ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/Phaser.java
(Generate patch)

Comparing jsr166/src/jsr166y/Phaser.java (file contents):
Revision 1.49 by dl, Fri Nov 5 23:01:47 2010 UTC vs.
Revision 1.54 by dl, Sat Nov 13 13:10:04 2010 UTC

# Line 6 | Line 6
6  
7   package jsr166y;
8  
9 < import java.util.concurrent.*;
9 > import java.util.concurrent.TimeUnit;
10 > import java.util.concurrent.TimeoutException;
11   import java.util.concurrent.atomic.AtomicReference;
12   import java.util.concurrent.locks.LockSupport;
13  
# Line 226 | Line 227 | public class Phaser {
227       * Barrier state representation. Conceptually, a barrier contains
228       * four values:
229       *
230 <     * * parties -- the number of parties to wait (16 bits)
231 <     * * unarrived -- the number of parties yet to hit barrier (16 bits)
232 <     * * phase -- the generation of the barrier (31 bits)
233 <     * * terminated -- set if barrier is terminated (1 bit)
230 >     * * unarrived -- the number of parties yet to hit barrier (bits  0-15)
231 >     * * parties -- the number of parties to wait              (bits 16-31)
232 >     * * phase -- the generation of the barrier                (bits 32-62)
233 >     * * terminated -- set if barrier is terminated            (bit  63 / sign)
234       *
235       * However, to efficiently maintain atomicity, these values are
236       * packed into a single (atomic) long. Termination uses the sign
237       * bit of 32 bit representation of phase, so phase is set to -1 on
238       * termination. Good performance relies on keeping state decoding
239       * and encoding simple, and keeping race windows short.
239     *
240     * Note: there are some cheats in arrive() that rely on unarrived
241     * count being lowest 16 bits.
240       */
241      private volatile long state;
242  
243 <    private static final int ushortMask = 0xffff;
244 <    private static final int phaseMask  = 0x7fffffff;
243 >    private static final int  MAX_COUNT      = 0xffff;
244 >    private static final int  MAX_PHASE      = 0x7fffffff;
245 >    private static final int  PARTIES_SHIFT  = 16;
246 >    private static final int  PHASE_SHIFT    = 32;
247 >    private static final long UNARRIVED_MASK = 0xffffL;
248 >    private static final long PARTIES_MASK   = 0xffff0000L;
249 >    private static final long ONE_ARRIVAL    = 1L;
250 >    private static final long ONE_PARTY      = 1L << PARTIES_SHIFT;
251 >    private static final long TERMINATION_PHASE  = -1L << PHASE_SHIFT;
252 >
253 >    // The following unpacking methods are usually manually inlined
254  
255      private static int unarrivedOf(long s) {
256 <        return (int) (s & ushortMask);
256 >        return (int) (s & UNARRIVED_MASK);
257      }
258  
259      private static int partiesOf(long s) {
260 <        return ((int) s) >>> 16;
260 >        return ((int) (s & PARTIES_MASK)) >>> PARTIES_SHIFT;
261      }
262  
263      private static int phaseOf(long s) {
264 <        return (int) (s >>> 32);
264 >        return (int) (s >>> PHASE_SHIFT);
265      }
266  
267      private static int arrivedOf(long s) {
268          return partiesOf(s) - unarrivedOf(s);
269      }
270  
264    private static long stateFor(int phase, int parties, int unarrived) {
265        return ((((long) phase) << 32) | (((long) parties) << 16) |
266                (long) unarrived);
267    }
268
269    private static long trippedStateFor(int phase, int parties) {
270        long lp = (long) parties;
271        return (((long) phase) << 32) | (lp << 16) | lp;
272    }
273
274    /**
275     * Returns message string for bad bounds exceptions.
276     */
277    private static String badBounds(int parties, int unarrived) {
278        return ("Attempt to set " + unarrived +
279                " unarrived of " + parties + " parties");
280    }
281
271      /**
272       * The parent of this phaser, or null if none
273       */
# Line 290 | Line 279 | public class Phaser {
279       */
280      private final Phaser root;
281  
293    // Wait queues
294
282      /**
283       * Heads of Treiber stacks for waiting threads. To eliminate
284       * contention when releasing some threads while adding others, we
285       * use two of them, alternating across even and odd phases.
286       * Subphasers share queues with root to speed up releases.
287       */
288 <    private final AtomicReference<QNode> evenQ = new AtomicReference<QNode>();
289 <    private final AtomicReference<QNode> oddQ  = new AtomicReference<QNode>();
288 >    private final AtomicReference<QNode> evenQ;
289 >    private final AtomicReference<QNode> oddQ;
290  
291      private AtomicReference<QNode> queueFor(int phase) {
292 <        Phaser r = root;
306 <        return ((phase & 1) == 0) ? r.evenQ : r.oddQ;
292 >        return ((phase & 1) == 0) ? evenQ : oddQ;
293      }
294  
295      /**
296 <     * Returns current state, first resolving lagged propagation from
297 <     * root if necessary.
296 >     * Main implementation for methods arrive and arriveAndDeregister.
297 >     * Manually tuned to speed up and minimize race windows for the
298 >     * common case of just decrementing unarrived field.
299 >     *
300 >     * @param adj - adjustment to apply to state -- either
301 >     * ONE_ARRIVAL (for arrive) or
302 >     * ONE_ARRIVAL|ONE_PARTY (for arriveAndDeregister)
303 >     */
304 >    private int doArrive(long adj) {
305 >        for (;;) {
306 >            long s;
307 >            int phase, unarrived;
308 >            if ((phase = (int)((s = state) >>> PHASE_SHIFT)) < 0)
309 >                return phase;
310 >            else if ((unarrived = (int)(s & UNARRIVED_MASK)) == 0)
311 >                checkBadArrive(s);
312 >            else if (UNSAFE.compareAndSwapLong(this, stateOffset, s, s -= adj)){
313 >                if (unarrived == 1) {
314 >                    Phaser par;
315 >                    long p = s & PARTIES_MASK; // unshifted parties field
316 >                    long lu = p >>> PARTIES_SHIFT;
317 >                    int u = (int)lu;
318 >                    int nextPhase = (phase + 1) & MAX_PHASE;
319 >                    long next = ((long)nextPhase << PHASE_SHIFT) | p | lu;
320 >                    if ((par = parent) == null) {
321 >                        UNSAFE.compareAndSwapLong
322 >                            (this, stateOffset, s, onAdvance(phase, u)?
323 >                             next | TERMINATION_PHASE : next);
324 >                        releaseWaiters(phase);
325 >                    }
326 >                    else {
327 >                        par.doArrive(u == 0?
328 >                                     ONE_ARRIVAL|ONE_PARTY : ONE_ARRIVAL);
329 >                        if ((int)(par.state >>> PHASE_SHIFT) != nextPhase ||
330 >                            ((int)(state >>> PHASE_SHIFT) != nextPhase &&
331 >                             !UNSAFE.compareAndSwapLong(this, stateOffset,
332 >                                                        s, next)))
333 >                            reconcileState();
334 >                    }
335 >                }
336 >                return phase;
337 >            }
338 >        }
339 >    }
340 >
341 >    /**
342 >     * Rechecks state and throws bounds exceptions on arrival -- called
343 >     * only if unarrived is apparently zero.
344       */
345 <    private long getReconciledState() {
346 <        return (parent == null) ? state : reconcileState();
345 >    private void checkBadArrive(long s) {
346 >        if (reconcileState() == s)
347 >            throw new IllegalStateException
348 >                ("Attempted arrival of unregistered party for " +
349 >                 stateToString(s));
350      }
351  
352      /**
353 <     * Recursively resolves state.
353 >     * Implementation of register, bulkRegister
354 >     *
355 >     * @param registrations number to add to both parties and unarrived fields
356 >     */
357 >    private int doRegister(int registrations) {
358 >        long adj = (long)registrations; // adjustment to state
359 >        adj |= adj << PARTIES_SHIFT;
360 >        Phaser par = parent;
361 >        for (;;) {
362 >            int phase, parties;
363 >            long s = par == null? state : reconcileState();
364 >            if ((phase = (int)(s >>> PHASE_SHIFT)) < 0)
365 >                return phase;
366 >            if ((parties = ((int)(s & PARTIES_MASK)) >>> PARTIES_SHIFT) != 0 &&
367 >                (s & UNARRIVED_MASK) == 0)
368 >                internalAwaitAdvance(phase, null); // wait for onAdvance
369 >            else if (parties + registrations > MAX_COUNT)
370 >                throw new IllegalStateException(badRegister(s));
371 >            else if (UNSAFE.compareAndSwapLong(this, stateOffset, s, s + adj))
372 >                return phase;
373 >        }
374 >    }
375 >
376 >    /**
377 >     * Returns message string for bounds exceptions on registration
378 >     */
379 >    private String badRegister(long s) {
380 >        return "Attempt to register more than " +
381 >            MAX_COUNT + " parties for " + stateToString(s);
382 >    }
383 >
384 >    /**
385 >     * Recursively resolves lagged phase propagation from root if
386 >     * necessary.
387       */
388      private long reconcileState() {
389          Phaser par = parent;
390 <        long s = state;
391 <        if (par != null) {
392 <            int phase, rootPhase;
393 <            while ((phase = phaseOf(s)) >= 0 &&
394 <                   (rootPhase = phaseOf(root.state)) != phase &&
395 <                   (rootPhase < 0 || unarrivedOf(s) == 0)) {
396 <                long parentState = par.getReconciledState();
397 <                int parentPhase = phaseOf(parentState);
398 <                int parties = partiesOf(s);
399 <                long next = trippedStateFor(parentPhase, parties);
400 <                if (phaseOf(root.state) == rootPhase &&
401 <                    parentPhase != phase &&
402 <                    state == s && casState(s, next)) {
403 <                    releaseWaiters(phase);
404 <                    if (parties == 0) // exit if the final deregistration
405 <                        break;
406 <                }
407 <                s = state;
390 >        if (par == null)
391 >            return state;
392 >        Phaser rt = root;
393 >        for (;;) {
394 >            long s, u;
395 >            int phase, rPhase, pPhase;
396 >            if ((phase = (int)((s = state)>>> PHASE_SHIFT)) < 0 ||
397 >                (rPhase = (int)(rt.state >>> PHASE_SHIFT)) == phase)
398 >                return s;
399 >            long pState = par.parent == null? par.state : par.reconcileState();
400 >            if (state == s) {
401 >                if ((rPhase < 0 || (s & UNARRIVED_MASK) == 0) &&
402 >                    ((pPhase = (int)(pState >>> PHASE_SHIFT)) < 0 ||
403 >                     pPhase == ((phase + 1) & MAX_PHASE)))
404 >                    UNSAFE.compareAndSwapLong
405 >                        (this, stateOffset, s,
406 >                         (((long) pPhase) << PHASE_SHIFT) |
407 >                         (u = s & PARTIES_MASK) |
408 >                         (u >>> PARTIES_SHIFT)); // reset unarrived to parties
409 >                else
410 >                    releaseWaiters(phase); // help release others
411              }
412          }
342        return s;
413      }
414  
415      /**
# Line 348 | Line 418 | public class Phaser {
418       * phaser will need to first register for it.
419       */
420      public Phaser() {
421 <        this(null);
421 >        this(null, 0);
422      }
423  
424      /**
# Line 372 | Line 442 | public class Phaser {
442       * @param parent the parent phaser
443       */
444      public Phaser(Phaser parent) {
445 <        int phase = 0;
376 <        this.parent = parent;
377 <        if (parent != null) {
378 <            this.root = parent.root;
379 <            phase = parent.register();
380 <        }
381 <        else
382 <            this.root = this;
383 <        this.state = trippedStateFor(phase, 0);
445 >        this(parent, 0);
446      }
447  
448      /**
# Line 395 | Line 457 | public class Phaser {
457       * or greater than the maximum number of parties supported
458       */
459      public Phaser(Phaser parent, int parties) {
460 <        if (parties < 0 || parties > ushortMask)
460 >        if (parties < 0 || parties > MAX_COUNT)
461              throw new IllegalArgumentException("Illegal number of parties");
462 <        int phase = 0;
462 >        int phase;
463          this.parent = parent;
464          if (parent != null) {
465 <            this.root = parent.root;
465 >            Phaser r = parent.root;
466 >            this.root = r;
467 >            this.evenQ = r.evenQ;
468 >            this.oddQ = r.oddQ;
469              phase = parent.register();
470          }
471 <        else
471 >        else {
472              this.root = this;
473 <        this.state = trippedStateFor(phase, parties);
473 >            this.evenQ = new AtomicReference<QNode>();
474 >            this.oddQ = new AtomicReference<QNode>();
475 >            phase = 0;
476 >        }
477 >        long p = (long)parties;
478 >        this.state = (((long) phase) << PHASE_SHIFT) | p | (p << PARTIES_SHIFT);
479      }
480  
481      /**
482       * Adds a new unarrived party to this phaser.
483       * If an ongoing invocation of {@link #onAdvance} is in progress,
484 <     * this method waits until its completion before registering.
484 >     * this method may wait until its completion before registering.
485       *
486       * @return the arrival phase number to which this registration applied
487       * @throws IllegalStateException if attempting to register more
# Line 424 | Line 494 | public class Phaser {
494      /**
495       * Adds the given number of new unarrived parties to this phaser.
496       * If an ongoing invocation of {@link #onAdvance} is in progress,
497 <     * this method waits until its completion before registering.
497 >     * this method may wait until its completion before registering.
498       *
499       * @param parties the number of additional parties required to trip barrier
500       * @return the arrival phase number to which this registration applied
# Line 435 | Line 505 | public class Phaser {
505      public int bulkRegister(int parties) {
506          if (parties < 0)
507              throw new IllegalArgumentException();
508 +        if (parties > MAX_COUNT)
509 +            throw new IllegalStateException(badRegister(state));
510          if (parties == 0)
511              return getPhase();
512          return doRegister(parties);
513      }
514  
515      /**
444     * Shared code for register, bulkRegister
445     */
446    private int doRegister(int registrations) {
447        Phaser par = parent;
448        long s;
449        int phase;
450        while ((phase = phaseOf(s = par==null? state:reconcileState())) >= 0) {
451            int p = partiesOf(s);
452            int u = unarrivedOf(s);
453            int unarrived = u + registrations;
454            int parties = p + registrations;
455            if (par == null || phase == phaseOf(root.state)) {
456                if (parties > ushortMask || unarrived > ushortMask)
457                    throw new IllegalStateException(badBounds(parties,
458                                                              unarrived));
459                else if (p != 0 && u == 0)       // back off if advancing
460                    Thread.yield();              // not worth actually blocking
461                else if (casState(s, stateFor(phase, parties, unarrived)))
462                    break;
463            }
464        }
465        return phase;
466    }
467
468    /**
516       * Arrives at the barrier, but does not wait for others.  (You can
517       * in turn wait for others via {@link #awaitAdvance}).  It is an
518       * unenforced usage error for an unregistered party to invoke this
# Line 476 | Line 523 | public class Phaser {
523       * of unarrived parties would become negative
524       */
525      public int arrive() {
526 <        Phaser par = parent;
480 <        long s;
481 <        int phase;
482 <        while ((phase = phaseOf(s = par==null? state:reconcileState())) >= 0) {
483 <            int parties = partiesOf(s);
484 <            int unarrived = unarrivedOf(s) - 1;
485 <            if (parties == 0 || unarrived < 0)
486 <                throw new IllegalStateException(badBounds(parties,
487 <                                                          unarrived));
488 <            else if (unarrived > 0) {           // Not the last arrival
489 <                if (casState(s, s - 1))         // s-1 adds one arrival
490 <                    break;
491 <            }
492 <            else if (par == null) {             // directly trip
493 <                if (casState(s, trippedStateFor(onAdvance(phase, parties) ? -1 :
494 <                                                ((phase + 1) & phaseMask),
495 <                                                parties))) {
496 <                    releaseWaiters(phase);
497 <                    break;
498 <                }
499 <            }
500 <            else if (phaseOf(root.state) == phase && casState(s, s - 1)) {
501 <                par.arrive();                   // cascade to parent
502 <                reconcileState();
503 <                break;
504 <            }
505 <        }
506 <        return phase;
526 >        return doArrive(ONE_ARRIVAL);
527      }
528  
529      /**
# Line 520 | Line 540 | public class Phaser {
540       * of registered or unarrived parties would become negative
541       */
542      public int arriveAndDeregister() {
543 <        // similar to arrive, but too different to merge
524 <        Phaser par = parent;
525 <        long s;
526 <        int phase;
527 <        while ((phase = phaseOf(s = par==null? state:reconcileState())) >= 0) {
528 <            int parties = partiesOf(s) - 1;
529 <            int unarrived = unarrivedOf(s) - 1;
530 <            if (parties < 0 || unarrived < 0)
531 <                throw new IllegalStateException(badBounds(parties,
532 <                                                          unarrived));
533 <            else if (unarrived > 0) {
534 <                if (casState(s, stateFor(phase, parties, unarrived)))
535 <                    break;
536 <            }
537 <            else if (par == null) {
538 <                if (casState(s, trippedStateFor(onAdvance(phase, parties)? -1:
539 <                                                (phase + 1) & phaseMask,
540 <                                                parties))) {
541 <                    releaseWaiters(phase);
542 <                    break;
543 <                }
544 <            }
545 <            else if (phaseOf(root.state) == phase &&
546 <                     casState(s, stateFor(phase, parties, 0))) {
547 <                if (parties == 0)
548 <                    par.arriveAndDeregister();
549 <                else
550 <                    par.arrive();
551 <                reconcileState();
552 <                break;
553 <            }
554 <        }
555 <        return phase;
543 >        return doArrive(ONE_ARRIVAL|ONE_PARTY);
544      }
545  
546      /**
# Line 576 | Line 564 | public class Phaser {
564       * Awaits the phase of the barrier to advance from the given phase
565       * value, returning immediately if the current phase of the
566       * barrier is not equal to the given phase value or this barrier
567 <     * is terminated.  It is an unenforced usage error for an
580 <     * unregistered party to invoke this method.
567 >     * is terminated.
568       *
569       * @param phase an arrival phase number, or negative value if
570       * terminated; this argument is normally the value returned by a
# Line 588 | Line 575 | public class Phaser {
575      public int awaitAdvance(int phase) {
576          if (phase < 0)
577              return phase;
578 <        int p = getPhase();
578 >        int p = (int)((parent==null? state : reconcileState()) >>> PHASE_SHIFT);
579          if (p != phase)
580              return p;
581 <        return untimedWait(phase);
581 >        return internalAwaitAdvance(phase, null);
582      }
583  
584      /**
# Line 599 | Line 586 | public class Phaser {
586       * value, throwing {@code InterruptedException} if interrupted
587       * while waiting, or returning immediately if the current phase of
588       * the barrier is not equal to the given phase value or this
589 <     * barrier is terminated. It is an unenforced usage error for an
603 <     * unregistered party to invoke this method.
589 >     * barrier is terminated.
590       *
591       * @param phase an arrival phase number, or negative value if
592       * terminated; this argument is normally the value returned by a
# Line 613 | Line 599 | public class Phaser {
599          throws InterruptedException {
600          if (phase < 0)
601              return phase;
602 <        int p = getPhase();
602 >        int p = (int)((parent==null? state : reconcileState()) >>> PHASE_SHIFT);
603          if (p != phase)
604              return p;
605 <        return interruptibleWait(phase);
605 >        QNode node = new QNode(this, phase, true, false, 0L);
606 >        p = internalAwaitAdvance(phase, node);
607 >        if (node.wasInterrupted)
608 >            throw new InterruptedException();
609 >        else
610 >            return p;
611      }
612  
613      /**
# Line 625 | Line 616 | public class Phaser {
616       * InterruptedException} if interrupted while waiting, or
617       * returning immediately if the current phase of the barrier is
618       * not equal to the given phase value or this barrier is
619 <     * terminated.  It is an unenforced usage error for an
629 <     * unregistered party to invoke this method.
619 >     * terminated.
620       *
621       * @param phase an arrival phase number, or negative value if
622       * terminated; this argument is normally the value returned by a
# Line 646 | Line 636 | public class Phaser {
636          long nanos = unit.toNanos(timeout);
637          if (phase < 0)
638              return phase;
639 <        int p = getPhase();
639 >        int p = (int)((parent==null? state : reconcileState()) >>> PHASE_SHIFT);
640          if (p != phase)
641              return p;
642 <        return timedWait(phase, nanos);
642 >        QNode node = new QNode(this, phase, true, true, nanos);
643 >        p = internalAwaitAdvance(phase, node);
644 >        if (node.wasInterrupted)
645 >            throw new InterruptedException();
646 >        else if (p == phase)
647 >            throw new TimeoutException();
648 >        else
649 >            return p;
650      }
651  
652      /**
# Line 662 | Line 659 | public class Phaser {
659      public void forceTermination() {
660          Phaser r = root;    // force at root then reconcile
661          long s;
662 <        while (phaseOf(s = r.state) >= 0)
663 <            r.casState(s, stateFor(-1, partiesOf(s), unarrivedOf(s)));
662 >        while ((s = r.state) >= 0)
663 >            UNSAFE.compareAndSwapLong(r, stateOffset, s, s | TERMINATION_PHASE);
664          reconcileState();
665 <        releaseWaiters(0);  // ensure wakeups on both queues
665 >        releaseWaiters(0); // signal all threads
666          releaseWaiters(1);
667      }
668  
# Line 677 | Line 674 | public class Phaser {
674       * @return the phase number, or a negative value if terminated
675       */
676      public final int getPhase() {
677 <        return phaseOf(getReconciledState());
677 >        return (int)((parent==null? state : reconcileState()) >>> PHASE_SHIFT);
678      }
679  
680      /**
# Line 686 | Line 683 | public class Phaser {
683       * @return the number of parties
684       */
685      public int getRegisteredParties() {
686 <        return partiesOf(getReconciledState());
686 >        return partiesOf(parent==null? state : reconcileState());
687      }
688  
689      /**
# Line 696 | Line 693 | public class Phaser {
693       * @return the number of arrived parties
694       */
695      public int getArrivedParties() {
696 <        return arrivedOf(getReconciledState());
696 >        return arrivedOf(parent==null? state : reconcileState());
697      }
698  
699      /**
# Line 706 | Line 703 | public class Phaser {
703       * @return the number of unarrived parties
704       */
705      public int getUnarrivedParties() {
706 <        return unarrivedOf(getReconciledState());
706 >        return unarrivedOf(parent==null? state : reconcileState());
707      }
708  
709      /**
# Line 734 | Line 731 | public class Phaser {
731       * @return {@code true} if this barrier has been terminated
732       */
733      public boolean isTerminated() {
734 <        return getPhase() < 0;
734 >        return (parent == null? state : reconcileState()) < 0;
735      }
736  
737      /**
# Line 750 | Line 747 | public class Phaser {
747       * which case no advance occurs.
748       *
749       * <p>The arguments to this method provide the state of the phaser
750 <     * prevailing for the current transition. (When called from within
751 <     * an implementation of {@code onAdvance} the values returned by
752 <     * methods such as {@code getPhase} may or may not reliably
753 <     * indicate the state to which this transition applies.)
750 >     * prevailing for the current transition.  The effects of invoking
751 >     * arrival, registration, and waiting methods on this Phaser from
752 >     * within {@code onAdvance} are unspecified and should not be
753 >     * relied on.
754 >     *
755 >     * <p>If this Phaser is a member of a tiered set of Phasers, then
756 >     * {@code onAdvance} is invoked only for its root Phaser on each
757 >     * advance.
758       *
759       * <p>The default version returns {@code true} when the number of
760       * registered parties is zero. Normally, overrides that arrange
# Line 778 | Line 779 | public class Phaser {
779       * @return a string identifying this barrier, as well as its state
780       */
781      public String toString() {
782 <        long s = getReconciledState();
782 >        return stateToString(reconcileState());
783 >    }
784 >
785 >    /**
786 >     * Implementation of toString and string-based error messages
787 >     */
788 >    private String stateToString(long s) {
789          return super.toString() +
790              "[phase = " + phaseOf(s) +
791              " parties = " + partiesOf(s) +
792              " arrived = " + arrivedOf(s) + "]";
793      }
794  
795 <    // methods for waiting
795 >    // Waiting mechanics
796 >
797 >    /**
798 >     * Removes and signals threads from queue for phase
799 >     */
800 >    private void releaseWaiters(int phase) {
801 >        AtomicReference<QNode> head = queueFor(phase);
802 >        QNode q;
803 >        int p;
804 >        while ((q = head.get()) != null &&
805 >               ((p = q.phase) == phase ||
806 >                (int)(root.state >>> PHASE_SHIFT) != p)) {
807 >            if (head.compareAndSet(q, q.next))
808 >                q.signal();
809 >        }
810 >    }
811 >
812 >    /**
813 >     * Tries to enqueue given node in the appropriate wait queue.
814 >     *
815 >     * @return true if successful
816 >     */
817 >    private boolean tryEnqueue(int phase, QNode node) {
818 >        releaseWaiters(phase-1); // ensure old queue clean
819 >        AtomicReference<QNode> head = queueFor(phase);
820 >        QNode q = head.get();
821 >        return ((q == null || q.phase == phase) &&
822 >                (int)(root.state >>> PHASE_SHIFT) == phase &&
823 >                head.compareAndSet(node.next = q, node));
824 >    }
825 >
826 >    /** The number of CPUs, for spin control */
827 >    private static final int NCPU = Runtime.getRuntime().availableProcessors();
828 >
829 >    /**
830 >     * The number of times to spin before blocking while waiting for
831 >     * advance, per arrival while waiting. On multiprocessors, fully
832 >     * blocking and waking up a large number of threads all at once is
833 >     * usually a very slow process, so we use rechargeable spins to
834 >     * avoid it when threads regularly arrive: When a thread in
835 >     * internalAwaitAdvance notices another arrival before blocking,
836 >     * and there appear to be enough CPUs available, it spins
837 >     * SPINS_PER_ARRIVAL more times before continuing to try to
838 >     * block. The value trades off good-citizenship vs big unnecessary
839 >     * slowdowns.
840 >     */
841 >    static final int SPINS_PER_ARRIVAL = NCPU < 2? 1 : 1 << 8;
842 >
843 >    /**
844 >     * Possibly blocks and waits for phase to advance unless aborted.
845 >     *
846 >     * @param phase current phase
847 >     * @param node if non-null, the wait node to track interrupt and timeout;
848 >     * if null, denotes noninterruptible wait
849 >     * @return current phase
850 >     */
851 >    private int internalAwaitAdvance(int phase, QNode node) {
852 >        Phaser current = this;       // to eventually wait at root if tiered
853 >        boolean queued = false;      // true when node is enqueued
854 >        int lastUnarrived = -1;      // to increase spins upon change
855 >        int spins = SPINS_PER_ARRIVAL;
856 >        for (;;) {
857 >            int p, unarrived;
858 >            Phaser par;
859 >            long s = current.state;
860 >            if ((p = (int)(s >>> PHASE_SHIFT)) != phase) {
861 >                if (node != null)
862 >                    node.onRelease();
863 >                releaseWaiters(phase);
864 >                return p;
865 >            }
866 >            else if ((unarrived = (int)(s & UNARRIVED_MASK)) != lastUnarrived) {
867 >                if ((lastUnarrived = unarrived) < NCPU)
868 >                    spins += SPINS_PER_ARRIVAL;
869 >            }
870 >            else if (unarrived == 0 && (par = current.parent) != null) {
871 >                current = par;       // if all arrived, use parent
872 >                par = par.parent;
873 >                lastUnarrived = -1;
874 >            }
875 >            else if (spins > 0)
876 >                --spins;
877 >            else if (node == null)   // must be noninterruptible
878 >                node = new QNode(this, phase, false, false, 0L);
879 >            else if (node.isReleasable()) {
880 >                if ((int)(reconcileState() >>> PHASE_SHIFT) == phase)
881 >                    return phase;    // aborted
882 >            }
883 >            else if (!queued)
884 >                queued = tryEnqueue(phase, node);
885 >            else {
886 >                try {
887 >                    ForkJoinPool.managedBlock(node);
888 >                } catch (InterruptedException ie) {
889 >                    node.wasInterrupted = true;
890 >                }
891 >            }
892 >        }
893 >    }
894  
895      /**
896       * Wait nodes for Treiber stack representing wait queue
# Line 793 | Line 898 | public class Phaser {
898      static final class QNode implements ForkJoinPool.ManagedBlocker {
899          final Phaser phaser;
900          final int phase;
796        final long startTime;
797        final long nanos;
798        final boolean timed;
901          final boolean interruptible;
902 <        volatile boolean wasInterrupted = false;
902 >        final boolean timed;
903 >        boolean wasInterrupted;
904 >        long nanos;
905 >        long lastTime;
906          volatile Thread thread; // nulled to cancel wait
907          QNode next;
908  
909          QNode(Phaser phaser, int phase, boolean interruptible,
910 <              boolean timed, long startTime, long nanos) {
910 >              boolean timed, long nanos) {
911              this.phaser = phaser;
912              this.phase = phase;
808            this.timed = timed;
913              this.interruptible = interruptible;
810            this.startTime = startTime;
914              this.nanos = nanos;
915 +            this.timed = timed;
916 +            this.lastTime = timed? System.nanoTime() : 0L;
917              thread = Thread.currentThread();
918          }
919  
920          public boolean isReleasable() {
921 <            return (thread == null ||
922 <                    phaser.getPhase() != phase ||
923 <                    (interruptible && wasInterrupted) ||
924 <                    (timed && (nanos - (System.nanoTime() - startTime)) <= 0));
921 >            Thread t = thread;
922 >            if (t != null) {
923 >                if (phaser.getPhase() != phase)
924 >                    t = null;
925 >                else {
926 >                    if (Thread.interrupted())
927 >                        wasInterrupted = true;
928 >                    if (interruptible && wasInterrupted)
929 >                        t = null;
930 >                    else if (timed) {
931 >                        if (nanos > 0) {
932 >                            long now = System.nanoTime();
933 >                            nanos -= now - lastTime;
934 >                            lastTime = now;
935 >                        }
936 >                        if (nanos <= 0)
937 >                            t = null;
938 >                    }
939 >                }
940 >                if (t != null)
941 >                    return false;
942 >                thread = null;
943 >            }
944 >            return true;
945          }
946  
947          public boolean block() {
948 <            if (Thread.interrupted()) {
949 <                wasInterrupted = true;
950 <                if (interruptible)
826 <                    return true;
827 <            }
828 <            if (!timed)
948 >            if (isReleasable())
949 >                return true;
950 >            else if (!timed)
951                  LockSupport.park(this);
952 <            else {
953 <                long waitTime = nanos - (System.nanoTime() - startTime);
832 <                if (waitTime <= 0)
833 <                    return true;
834 <                LockSupport.parkNanos(this, waitTime);
835 <            }
952 >            else if (nanos > 0)
953 >                LockSupport.parkNanos(this, nanos);
954              return isReleasable();
955          }
956  
# Line 844 | Line 962 | public class Phaser {
962              }
963          }
964  
965 <        boolean doWait() {
966 <            if (thread != null) {
967 <                try {
968 <                    ForkJoinPool.managedBlock(this);
969 <                } catch (InterruptedException ie) {
852 <                    wasInterrupted = true; // can't currently happen
853 <                }
854 <            }
855 <            return wasInterrupted;
856 <        }
857 <    }
858 <
859 <    /**
860 <     * Removes and signals waiting threads from wait queue.
861 <     */
862 <    private void releaseWaiters(int phase) {
863 <        AtomicReference<QNode> head = queueFor(phase);
864 <        QNode q;
865 <        while ((q = head.get()) != null) {
866 <            if (head.compareAndSet(q, q.next))
867 <                q.signal();
868 <        }
869 <    }
870 <
871 <    /**
872 <     * Tries to enqueue given node in the appropriate wait queue.
873 <     *
874 <     * @return true if successful
875 <     */
876 <    private boolean tryEnqueue(QNode node) {
877 <        AtomicReference<QNode> head = queueFor(node.phase);
878 <        return head.compareAndSet(node.next = head.get(), node);
879 <    }
880 <
881 <    /**
882 <     * Enqueues node and waits unless aborted or signalled.
883 <     *
884 <     * @return current phase
885 <     */
886 <    private int untimedWait(int phase) {
887 <        QNode node = null;
888 <        boolean queued = false;
889 <        boolean interrupted = false;
890 <        int p;
891 <        while ((p = getPhase()) == phase) {
892 <            if (Thread.interrupted())
893 <                interrupted = true;
894 <            else if (node == null)
895 <                node = new QNode(this, phase, false, false, 0, 0);
896 <            else if (!queued)
897 <                queued = tryEnqueue(node);
898 <            else if (node.doWait())
899 <                interrupted = true;
965 >        void onRelease() { // actions upon return from internalAwaitAdvance
966 >            if (!interruptible && wasInterrupted)
967 >                Thread.currentThread().interrupt();
968 >            if (thread != null)
969 >                thread = null;
970          }
901        if (node != null)
902            node.thread = null;
903        releaseWaiters(phase);
904        if (interrupted)
905            Thread.currentThread().interrupt();
906        return p;
907    }
908
909    /**
910     * Interruptible version
911     * @return current phase
912     */
913    private int interruptibleWait(int phase) throws InterruptedException {
914        QNode node = null;
915        boolean queued = false;
916        boolean interrupted = false;
917        int p;
918        while ((p = getPhase()) == phase && !interrupted) {
919            if (Thread.interrupted())
920                interrupted = true;
921            else if (node == null)
922                node = new QNode(this, phase, true, false, 0, 0);
923            else if (!queued)
924                queued = tryEnqueue(node);
925            else if (node.doWait())
926                interrupted = true;
927        }
928        if (node != null)
929            node.thread = null;
930        if (p != phase || (p = getPhase()) != phase)
931            releaseWaiters(phase);
932        if (interrupted)
933            throw new InterruptedException();
934        return p;
935    }
971  
937    /**
938     * Timeout version.
939     * @return current phase
940     */
941    private int timedWait(int phase, long nanos)
942        throws InterruptedException, TimeoutException {
943        long startTime = System.nanoTime();
944        QNode node = null;
945        boolean queued = false;
946        boolean interrupted = false;
947        int p;
948        while ((p = getPhase()) == phase && !interrupted) {
949            if (Thread.interrupted())
950                interrupted = true;
951            else if (nanos - (System.nanoTime() - startTime) <= 0)
952                break;
953            else if (node == null)
954                node = new QNode(this, phase, true, true, startTime, nanos);
955            else if (!queued)
956                queued = tryEnqueue(node);
957            else if (node.doWait())
958                interrupted = true;
959        }
960        if (node != null)
961            node.thread = null;
962        if (p != phase || (p = getPhase()) != phase)
963            releaseWaiters(phase);
964        if (interrupted)
965            throw new InterruptedException();
966        if (p == phase)
967            throw new TimeoutException();
968        return p;
972      }
973  
974      // Unsafe mechanics
# Line 974 | Line 977 | public class Phaser {
977      private static final long stateOffset =
978          objectFieldOffset("state", Phaser.class);
979  
977    private final boolean casState(long cmp, long val) {
978        return UNSAFE.compareAndSwapLong(this, stateOffset, cmp, val);
979    }
980
980      private static long objectFieldOffset(String field, Class<?> klazz) {
981          try {
982              return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines