations;
445            if (phase < 0)
446                break;
447            if (parties > ushortMask || unarrived > ushortMask)
448                throw new IllegalStateException(badBounds(parties, unarrived));
449            if (phase == phaseOf(root.state) &&
450                casState(s, stateFor(phase, parties, unarrived)))
451                break;
452        }
453        return phase;
454    }
455
456    /**
516       * Arrives at the barrier, but does not wait for others.  (You can
517       * in turn wait for others via {@link #awaitAdvance}).  It is an
518       * unenforced usage error for an unregistered party to invoke this
# Line 464 | Line 523 | public class Phaser {
523       * of unarrived parties would become negative
524       */
525      public int arrive() {
526 <        int phase;
468 <        for (;;) {
469 <            long s = state;
470 <            phase = phaseOf(s);
471 <            if (phase < 0)
472 <                break;
473 <            int parties = partiesOf(s);
474 <            int unarrived = unarrivedOf(s) - 1;
475 <            if (unarrived > 0) {        // Not the last arrival
476 <                if (casState(s, s - 1)) // s-1 adds one arrival
477 <                    break;
478 <            }
479 <            else if (unarrived == 0) {  // the last arrival
480 <                Phaser par = parent;
481 <                if (par == null) {      // directly trip
482 <                    if (casState
483 <                        (s,
484 <                         trippedStateFor(onAdvance(phase, parties) ? -1 :
485 <                                         ((phase + 1) & phaseMask), parties))) {
486 <                        releaseWaiters(phase);
487 <                        break;
488 <                    }
489 <                }
490 <                else {                  // cascade to parent
491 <                    if (casState(s, s - 1)) { // zeroes unarrived
492 <                        par.arrive();
493 <                        reconcileState();
494 <                        break;
495 <                    }
496 <                }
497 <            }
498 <            else if (phase != phaseOf(root.state)) // or if unreconciled
499 <                reconcileState();
500 <            else
501 <                throw new IllegalStateException(badBounds(parties, unarrived));
502 <        }
503 <        return phase;
526 >        return doArrive(ONE_ARRIVAL);
527      }
528  
529      /**
# Line 517 | Line 540 | public class Phaser {
540       * of registered or unarrived parties would become negative
541       */
542      public int arriveAndDeregister() {
543 <        // similar code to arrive, but too different to merge
521 <        Phaser par = parent;
522 <        int phase;
523 <        for (;;) {
524 <            long s = state;
525 <            phase = phaseOf(s);
526 <            if (phase < 0)
527 <                break;
528 <            int parties = partiesOf(s) - 1;
529 <            int unarrived = unarrivedOf(s) - 1;
530 <            if (parties >= 0) {
531 <                if (unarrived > 0 || (unarrived == 0 && par != null)) {
532 <                    if (casState
533 <                        (s,
534 <                         stateFor(phase, parties, unarrived))) {
535 <                        if (unarrived == 0) {
536 <                            par.arriveAndDeregister();
537 <                            reconcileState();
538 <                        }
539 <                        break;
540 <                    }
541 <                    continue;
542 <                }
543 <                if (unarrived == 0) {
544 <                    if (casState
545 <                        (s,
546 <                         trippedStateFor(onAdvance(phase, parties) ? -1 :
547 <                                         ((phase + 1) & phaseMask), parties))) {
548 <                        releaseWaiters(phase);
549 <                        break;
550 <                    }
551 <                    continue;
552 <                }
553 <                if (par != null && phase != phaseOf(root.state)) {
554 <                    reconcileState();
555 <                    continue;
556 <                }
557 <            }
558 <            throw new IllegalStateException(badBounds(parties, unarrived));
559 <        }
560 <        return phase;
543 >        return doArrive(ONE_ARRIVAL|ONE_PARTY);
544      }
545  
546      /**
547       * Arrives at the barrier and awaits others. Equivalent in effect
548       * to {@code awaitAdvance(arrive())}.  If you need to await with
549       * interruption or timeout, you can arrange this with an analogous
550 <     * construction using one of the other forms of the awaitAdvance
551 <     * method.  If instead you need to deregister upon arrival use
552 <     * {@code arriveAndDeregister}. It is an unenforced usage error
553 <     * for an unregistered party to invoke this method.
550 >     * construction using one of the other forms of the {@code
551 >     * awaitAdvance} method.  If instead you need to deregister upon
552 >     * arrival, use {@link #arriveAndDeregister}. It is an unenforced
553 >     * usage error for an unregistered party to invoke this method.
554       *
555       * @return the arrival phase number, or a negative number if terminated
556       * @throws IllegalStateException if not terminated and the number
# Line 581 | Line 564 | public class Phaser {
564       * Awaits the phase of the barrier to advance from the given phase
565       * value, returning immediately if the current phase of the
566       * barrier is not equal to the given phase value or this barrier
567 <     * is terminated.  It is an unenforced usage error for an
585 <     * unregistered party to invoke this method.
567 >     * is terminated.
568       *
569       * @param phase an arrival phase number, or negative value if
570       * terminated; this argument is normally the value returned by a
# Line 593 | Line 575 | public class Phaser {
575      public int awaitAdvance(int phase) {
576          if (phase < 0)
577              return phase;
578 <        long s = getReconciledState();
597 <        int p = phaseOf(s);
578 >        int p = (int)((parent==null? state : reconcileState()) >>> PHASE_SHIFT);
579          if (p != phase)
580              return p;
581 <        if (unarrivedOf(s) == 0 && parent != null)
601 <            parent.awaitAdvance(phase);
602 <        // Fall here even if parent waited, to reconcile and help release
603 <        return untimedWait(phase);
581 >        return internalAwaitAdvance(phase, null);
582      }
583  
584      /**
# Line 608 | Line 586 | public class Phaser {
586       * value, throwing {@code InterruptedException} if interrupted
587       * while waiting, or returning immediately if the current phase of
588       * the barrier is not equal to the given phase value or this
589 <     * barrier is terminated. It is an unenforced usage error for an
612 <     * unregistered party to invoke this method.
589 >     * barrier is terminated.
590       *
591       * @param phase an arrival phase number, or negative value if
592       * terminated; this argument is normally the value returned by a
# Line 622 | Line 599 | public class Phaser {
599          throws InterruptedException {
600          if (phase < 0)
601              return phase;
602 <        long s = getReconciledState();
626 <        int p = phaseOf(s);
602 >        int p = (int)((parent==null? state : reconcileState()) >>> PHASE_SHIFT);
603          if (p != phase)
604              return p;
605 <        if (unarrivedOf(s) == 0 && parent != null)
606 <            parent.awaitAdvanceInterruptibly(phase);
607 <        return interruptibleWait(phase);
605 >        QNode node = new QNode(this, phase, true, false, 0L);
606 >        p = internalAwaitAdvance(phase, node);
607 >        if (node.wasInterrupted)
608 >            throw new InterruptedException();
609 >        else
610 >            return p;
611      }
612  
613      /**
# Line 637 | Line 616 | public class Phaser {
616       * InterruptedException} if interrupted while waiting, or
617       * returning immediately if the current phase of the barrier is
618       * not equal to the given phase value or this barrier is
619 <     * terminated.  It is an unenforced usage error for an
641 <     * unregistered party to invoke this method.
619 >     * terminated.
620       *
621       * @param phase an arrival phase number, or negative value if
622       * terminated; this argument is normally the value returned by a
# Line 655 | Line 633 | public class Phaser {
633      public int awaitAdvanceInterruptibly(int phase,
634                                           long timeout, TimeUnit unit)
635          throws InterruptedException, TimeoutException {
636 +        long nanos = unit.toNanos(timeout);
637          if (phase < 0)
638              return phase;
639 <        long s = getReconciledState();
661 <        int p = phaseOf(s);
639 >        int p = (int)((parent==null? state : reconcileState()) >>> PHASE_SHIFT);
640          if (p != phase)
641              return p;
642 <        if (unarrivedOf(s) == 0 && parent != null)
643 <            parent.awaitAdvanceInterruptibly(phase, timeout, unit);
644 <        return timedWait(phase, unit.toNanos(timeout));
642 >        QNode node = new QNode(this, phase, true, true, nanos);
643 >        p = internalAwaitAdvance(phase, node);
644 >        if (node.wasInterrupted)
645 >            throw new InterruptedException();
646 >        else if (p == phase)
647 >            throw new TimeoutException();
648 >        else
649 >            return p;
650      }
651  
652      /**
# Line 674 | Line 657 | public class Phaser {
657       * unexpected exceptions.
658       */
659      public void forceTermination() {
660 <        for (;;) {
661 <            long s = getReconciledState();
662 <            int phase = phaseOf(s);
663 <            int parties = partiesOf(s);
664 <            int unarrived = unarrivedOf(s);
665 <            if (phase < 0 ||
666 <                casState(s, stateFor(-1, parties, unarrived))) {
684 <                releaseWaiters(0);
685 <                releaseWaiters(1);
686 <                if (parent != null)
687 <                    parent.forceTermination();
688 <                return;
689 <            }
690 <        }
660 >        Phaser r = root;    // force at root then reconcile
661 >        long s;
662 >        while ((s = r.state) >= 0)
663 >            UNSAFE.compareAndSwapLong(r, stateOffset, s, s | TERMINATION_PHASE);
664 >        reconcileState();
665 >        releaseWaiters(0); // signal all threads
666 >        releaseWaiters(1);
667      }
668  
669      /**
# Line 698 | Line 674 | public class Phaser {
674       * @return the phase number, or a negative value if terminated
675       */
676      public final int getPhase() {
677 <        return phaseOf(getReconciledState());
677 >        return (int)((parent == null? state : reconcileState()) >>> PHASE_SHIFT);
678      }
679  
680      /**
# Line 707 | Line 683 | public class Phaser {
683       * @return the number of parties
684       */
685      public int getRegisteredParties() {
686 <        return partiesOf(state);
686 >        return partiesOf(parent == null? state : reconcileState());
687      }
688  
689      /**
# Line 717 | Line 693 | public class Phaser {
693       * @return the number of arrived parties
694       */
695      public int getArrivedParties() {
696 <        return arrivedOf(state);
696 >        return arrivedOf(parent == null? state : reconcileState());
697      }
698  
699      /**
# Line 727 | Line 703 | public class Phaser {
703       * @return the number of unarrived parties
704       */
705      public int getUnarrivedParties() {
706 <        return unarrivedOf(state);
706 >        return unarrivedOf(parent == null? state : reconcileState());
707      }
708  
709      /**
# Line 755 | Line 731 | public class Phaser {
731       * @return {@code true} if this barrier has been terminated
732       */
733      public boolean isTerminated() {
734 <        return getPhase() < 0;
734 >        return (parent == null? state : reconcileState()) < 0;
735      }
736  
737      /**
# Line 771 | Line 747 | public class Phaser {
747       * which case no advance occurs.
748       *
749       * <p>The arguments to this method provide the state of the phaser
750 <     * prevailing for the current transition. (When called from within
751 <     * an implementation of {@code onAdvance} the values returned by
752 <     * methods such as {@code getPhase} may or may not reliably
753 <     * indicate the state to which this transition applies.)
750 >     * prevailing for the current transition.  The effects of invoking
751 >     * arrival, registration, and waiting methods on this Phaser from
752 >     * within {@code onAdvance} are unspecified and should not be
753 >     * relied on.
754 >     *
755 >     * <p>If this Phaser is a member of a tiered set of Phasers, then
756 >     * {@code onAdvance} is invoked only for its root Phaser on each
757 >     * advance.
758       *
759       * <p>The default version returns {@code true} when the number of
760       * registered parties is zero. Normally, overrides that arrange
761       * termination for other reasons should also preserve this
762       * property.
763       *
784     * <p>You may override this method to perform an action with side
785     * effects visible to participating tasks, but doing so requires
786     * care: Method {@code onAdvance} may be invoked more than once
787     * per transition.  Further, unless all parties register before
788     * any arrive, and all {@link #awaitAdvance} at each phase, then
789     * you cannot ensure lack of interference from other parties
790     * during the invocation of this method.
791     *
764       * @param phase the phase number on entering the barrier
765       * @param registeredParties the current number of registered parties
766       * @return {@code true} if this barrier should terminate
# Line 807 | Line 779 | public class Phaser {
779       * @return a string identifying this barrier, as well as its state
780       */
781      public String toString() {
782 <        long s = getReconciledState();
782 >        long s = reconcileState();
783          return super.toString() +
784              "[phase = " + phaseOf(s) +
785              " parties = " + partiesOf(s) +
786              " arrived = " + arrivedOf(s) + "]";
787      }
788  
817    // methods for waiting
818
789      /**
790 <     * Wait nodes for Treiber stack representing wait queue
821 <     */
822 <    static final class QNode implements ForkJoinPool.ManagedBlocker {
823 <        final Phaser phaser;
824 <        final int phase;
825 <        final long startTime;
826 <        final long nanos;
827 <        final boolean timed;
828 <        final boolean interruptible;
829 <        volatile boolean wasInterrupted = false;
830 <        volatile Thread thread; // nulled to cancel wait
831 <        QNode next;
832 <        QNode(Phaser phaser, int phase, boolean interruptible,
833 <              boolean timed, long startTime, long nanos) {
834 <            this.phaser = phaser;
835 <            this.phase = phase;
836 <            this.timed = timed;
837 <            this.interruptible = interruptible;
838 <            this.startTime = startTime;
839 <            this.nanos = nanos;
840 <            thread = Thread.currentThread();
841 <        }
842 <        public boolean isReleasable() {
843 <            return (thread == null ||
844 <                    phaser.getPhase() != phase ||
845 <                    (interruptible && wasInterrupted) ||
846 <                    (timed && (nanos - (System.nanoTime() - startTime)) <= 0));
847 <        }
848 <        public boolean block() {
849 <            if (Thread.interrupted()) {
850 <                wasInterrupted = true;
851 <                if (interruptible)
852 <                    return true;
853 <            }
854 <            if (!timed)
855 <                LockSupport.park(this);
856 <            else {
857 <                long waitTime = nanos - (System.nanoTime() - startTime);
858 <                if (waitTime <= 0)
859 <                    return true;
860 <                LockSupport.parkNanos(this, waitTime);
861 <            }
862 <            return isReleasable();
863 <        }
864 <        void signal() {
865 <            Thread t = thread;
866 <            if (t != null) {
867 <                thread = null;
868 <                LockSupport.unpark(t);
869 <            }
870 <        }
871 <        boolean doWait() {
872 <            if (thread != null) {
873 <                try {
874 <                    ForkJoinPool.managedBlock(this, false);
875 <                } catch (InterruptedException ie) {
876 <                }
877 <            }
878 <            return wasInterrupted;
879 <        }
880 <
881 <    }
882 <
883 <    /**
884 <     * Removes and signals waiting threads from wait queue.
790 >     * Removes and signals threads from queue for phase
791       */
792      private void releaseWaiters(int phase) {
793          AtomicReference<QNode> head = queueFor(phase);
794          QNode q;
795 <        while ((q = head.get()) != null) {
795 >        int p;
796 >        while ((q = head.get()) != null &&
797 >               ((p = q.phase) == phase ||
798 >                (int)(root.state >>> PHASE_SHIFT) != p)) {
799              if (head.compareAndSet(q, q.next))
800                  q.signal();
801          }
# Line 897 | Line 806 | public class Phaser {
806       *
807       * @return true if successful
808       */
809 <    private boolean tryEnqueue(QNode node) {
810 <        AtomicReference<QNode> head = queueFor(node.phase);
811 <        return head.compareAndSet(node.next = head.get(), node);
809 >    private boolean tryEnqueue(int phase, QNode node) {
810 >        releaseWaiters(phase-1); // ensure old queue clean
811 >        AtomicReference<QNode> head = queueFor(phase);
812 >        QNode q = head.get();
813 >        return ((q == null || q.phase == phase) &&
814 >                (int)(root.state >>> PHASE_SHIFT) == phase &&
815 >                head.compareAndSet(node.next = q, node));
816      }
817  
818 +    /** The number of CPUs, for spin control */
819 +    private static final int NCPU = Runtime.getRuntime().availableProcessors();
820 +
821      /**
822 <     * Enqueues node and waits unless aborted or signalled.
823 <     *
824 <     * @return current phase
822 >     * The number of times to spin before blocking while waiting for
823 >     * advance, per arrival while waiting. On multiprocessors, fully
824 >     * blocking and waking up a large number of threads all at once is
825 >     * usually a very slow process, so we use rechargeable spins to
826 >     * avoid it when threads regularly arrive: When a thread in
827 >     * internalAwaitAdvance notices another arrival before blocking,
828 >     * and there appear to be enough CPUs available, it spins
829 >     * SPINS_PER_ARRIVAL more times before continuing to try to
830 >     * block. The value trades off good-citizenship vs big unnecessary
831 >     * slowdowns.
832       */
833 <    private int untimedWait(int phase) {
911 <        QNode node = null;
912 <        boolean queued = false;
913 <        boolean interrupted = false;
914 <        int p;
915 <        while ((p = getPhase()) == phase) {
916 <            if (Thread.interrupted())
917 <                interrupted = true;
918 <            else if (node == null)
919 <                node = new QNode(this, phase, false, false, 0, 0);
920 <            else if (!queued)
921 <                queued = tryEnqueue(node);
922 <            else
923 <                interrupted = node.doWait();
924 <        }
925 <        if (node != null)
926 <            node.thread = null;
927 <        releaseWaiters(phase);
928 <        if (interrupted)
929 <            Thread.currentThread().interrupt();
930 <        return p;
931 <    }
833 >    static final int SPINS_PER_ARRIVAL = NCPU < 2? 1 : 1 << 8;
834  
835      /**
836 <     * Interruptible version
836 >     * Possibly blocks and waits for phase to advance unless aborted.
837 >     *
838 >     * @param phase current phase
839 >     * @param node if non-null, the wait node to track interrupt and timeout;
840 >     * if null, denotes noninterruptible wait
841       * @return current phase
842       */
843 <    private int interruptibleWait(int phase) throws InterruptedException {
844 <        QNode node = null;
843 >    private int internalAwaitAdvance(int phase, QNode node) {
844 >        Phaser current = this;       // to eventually wait at root if tiered
845 >        Phaser par = parent;
846          boolean queued = false;
847 <        boolean interrupted = false;
847 >        int spins = SPINS_PER_ARRIVAL;
848 >        int lastUnarrived = -1;      // to increase spins upon change
849 >        long s;
850          int p;
851 <        while ((p = getPhase()) == phase && !interrupted) {
852 <            if (Thread.interrupted())
853 <                interrupted = true;
851 >        while ((p = (int)((s = current.state) >>> PHASE_SHIFT)) == phase) {
852 >            int unarrived = (int)(s & UNARRIVED_MASK);
853 >            if (unarrived != lastUnarrived) {
854 >                if ((lastUnarrived = unarrived) < NCPU)
855 >                    spins += SPINS_PER_ARRIVAL;
856 >            }
857 >            else if (unarrived == 0 && par != null) {
858 >                current = par;       // if all arrived, use parent
859 >                par = par.parent;
860 >            }
861 >            else if (spins > 0)
862 >                --spins;
863              else if (node == null)
864 <                node = new QNode(this, phase, true, false, 0, 0);
864 >                node = new QNode(this, phase, false, false, 0L);
865 >            else if (node.isReleasable())
866 >                break;
867              else if (!queued)
868 <                queued = tryEnqueue(node);
869 <            else
870 <                interrupted = node.doWait();
871 <        }
872 <        if (node != null)
873 <            node.thread = null;
874 <        if (p != phase || (p = getPhase()) != phase)
868 >                queued = tryEnqueue(phase, node);
869 >            else {
870 >                try {
871 >                    ForkJoinPool.managedBlock(node);
872 >                } catch (InterruptedException ie) {
873 >                    node.wasInterrupted = true;
874 >                }
875 >            }
876 >        }
877 >        if (node != null) {
878 >            if (node.thread != null)
879 >                node.thread = null;
880 >            if (!node.interruptible && node.wasInterrupted)
881 >                Thread.currentThread().interrupt();
882 >        }
883 >        if (p == phase)
884 >            p = (int)(reconcileState() >>> PHASE_SHIFT);
885 >        if (p != phase)
886              releaseWaiters(phase);
956        if (interrupted)
957            throw new InterruptedException();
887          return p;
888      }
889  
890      /**
891 <     * Timeout version.
963 <     * @return current phase
891 >     * Wait nodes for Treiber stack representing wait queue
892       */
893 <    private int timedWait(int phase, long nanos)
894 <        throws InterruptedException, TimeoutException {
895 <        long startTime = System.nanoTime();
896 <        QNode node = null;
897 <        boolean queued = false;
898 <        boolean interrupted = false;
899 <        int p;
900 <        while ((p = getPhase()) == phase && !interrupted) {
901 <            if (Thread.interrupted())
902 <                interrupted = true;
903 <            else if (nanos - (System.nanoTime() - startTime) <= 0)
904 <                break;
905 <            else if (node == null)
906 <                node = new QNode(this, phase, true, true, startTime, nanos);
907 <            else if (!queued)
908 <                queued = tryEnqueue(node);
909 <            else
910 <                interrupted = node.doWait();
911 <        }
912 <        if (node != null)
913 <            node.thread = null;
914 <        if (p != phase || (p = getPhase()) != phase)
915 <            releaseWaiters(phase);
916 <        if (interrupted)
917 <            throw new InterruptedException();
918 <        if (p == phase)
919 <            throw new TimeoutException();
920 <        return p;
893 >    static final class QNode implements ForkJoinPool.ManagedBlocker {
894 >        final Phaser phaser;
895 >        final int phase;
896 >        final boolean interruptible;
897 >        final boolean timed;
898 >        boolean wasInterrupted;
899 >        long nanos;
900 >        long lastTime;
901 >        volatile Thread thread; // nulled to cancel wait
902 >        QNode next;
903 >
904 >        QNode(Phaser phaser, int phase, boolean interruptible,
905 >              boolean timed, long nanos) {
906 >            this.phaser = phaser;
907 >            this.phase = phase;
908 >            this.interruptible = interruptible;
909 >            this.nanos = nanos;
910 >            this.timed = timed;
911 >            this.lastTime = timed? System.nanoTime() : 0L;
912 >            thread = Thread.currentThread();
913 >        }
914 >
915 >        public boolean isReleasable() {
916 >            Thread t = thread;
917 >            if (t != null) {
918 >                if (phaser.getPhase() != phase)
919 >                    t = null;
920 >                else {
921 >                    if (Thread.interrupted())
922 >                        wasInterrupted = true;
923 >                    if (interruptible && wasInterrupted)
924 >                        t = null;
925 >                    else if (timed) {
926 >                        if (nanos > 0) {
927 >                            long now = System.nanoTime();
928 >                            nanos -= now - lastTime;
929 >                            lastTime = now;
930 >                        }
931 >                        if (nanos <= 0)
932 >                            t = null;
933 >                    }
934 >                }
935 >                if (t != null)
936 >                    return false;
937 >                thread = null;
938 >            }
939 >            return true;
940 >        }
941 >
942 >        public boolean block() {
943 >            if (isReleasable())
944 >                return true;
945 >            else if (!timed)
946 >                LockSupport.park(this);
947 >            else if (nanos > 0)
948 >                LockSupport.parkNanos(this, nanos);
949 >            return isReleasable();
950 >        }
951 >
952 >        void signal() {
953 >            Thread t = thread;
954 >            if (t != null) {
955 >                thread = null;
956 >                LockSupport.unpark(t);
957 >            }
958 >        }
959      }
960  
961      // Unsafe mechanics
# Line 998 | Line 964 | public class Phaser {
964      private static final long stateOffset =
965          objectFieldOffset("state", Phaser.class);
966  
1001    private final boolean casState(long cmp, long val) {
1002        return UNSAFE.compareAndSwapLong(this, stateOffset, cmp, val);
1003    }
1004
967      private static long objectFieldOffset(String field, Class<?> klazz) {
968          try {
969              return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines