ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/Phaser.java
(Generate patch)

Comparing jsr166/src/jsr166y/Phaser.java (file contents):
Revision 1.5 by dl, Sun Sep 7 11:24:26 2008 UTC vs.
Revision 1.67 by jsr166, Fri Dec 3 21:29:34 2010 UTC

# Line 5 | Line 5
5   */
6  
7   package jsr166y;
8 < import java.util.concurrent.*;
9 < import java.util.concurrent.atomic.*;
8 >
9 > import java.util.concurrent.TimeUnit;
10 > import java.util.concurrent.TimeoutException;
11 > import java.util.concurrent.atomic.AtomicReference;
12   import java.util.concurrent.locks.LockSupport;
11 import sun.misc.Unsafe;
12 import java.lang.reflect.*;
13  
14   /**
15 < * A reusable synchronization barrier, similar in functionality to a
16 < * {@link java.util.concurrent.CyclicBarrier} and {@link
17 < * java.util.concurrent.CountDownLatch} but supporting more flexible
18 < * usage.
15 > * A reusable synchronization barrier, similar in functionality to
16 > * {@link java.util.concurrent.CyclicBarrier CyclicBarrier} and
17 > * {@link java.util.concurrent.CountDownLatch CountDownLatch}
18 > * but supporting more flexible usage.
19 > *
20 > * <p> <b>Registration.</b> Unlike the case for other barriers, the
21 > * number of parties <em>registered</em> to synchronize on a phaser
22 > * may vary over time.  Tasks may be registered at any time (using
23 > * methods {@link #register}, {@link #bulkRegister}, or forms of
24 > * constructors establishing initial numbers of parties), and
25 > * optionally deregistered upon any arrival (using {@link
26 > * #arriveAndDeregister}).  As is the case with most basic
27 > * synchronization constructs, registration and deregistration affect
28 > * only internal counts; they do not establish any further internal
29 > * bookkeeping, so tasks cannot query whether they are registered.
30 > * (However, you can introduce such bookkeeping by subclassing this
31 > * class.)
32 > *
33 > * <p> <b>Synchronization.</b> Like a {@code CyclicBarrier}, a {@code
34 > * Phaser} may be repeatedly awaited.  Method {@link
35 > * #arriveAndAwaitAdvance} has effect analogous to {@link
36 > * java.util.concurrent.CyclicBarrier#await CyclicBarrier.await}. Each
37 > * generation of a phaser has an associated phase number. The phase
38 > * number starts at zero, and advances when all parties arrive at the
39 > * phaser, wrapping around to zero after reaching {@code
40 > * Integer.MAX_VALUE}. The use of phase numbers enables independent
41 > * control of actions upon arrival at a phaser and upon awaiting
42 > * others, via two kinds of methods that may be invoked by any
43 > * registered party:
44   *
45   * <ul>
46   *
47 < * <li> The number of parties synchronizing on a phaser may vary over
48 < * time.  A task may register to be a party at any time, and may
49 < * deregister upon arriving at the barrier.  As is the case with most
50 < * basic synchronization constructs, registration and deregistration
51 < * affect only internal counts; they do not establish any further
52 < * internal bookkeeping, so tasks cannot query whether they are
53 < * registered. (However, you can introduce such bookkeeping in by
54 < * subclassing this class.)
55 < *
56 < * <li> Each generation has an associated phase value, starting at
57 < * zero, and advancing when all parties reach the barrier (wrapping
58 < * around to zero after reaching <tt>Integer.MAX_VALUE</tt>).
59 < *
60 < * <li> Like a CyclicBarrier, a Phaser may be repeatedly awaited.
61 < * Method <tt>arriveAndAwaitAdvance</tt> has effect analogous to
62 < * <tt>CyclicBarrier.await</tt>.  However, Phasers separate two
63 < * aspects of coordination, that may also be invoked independently:
64 < *
65 < * <ul>
47 > *   <li> <b>Arrival.</b> Methods {@link #arrive} and
48 > *       {@link #arriveAndDeregister} record arrival.  These methods
49 > *       do not block, but return an associated <em>arrival phase
50 > *       number</em>; that is, the phase number of the phaser to which
51 > *       the arrival applied. When the final party for a given phase
52 > *       arrives, an optional action is performed and the phase
53 > *       advances.  These actions are performed by the party
54 > *       triggering a phase advance, and are arranged by overriding
55 > *       method {@link #onAdvance(int, int)}, which also controls
56 > *       termination. Overriding this method is similar to, but more
57 > *       flexible than, providing a barrier action to a {@code
58 > *       CyclicBarrier}.
59 > *
60 > *   <li> <b>Waiting.</b> Method {@link #awaitAdvance} requires an
61 > *       argument indicating an arrival phase number, and returns when
62 > *       the phaser advances to (or is already at) a different phase.
63 > *       Unlike similar constructions using {@code CyclicBarrier},
64 > *       method {@code awaitAdvance} continues to wait even if the
65 > *       waiting thread is interrupted. Interruptible and timeout
66 > *       versions are also available, but exceptions encountered while
67 > *       tasks wait interruptibly or with timeout do not change the
68 > *       state of the phaser. If necessary, you can perform any
69 > *       associated recovery within handlers of those exceptions,
70 > *       often after invoking {@code forceTermination}.  Phasers may
71 > *       also be used by tasks executing in a {@link ForkJoinPool},
72 > *       which will ensure sufficient parallelism to execute tasks
73 > *       when others are blocked waiting for a phase to advance.
74   *
42 *   <li> Arriving at a barrier. Methods <tt>arrive</tt> and
43 *       <tt>arriveAndDeregister</tt> do not block, but return
44 *       the phase value current upon entry to the method.
45 *
46 *   <li> Awaiting others. Method <tt>awaitAdvance</tt> requires an
47 *       argument indicating the entry phase, and returns when the
48 *       barrier advances to a new phase.
75   * </ul>
76   *
77 < *
78 < * <li> Barrier actions, performed by the task triggering a phase
79 < * advance while others may be waiting, are arranged by overriding
80 < * method <tt>onAdvance</tt>, that also controls termination.
81 < * Overriding this method may be used to similar but more flexible
82 < * effect as providing a barrier action to a CyclicBarrier.
83 < *
84 < * <li> Phasers may enter a <em>termination</em> state in which all
85 < * await actions immediately return, indicating (via a negative phase
86 < * value) that execution is complete.  Termination is triggered by
87 < * executing the overridable <tt>onAdvance</tt> method that is invoked
88 < * each time the barrier is about to be tripped. When a Phaser is
89 < * controlling an action with a fixed number of iterations, it is
90 < * often convenient to override this method to cause termination when
91 < * the current phase number reaches a threshold. Method
92 < * <tt>forceTermination</tt> is also available to abruptly release
93 < * waiting threads and allow them to terminate.
94 < *
95 < * <li> Phasers may be tiered to reduce contention. Phasers with large
96 < * numbers of parties that would otherwise experience heavy
97 < * synchronization contention costs may instead be arranged in trees.
98 < * This will typically greatly increase throughput even though it
99 < * incurs somewhat greater per-operation overhead.
100 < *
101 < * <li> By default, <tt>awaitAdvance</tt> continues to wait even if
102 < * the waiting thread is interrupted. And unlike the case in
103 < * CyclicBarriers, exceptions encountered while tasks wait
104 < * interruptibly or with timeout do not change the state of the
105 < * barrier. If necessary, you can perform any associated recovery
106 < * within handlers of those exceptions, often after invoking
107 < * <tt>forceTermination</tt>.
108 < *
109 < * </ul>
77 > * <p> <b>Termination.</b> A phaser may enter a <em>termination</em>
78 > * state in which all synchronization methods immediately return
79 > * without updating phaser state or waiting for advance, and
80 > * indicating (via a negative phase value) that execution is complete.
81 > * Termination is triggered when an invocation of {@code onAdvance}
82 > * returns {@code true}. The default implementation returns {@code
83 > * true} if a deregistration has caused the number of registered
84 > * parties to become zero.  As illustrated below, when phasers control
85 > * actions with a fixed number of iterations, it is often convenient
86 > * to override this method to cause termination when the current phase
87 > * number reaches a threshold. Method {@link #forceTermination} is
88 > * also available to abruptly release waiting threads and allow them
89 > * to terminate.
90 > *
91 > * <p> <b>Tiering.</b> Phasers may be <em>tiered</em> (i.e.,
92 > * constructed in tree structures) to reduce contention. Phasers with
93 > * large numbers of parties that would otherwise experience heavy
94 > * synchronization contention costs may instead be set up so that
95 > * groups of sub-phasers share a common parent.  This may greatly
96 > * increase throughput even though it incurs greater per-operation
97 > * overhead.
98 > *
99 > * <p><b>Monitoring.</b> While synchronization methods may be invoked
100 > * only by registered parties, the current state of a phaser may be
101 > * monitored by any caller.  At any given moment there are {@link
102 > * #getRegisteredParties} parties in total, of which {@link
103 > * #getArrivedParties} have arrived at the current phase ({@link
104 > * #getPhase}).  When the remaining ({@link #getUnarrivedParties})
105 > * parties arrive, the phase advances.  The values returned by these
106 > * methods may reflect transient states and so are not in general
107 > * useful for synchronization control.  Method {@link #toString}
108 > * returns snapshots of these state queries in a form convenient for
109 > * informal monitoring.
110   *
111   * <p><b>Sample usages:</b>
112   *
113 < * <p>A Phaser may be used instead of a <tt>CountdownLatch</tt> to control
114 < * a one-shot action serving a variable number of parties. The typical
115 < * idiom is for the method setting this up to first register, then
116 < * start the actions, then deregister, as in:
117 < *
118 < * <pre>
119 < *  void runTasks(List&lt;Runnable&gt; list) {
120 < *    final Phaser phaser = new Phaser(1); // "1" to register self
121 < *    for (Runnable r : list) {
122 < *      phaser.register();
123 < *      new Thread() {
124 < *        public void run() {
125 < *          phaser.arriveAndAwaitAdvance(); // await all creation
126 < *          r.run();
127 < *          phaser.arriveAndDeregister();   // signal completion
128 < *        }
129 < *      }.start();
113 > * <p>A {@code Phaser} may be used instead of a {@code CountDownLatch}
114 > * to control a one-shot action serving a variable number of parties.
115 > * The typical idiom is for the method setting this up to first
116 > * register, then start the actions, then deregister, as in:
117 > *
118 > *  <pre> {@code
119 > * void runTasks(List<Runnable> tasks) {
120 > *   final Phaser phaser = new Phaser(1); // "1" to register self
121 > *   // create and start threads
122 > *   for (Runnable task : tasks) {
123 > *     phaser.register();
124 > *     new Thread() {
125 > *       public void run() {
126 > *         phaser.arriveAndAwaitAdvance(); // await all creation
127 > *         task.run();
128 > *       }
129 > *     }.start();
130   *   }
131 < *   phaser.arrive(); // allow threads to start
132 < *   int p = phaser.arriveAndDeregister(); // deregister self
133 < *   otherActions(); // do other things while tasks execute
134 < *   phaser.awaitAdvance(p); // wait for all tasks to arrive
109 < * }
110 < * </pre>
131 > *
132 > *   // allow threads to start and deregister self
133 > *   phaser.arriveAndDeregister();
134 > * }}</pre>
135   *
136   * <p>One way to cause a set of threads to repeatedly perform actions
137 < * for a given number of iterations is to override <tt>onAdvance</tt>:
137 > * for a given number of iterations is to override {@code onAdvance}:
138   *
139 < * <pre>
140 < *  void startTasks(List&lt;Runnable&gt; list, final int iterations) {
141 < *    final Phaser phaser = new Phaser() {
142 < *       public boolean onAdvance(int phase, int registeredParties) {
143 < *         return phase &gt;= iterations || registeredParties == 0;
139 > *  <pre> {@code
140 > * void startTasks(List<Runnable> tasks, final int iterations) {
141 > *   final Phaser phaser = new Phaser() {
142 > *     protected boolean onAdvance(int phase, int registeredParties) {
143 > *       return phase >= iterations || registeredParties == 0;
144 > *     }
145 > *   };
146 > *   phaser.register();
147 > *   for (final Runnable task : tasks) {
148 > *     phaser.register();
149 > *     new Thread() {
150 > *       public void run() {
151 > *         do {
152 > *           task.run();
153 > *           phaser.arriveAndAwaitAdvance();
154 > *         } while (!phaser.isTerminated());
155   *       }
156 < *    };
122 < *    phaser.register();
123 < *    for (Runnable r : list) {
124 < *      phaser.register();
125 < *      new Thread() {
126 < *        public void run() {
127 < *           do {
128 < *             r.run();
129 < *             phaser.arriveAndAwaitAdvance();
130 < *           } while(!phaser.isTerminated();
131 < *        }
132 < *      }.start();
156 > *     }.start();
157   *   }
158   *   phaser.arriveAndDeregister(); // deregister self, don't wait
159 < * }
160 < * </pre>
159 > * }}</pre>
160 > *
161 > * If the main task must later await termination, it
162 > * may re-register and then execute a similar loop:
163 > *  <pre> {@code
164 > *   // ...
165 > *   phaser.register();
166 > *   while (!phaser.isTerminated())
167 > *     phaser.arriveAndAwaitAdvance();}</pre>
168 > *
169 > * <p>Related constructions may be used to await particular phase numbers
170 > * in contexts where you are sure that the phase will never wrap around
171 > * {@code Integer.MAX_VALUE}. For example:
172 > *
173 > *  <pre> {@code
174 > * void awaitPhase(Phaser phaser, int phase) {
175 > *   int p = phaser.register(); // assumes caller not already registered
176 > *   while (p < phase) {
177 > *     if (phaser.isTerminated())
178 > *       // ... deal with unexpected termination
179 > *     else
180 > *       p = phaser.arriveAndAwaitAdvance();
181 > *   }
182 > *   phaser.arriveAndDeregister();
183 > * }}</pre>
184   *
138 * <p> To create a set of tasks using a tree of Phasers,
139 * you could use code of the following form, assuming a
140 * Task class with a constructor accepting a Phaser that
141 * it registers for upon construction:
142 * <pre>
143 *  void build(Task[] actions, int lo, int hi, Phaser b) {
144 *    int step = (hi - lo) / TASKS_PER_PHASER;
145 *    if (step &gt; 1) {
146 *       int i = lo;
147 *       while (i &lt; hi) {
148 *         int r = Math.min(i + step, hi);
149 *         build(actions, i, r, new Phaser(b));
150 *         i = r;
151 *       }
152 *    }
153 *    else {
154 *      for (int i = lo; i &lt; hi; ++i)
155 *        actions[i] = new Task(b);
156 *        // assumes new Task(b) performs b.register()
157 *    }
158 *  }
159 *  // .. initially called, for n tasks via
160 *  build(new Task[n], 0, n, new Phaser());
161 * </pre>
162 *
163 * The best value of <tt>TASKS_PER_PHASER</tt> depends mainly on
164 * expected barrier synchronization rates. A value as low as four may
165 * be appropriate for extremely small per-barrier task bodies (thus
166 * high rates), or up to hundreds for extremely large ones.
185   *
186 < * </pre>
186 > * <p>To create a set of {@code n} tasks using a tree of phasers, you
187 > * could use code of the following form, assuming a Task class with a
188 > * constructor accepting a {@code Phaser} that it registers with upon
189 > * construction. After invocation of {@code build(new Task[n], 0, n,
190 > * new Phaser())}, these tasks could then be started, for example by
191 > * submitting to a pool:
192 > *
193 > *  <pre> {@code
194 > * void build(Task[] tasks, int lo, int hi, Phaser ph) {
195 > *   if (hi - lo > TASKS_PER_PHASER) {
196 > *     for (int i = lo; i < hi; i += TASKS_PER_PHASER) {
197 > *       int j = Math.min(i + TASKS_PER_PHASER, hi);
198 > *       build(tasks, i, j, new Phaser(ph));
199 > *     }
200 > *   } else {
201 > *     for (int i = lo; i < hi; ++i)
202 > *       tasks[i] = new Task(ph);
203 > *       // assumes new Task(ph) performs ph.register()
204 > *   }
205 > * }}</pre>
206 > *
207 > * The best value of {@code TASKS_PER_PHASER} depends mainly on
208 > * expected synchronization rates. A value as low as four may
209 > * be appropriate for extremely small per-phase task bodies (thus
210 > * high rates), or up to hundreds for extremely large ones.
211   *
212   * <p><b>Implementation notes</b>: This implementation restricts the
213   * maximum number of parties to 65535. Attempts to register additional
214 < * parties result in IllegalStateExceptions. However, you can and
214 > * parties result in {@code IllegalStateException}. However, you can and
215   * should create tiered phasers to accommodate arbitrarily large sets
216   * of participants.
217 + *
218 + * @since 1.7
219 + * @author Doug Lea
220   */
221   public class Phaser {
222      /*
# Line 181 | Line 226 | public class Phaser {
226       */
227  
228      /**
229 <     * Barrier state representation. Conceptually, a barrier contains
230 <     * four values:
229 >     * Primary state representation, holding four fields:
230 >     *
231 >     * * unarrived -- the number of parties yet to hit barrier (bits  0-15)
232 >     * * parties -- the number of parties to wait              (bits 16-31)
233 >     * * phase -- the generation of the barrier                (bits 32-62)
234 >     * * terminated -- set if barrier is terminated            (bit  63 / sign)
235 >     *
236 >     * Except that a phaser with no registered parties is
237 >     * distinguished with the otherwise illegal state of having zero
238 >     * parties and one unarrived parties (encoded as EMPTY below).
239 >     *
240 >     * To efficiently maintain atomicity, these values are packed into
241 >     * a single (atomic) long. Good performance relies on keeping
242 >     * state decoding and encoding simple, and keeping race windows
243 >     * short.
244       *
245 <     * * parties -- the number of parties to wait (16 bits)
246 <     * * unarrived -- the number of parties yet to hit barrier (16 bits)
247 <     * * phase -- the generation of the barrier (31 bits)
248 <     * * terminated -- set if barrier is terminated (1 bit)
249 <     *
192 <     * However, to efficiently maintain atomicity, these values are
193 <     * packed into a single (atomic) long. Termination uses the sign
194 <     * bit of 32 bit representation of phase, so phase is set to -1 on
195 <     * termination. Good performace relies on keeping state decoding
196 <     * and encoding simple, and keeping race windows short.
245 >     * All state updates are performed via CAS except initial
246 >     * registration of a sub-phaser (i.e., one with a non-null
247 >     * parent).  In this (relatively rare) case, we use built-in
248 >     * synchronization to lock while first registering with its
249 >     * parent.
250       *
251 <     * Note: there are some cheats in arrive() that rely on unarrived
252 <     * being lowest 16 bits.
251 >     * The phase of a subphaser is allowed to lag that of its
252 >     * ancestors until it is actually accessed.  Method reconcileState
253 >     * is usually attempted only only when the number of unarrived
254 >     * parties appears to be zero, which indicates a potential lag in
255 >     * updating phase after the root advanced.
256       */
257      private volatile long state;
258  
259 <    private static final int ushortBits = 16;
260 <    private static final int ushortMask =  (1 << ushortBits) - 1;
261 <    private static final int phaseMask = 0x7fffffff;
259 >    private static final int  MAX_PARTIES     = 0xffff;
260 >    private static final int  MAX_PHASE       = 0x7fffffff;
261 >    private static final int  PARTIES_SHIFT   = 16;
262 >    private static final int  PHASE_SHIFT     = 32;
263 >    private static final int  UNARRIVED_MASK  = 0xffff;      // to mask ints
264 >    private static final long PARTIES_MASK    = 0xffff0000L; // to mask longs
265 >    private static final long TERMINATION_BIT = 1L << 63;
266 >
267 >    // some special values
268 >    private static final int  ONE_ARRIVAL     = 1;
269 >    private static final int  ONE_PARTY       = 1 << PARTIES_SHIFT;
270 >    private static final int  EMPTY           = 1;
271 >
272 >    // The following unpacking methods are usually manually inlined
273  
274      private static int unarrivedOf(long s) {
275 <        return (int)(s & ushortMask);
275 >        int counts = (int)s;
276 >        return (counts == EMPTY) ? 0 : counts & UNARRIVED_MASK;
277      }
278  
279      private static int partiesOf(long s) {
280 <        return (int)(s & (ushortMask << 16)) >>> 16;
280 >        int counts = (int)s;
281 >        return (counts == EMPTY) ? 0 : counts >>> PARTIES_SHIFT;
282      }
283  
284      private static int phaseOf(long s) {
285 <        return (int)(s >>> 32);
285 >        return (int) (s >>> PHASE_SHIFT);
286      }
287  
288      private static int arrivedOf(long s) {
289 <        return partiesOf(s) - unarrivedOf(s);
290 <    }
291 <
223 <    private static long stateFor(int phase, int parties, int unarrived) {
224 <        return (((long)phase) << 32) | ((parties << 16) | unarrived);
225 <    }
226 <
227 <    private static long trippedStateFor(int phase, int parties) {
228 <        return (((long)phase) << 32) | ((parties << 16) | parties);
229 <    }
230 <
231 <    private static IllegalStateException badBounds(int parties, int unarrived) {
232 <        return new IllegalStateException
233 <            ("Attempt to set " + unarrived +
234 <             " unarrived of " + parties + " parties");
289 >        int counts = (int)s;
290 >        return (counts == EMPTY) ? 0 :
291 >            (counts >>> PARTIES_SHIFT) - (counts & UNARRIVED_MASK);
292      }
293  
294      /**
# Line 240 | Line 297 | public class Phaser {
297      private final Phaser parent;
298  
299      /**
300 <     * The root of Phaser tree. Equals this if not in a tree.  Used to
244 <     * support faster state push-down.
300 >     * The root of phaser tree. Equals this if not in a tree.
301       */
302      private final Phaser root;
303  
248    // Wait queues
249
304      /**
305 <     * Heads of Treiber stacks waiting for nonFJ threads. To eliminate
306 <     * contention while releasing some threads while adding others, we
305 >     * Heads of Treiber stacks for waiting threads. To eliminate
306 >     * contention when releasing some threads while adding others, we
307       * use two of them, alternating across even and odd phases.
308 +     * Subphasers share queues with root to speed up releases.
309       */
310 <    private final AtomicReference<QNode> evenQ = new AtomicReference<QNode>();
311 <    private final AtomicReference<QNode> oddQ  = new AtomicReference<QNode>();
310 >    private final AtomicReference<QNode> evenQ;
311 >    private final AtomicReference<QNode> oddQ;
312  
313      private AtomicReference<QNode> queueFor(int phase) {
314 <        return (phase & 1) == 0? evenQ : oddQ;
314 >        return ((phase & 1) == 0) ? evenQ : oddQ;
315      }
316  
317      /**
318 <     * Returns current state, first resolving lagged propagation from
264 <     * root if necessary.
318 >     * Returns message string for bounds exceptions on arrival.
319       */
320 <    private long getReconciledState() {
321 <        return parent == null? state : reconcileState();
320 >    private String badArrive(long s) {
321 >        return "Attempted arrival of unregistered party for " +
322 >            stateToString(s);
323      }
324  
325      /**
326 <     * Recursively resolves state.
326 >     * Returns message string for bounds exceptions on registration.
327       */
328 <    private long reconcileState() {
329 <        Phaser p = parent;
330 <        long s = state;
331 <        if (p != null) {
332 <            while (unarrivedOf(s) == 0 && phaseOf(s) != phaseOf(root.state)) {
333 <                long parentState = p.getReconciledState();
334 <                int parentPhase = phaseOf(parentState);
335 <                int phase = phaseOf(s = state);
336 <                if (phase != parentPhase) {
337 <                    long next = trippedStateFor(parentPhase, partiesOf(s));
338 <                    if (casState(s, next)) {
328 >    private String badRegister(long s) {
329 >        return "Attempt to register more than " +
330 >            MAX_PARTIES + " parties for " + stateToString(s);
331 >    }
332 >
333 >    /**
334 >     * Main implementation for methods arrive and arriveAndDeregister.
335 >     * Manually tuned to speed up and minimize race windows for the
336 >     * common case of just decrementing unarrived field.
337 >     *
338 >     * @param deregister false for arrive, true for arriveAndDeregister
339 >     */
340 >    private int doArrive(boolean deregister) {
341 >        int adj = deregister ? ONE_ARRIVAL|ONE_PARTY : ONE_ARRIVAL;
342 >        long s;
343 >        int phase;
344 >        while ((phase = (int)((s = state) >>> PHASE_SHIFT)) >= 0) {
345 >            int counts = (int)s;
346 >            int unarrived = counts & UNARRIVED_MASK;
347 >            if (counts == EMPTY || unarrived == 0) {
348 >                if (reconcileState() == s)
349 >                    throw new IllegalStateException(badArrive(s));
350 >            }
351 >            else if (UNSAFE.compareAndSwapLong(this, stateOffset, s, s-=adj)) {
352 >                if (unarrived == 1) {
353 >                    long n = s & PARTIES_MASK;       // unshifted parties field
354 >                    int u = ((int)n) >>> PARTIES_SHIFT;
355 >                    Phaser par = parent;
356 >                    if (par != null) {
357 >                        par.doArrive(u == 0);
358 >                        reconcileState();
359 >                    }
360 >                    else {
361 >                        n |= (((long)((phase+1) & MAX_PHASE)) << PHASE_SHIFT);
362 >                        if (onAdvance(phase, u))
363 >                            n |= TERMINATION_BIT;
364 >                        else if (u == 0)
365 >                            n |= EMPTY;             // reset to unregistered
366 >                        else
367 >                            n |= (long)u;           // reset unarr to parties
368 >                        // assert state == s || isTerminated();
369 >                        UNSAFE.compareAndSwapLong(this, stateOffset, s, n);
370                          releaseWaiters(phase);
285                        s = next;
371                      }
372                  }
373 +                break;
374 +            }
375 +        }
376 +        return phase;
377 +    }
378 +
379 +    /**
380 +     * Implementation of register, bulkRegister
381 +     *
382 +     * @param registrations number to add to both parties and
383 +     * unarrived fields. Must be greater than zero.
384 +     */
385 +    private int doRegister(int registrations) {
386 +        // adjustment to state
387 +        long adj = ((long)registrations << PARTIES_SHIFT) | registrations;
388 +        Phaser par = parent;
389 +        int phase;
390 +        for (;;) {
391 +            long s = state;
392 +            int counts = (int)s;
393 +            int parties = counts >>> PARTIES_SHIFT;
394 +            int unarrived = counts & UNARRIVED_MASK;
395 +            if (registrations > MAX_PARTIES - parties)
396 +                throw new IllegalStateException(badRegister(s));
397 +            else if ((phase = (int)(s >>> PHASE_SHIFT)) < 0)
398 +                break;
399 +            else if (counts != EMPTY) {             // not 1st registration
400 +                if (par == null || reconcileState() == s) {
401 +                    if (unarrived == 0)             // wait out advance
402 +                        root.internalAwaitAdvance(phase, null);
403 +                    else if (UNSAFE.compareAndSwapLong(this, stateOffset,
404 +                                                       s, s + adj))
405 +                        break;
406 +                }
407 +            }
408 +            else if (par == null) {                 // 1st root registration
409 +                long next = (((long) phase) << PHASE_SHIFT) | adj;
410 +                if (UNSAFE.compareAndSwapLong(this, stateOffset, s, next))
411 +                    break;
412 +            }
413 +            else {
414 +                synchronized (this) {               // 1st sub registration
415 +                    if (state == s) {               // recheck under lock
416 +                        par.doRegister(1);
417 +                        do {                        // force current phase
418 +                            phase = (int)(root.state >>> PHASE_SHIFT);
419 +                            // assert phase < 0 || (int)state == EMPTY;
420 +                        } while (!UNSAFE.compareAndSwapLong
421 +                                 (this, stateOffset, state,
422 +                                  (((long) phase) << PHASE_SHIFT) | adj));
423 +                        break;
424 +                    }
425 +                }
426 +            }
427 +        }
428 +        return phase;
429 +    }
430 +
431 +    /**
432 +     * Resolves lagged phase propagation from root if necessary.
433 +     */
434 +    private long reconcileState() {
435 +        Phaser rt = root;
436 +        long s = state;
437 +        if (rt != this) {
438 +            int phase;
439 +            while ((phase = (int)(rt.state >>> PHASE_SHIFT)) !=
440 +                   (int)(s >>> PHASE_SHIFT)) {
441 +                // assert phase < 0 || unarrivedOf(s) == 0
442 +                long t;                             // to reread s
443 +                long p = s & PARTIES_MASK;          // unshifted parties field
444 +                long n = (((long) phase) << PHASE_SHIFT) | p;
445 +                if (phase >= 0) {
446 +                    if (p == 0L)
447 +                        n |= EMPTY;                 // reset to empty
448 +                    else
449 +                        n |= p >>> PARTIES_SHIFT;   // set unarr to parties
450 +                }
451 +                if ((t = state) == s &&
452 +                    UNSAFE.compareAndSwapLong(this, stateOffset, s, s = n))
453 +                    break;
454 +                s = t;
455              }
456          }
457          return s;
458      }
459  
460      /**
461 <     * Creates a new Phaser without any initially registered parties,
462 <     * initial phase number 0, and no parent.
461 >     * Creates a new phaser with no initially registered parties, no
462 >     * parent, and initial phase number 0. Any thread using this
463 >     * phaser will need to first register for it.
464       */
465      public Phaser() {
466 <        this(null);
466 >        this(null, 0);
467      }
468  
469      /**
470 <     * Creates a new Phaser with the given numbers of registered
471 <     * unarrived parties, initial phase number 0, and no parent.
472 <     * @param parties the number of parties required to trip barrier.
470 >     * Creates a new phaser with the given number of registered
471 >     * unarrived parties, no parent, and initial phase number 0.
472 >     *
473 >     * @param parties the number of parties required to advance to the
474 >     * next phase
475       * @throws IllegalArgumentException if parties less than zero
476 <     * or greater than the maximum number of parties supported.
476 >     * or greater than the maximum number of parties supported
477       */
478      public Phaser(int parties) {
479          this(null, parties);
480      }
481  
482      /**
483 <     * Creates a new Phaser with the given parent, without any
484 <     * initially registered parties. If parent is non-null this phaser
485 <     * is registered with the parent and its initial phase number is
316 <     * the same as that of parent phaser.
317 <     * @param parent the parent phaser.
483 >     * Equivalent to {@link #Phaser(Phaser, int) Phaser(parent, 0)}.
484 >     *
485 >     * @param parent the parent phaser
486       */
487      public Phaser(Phaser parent) {
488 <        int phase = 0;
321 <        this.parent = parent;
322 <        if (parent != null) {
323 <            this.root = parent.root;
324 <            phase = parent.register();
325 <        }
326 <        else
327 <            this.root = this;
328 <        this.state = trippedStateFor(phase, 0);
488 >        this(parent, 0);
489      }
490  
491      /**
492 <     * Creates a new Phaser with the given parent and numbers of
493 <     * registered unarrived parties. If parent is non-null this phaser
494 <     * is registered with the parent and its initial phase number is
495 <     * the same as that of parent phaser.
496 <     * @param parent the parent phaser.
497 <     * @param parties the number of parties required to trip barrier.
492 >     * Creates a new phaser with the given parent and number of
493 >     * registered unarrived parties. Registration and deregistration
494 >     * of this child phaser with its parent are managed automatically.
495 >     * If the given parent is non-null, whenever this child phaser has
496 >     * any registered parties (as established in this constructor,
497 >     * {@link #register}, or {@link #bulkRegister}), this child phaser
498 >     * is registered with its parent. Whenever the number of
499 >     * registered parties becomes zero as the result of an invocation
500 >     * of {@link #arriveAndDeregister}, this child phaser is
501 >     * deregistered from its parent.
502 >     *
503 >     * @param parent the parent phaser
504 >     * @param parties the number of parties required to advance to the
505 >     * next phase
506       * @throws IllegalArgumentException if parties less than zero
507 <     * or greater than the maximum number of parties supported.
507 >     * or greater than the maximum number of parties supported
508       */
509      public Phaser(Phaser parent, int parties) {
510 <        if (parties < 0 || parties > ushortMask)
510 >        if (parties >>> PARTIES_SHIFT != 0)
511              throw new IllegalArgumentException("Illegal number of parties");
512          int phase = 0;
513          this.parent = parent;
514          if (parent != null) {
515 <            this.root = parent.root;
516 <            phase = parent.register();
515 >            Phaser r = parent.root;
516 >            this.root = r;
517 >            this.evenQ = r.evenQ;
518 >            this.oddQ = r.oddQ;
519 >            if (parties != 0)
520 >                phase = parent.doRegister(1);
521          }
522 <        else
522 >        else {
523              this.root = this;
524 <        this.state = trippedStateFor(phase, parties);
524 >            this.evenQ = new AtomicReference<QNode>();
525 >            this.oddQ = new AtomicReference<QNode>();
526 >        }
527 >        this.state = (parties == 0) ? ((long) EMPTY) :
528 >            ((((long) phase) << PHASE_SHIFT) |
529 >             (((long) parties) << PARTIES_SHIFT) |
530 >             ((long) parties));
531      }
532  
533      /**
534 <     * Adds a new unarrived party to this phaser.
535 <     * @return the current barrier phase number upon registration
534 >     * Adds a new unarrived party to this phaser.  If an ongoing
535 >     * invocation of {@link #onAdvance} is in progress, this method
536 >     * may await its completion before returning.  If this phaser has
537 >     * a parent, and this phaser previously had no registered parties,
538 >     * this phaser is also registered with its parent.
539 >     *
540 >     * @return the arrival phase number to which this registration applied
541       * @throws IllegalStateException if attempting to register more
542 <     * than the maximum supported number of parties.
542 >     * than the maximum supported number of parties
543       */
544      public int register() {
545          return doRegister(1);
# Line 364 | Line 547 | public class Phaser {
547  
548      /**
549       * Adds the given number of new unarrived parties to this phaser.
550 <     * @param parties the number of parties required to trip barrier.
551 <     * @return the current barrier phase number upon registration
550 >     * If an ongoing invocation of {@link #onAdvance} is in progress,
551 >     * this method may await its completion before returning.  If this
552 >     * phaser has a parent, and the given number of parties is
553 >     * greater than zero, and this phaser previously had no registered
554 >     * parties, this phaser is also registered with its parent.
555 >     *
556 >     * @param parties the number of additional parties required to
557 >     * advance to the next phase
558 >     * @return the arrival phase number to which this registration applied
559       * @throws IllegalStateException if attempting to register more
560 <     * than the maximum supported number of parties.
560 >     * than the maximum supported number of parties
561 >     * @throws IllegalArgumentException if {@code parties < 0}
562       */
563      public int bulkRegister(int parties) {
564          if (parties < 0)
# Line 378 | Line 569 | public class Phaser {
569      }
570  
571      /**
572 <     * Shared code for register, bulkRegister
382 <     */
383 <    private int doRegister(int registrations) {
384 <        int phase;
385 <        for (;;) {
386 <            long s = getReconciledState();
387 <            phase = phaseOf(s);
388 <            int unarrived = unarrivedOf(s) + registrations;
389 <            int parties = partiesOf(s) + registrations;
390 <            if (phase < 0)
391 <                break;
392 <            if (parties > ushortMask || unarrived > ushortMask)
393 <                throw badBounds(parties, unarrived);
394 <            if (phase == phaseOf(root.state) &&
395 <                casState(s, stateFor(phase, parties, unarrived)))
396 <                break;
397 <        }
398 <        return phase;
399 <    }
400 <
401 <    /**
402 <     * Arrives at the barrier, but does not wait for others.  (You can
403 <     * in turn wait for others via {@link #awaitAdvance}).
572 >     * Arrives at this phaser, without waiting for others to arrive.
573       *
574 <     * @return the barrier phase number upon entry to this method, or a
575 <     * negative value if terminated;
574 >     * <p>It is a usage error for an unregistered party to invoke this
575 >     * method.  However, this error may result in an {@code
576 >     * IllegalStateException} only upon some subsequent operation on
577 >     * this phaser, if ever.
578 >     *
579 >     * @return the arrival phase number, or a negative value if terminated
580       * @throws IllegalStateException if not terminated and the number
581 <     * of unarrived parties would become negative.
581 >     * of unarrived parties would become negative
582       */
583      public int arrive() {
584 <        int phase;
412 <        for (;;) {
413 <            long s = state;
414 <            phase = phaseOf(s);
415 <            int parties = partiesOf(s);
416 <            int unarrived = unarrivedOf(s) - 1;
417 <            if (unarrived > 0) {        // Not the last arrival
418 <                if (casState(s, s - 1)) // s-1 adds one arrival
419 <                    break;
420 <            }
421 <            else if (unarrived == 0) {  // the last arrival
422 <                Phaser par = parent;
423 <                if (par == null) {      // directly trip
424 <                    if (casState
425 <                        (s,
426 <                         trippedStateFor(onAdvance(phase, parties)? -1 :
427 <                                         ((phase + 1) & phaseMask), parties))) {
428 <                        releaseWaiters(phase);
429 <                        break;
430 <                    }
431 <                }
432 <                else {                  // cascade to parent
433 <                    if (casState(s, s - 1)) { // zeroes unarrived
434 <                        par.arrive();
435 <                        reconcileState();
436 <                        break;
437 <                    }
438 <                }
439 <            }
440 <            else if (phase < 0) // Don't throw exception if terminated
441 <                break;
442 <            else if (phase != phaseOf(root.state)) // or if unreconciled
443 <                reconcileState();
444 <            else
445 <                throw badBounds(parties, unarrived);
446 <        }
447 <        return phase;
584 >        return doArrive(false);
585      }
586  
587      /**
588 <     * Arrives at the barrier, and deregisters from it, without
589 <     * waiting for others. Deregistration reduces number of parties
590 <     * required to trip the barrier in future phases.  If this phaser
588 >     * Arrives at this phaser and deregisters from it without waiting
589 >     * for others to arrive. Deregistration reduces the number of
590 >     * parties required to advance in future phases.  If this phaser
591       * has a parent, and deregistration causes this phaser to have
592       * zero parties, this phaser is also deregistered from its parent.
593       *
594 <     * @return the current barrier phase number upon entry to
595 <     * this method, or a negative value if terminated;
594 >     * <p>It is a usage error for an unregistered party to invoke this
595 >     * method.  However, this error may result in an {@code
596 >     * IllegalStateException} only upon some subsequent operation on
597 >     * this phaser, if ever.
598 >     *
599 >     * @return the arrival phase number, or a negative value if terminated
600       * @throws IllegalStateException if not terminated and the number
601 <     * of registered or unarrived parties would become negative.
601 >     * of registered or unarrived parties would become negative
602       */
603      public int arriveAndDeregister() {
604 <        // similar code to arrive, but too different to merge
464 <        Phaser par = parent;
465 <        int phase;
466 <        for (;;) {
467 <            long s = state;
468 <            phase = phaseOf(s);
469 <            int parties = partiesOf(s) - 1;
470 <            int unarrived = unarrivedOf(s) - 1;
471 <            if (parties >= 0) {
472 <                if (unarrived > 0 || (unarrived == 0 && par != null)) {
473 <                    if (casState
474 <                        (s,
475 <                         stateFor(phase, parties, unarrived))) {
476 <                        if (unarrived == 0) {
477 <                            par.arriveAndDeregister();
478 <                            reconcileState();
479 <                        }
480 <                        break;
481 <                    }
482 <                    continue;
483 <                }
484 <                if (unarrived == 0) {
485 <                    if (casState
486 <                        (s,
487 <                         trippedStateFor(onAdvance(phase, parties)? -1 :
488 <                                         ((phase + 1) & phaseMask), parties))) {
489 <                        releaseWaiters(phase);
490 <                        break;
491 <                    }
492 <                    continue;
493 <                }
494 <                if (phase < 0)
495 <                    break;
496 <                if (par != null && phase != phaseOf(root.state)) {
497 <                    reconcileState();
498 <                    continue;
499 <                }
500 <            }
501 <            throw badBounds(parties, unarrived);
502 <        }
503 <        return phase;
604 >        return doArrive(true);
605      }
606  
607      /**
608 <     * Arrives at the barrier and awaits others. Equivalent in effect
609 <     * to <tt>awaitAdvance(arrive())</tt>.  If you instead need to
610 <     * await with interruption of timeout, and/or deregister upon
611 <     * arrival, you can arrange them using analogous constructions.
612 <     * @return the phase on entry to this method
608 >     * Arrives at this phaser and awaits others. Equivalent in effect
609 >     * to {@code awaitAdvance(arrive())}.  If you need to await with
610 >     * interruption or timeout, you can arrange this with an analogous
611 >     * construction using one of the other forms of the {@code
612 >     * awaitAdvance} method.  If instead you need to deregister upon
613 >     * arrival, use {@code awaitAdvance(arriveAndDeregister())}.
614 >     *
615 >     * <p>It is a usage error for an unregistered party to invoke this
616 >     * method.  However, this error may result in an {@code
617 >     * IllegalStateException} only upon some subsequent operation on
618 >     * this phaser, if ever.
619 >     *
620 >     * @return the arrival phase number, or a negative number if terminated
621       * @throws IllegalStateException if not terminated and the number
622 <     * of unarrived parties would become negative.
622 >     * of unarrived parties would become negative
623       */
624      public int arriveAndAwaitAdvance() {
625 <        return awaitAdvance(arrive());
625 >        return awaitAdvance(doArrive(false));
626      }
627  
628      /**
629 <     * Awaits the phase of the barrier to advance from the given
630 <     * value, or returns immediately if argument is negative or this
631 <     * barrier is terminated.
632 <     * @param phase the phase on entry to this method
633 <     * @return the phase on exit from this method
629 >     * Awaits the phase of this phaser to advance from the given phase
630 >     * value, returning immediately if the current phase is not equal
631 >     * to the given phase value or this phaser is terminated.
632 >     *
633 >     * @param phase an arrival phase number, or negative value if
634 >     * terminated; this argument is normally the value returned by a
635 >     * previous call to {@code arrive} or {@code arriveAndDeregister}.
636 >     * @return the next arrival phase number, or a negative value
637 >     * if terminated or argument is negative
638       */
639      public int awaitAdvance(int phase) {
640 +        Phaser rt;
641 +        int p = (int)(state >>> PHASE_SHIFT);
642          if (phase < 0)
643              return phase;
644 <        long s = getReconciledState();
645 <        int p = phaseOf(s);
646 <        if (p != phase)
647 <            return p;
648 <        if (unarrivedOf(s) == 0)
649 <            parent.awaitAdvance(phase);
535 <        // Fall here even if parent waited, to reconcile and help release
536 <        return untimedWait(phase);
644 >        if (p == phase) {
645 >            if ((p = (int)((rt = root).state >>> PHASE_SHIFT)) == phase)
646 >                return rt.internalAwaitAdvance(phase, null);
647 >            reconcileState();
648 >        }
649 >        return p;
650      }
651  
652      /**
653 <     * Awaits the phase of the barrier to advance from the given
654 <     * value, or returns immediately if argumet is negative or this
655 <     * barrier is terminated, or throws InterruptedException if
656 <     * interrupted while waiting.
657 <     * @param phase the phase on entry to this method
658 <     * @return the phase on exit from this method
653 >     * Awaits the phase of this phaser to advance from the given phase
654 >     * value, throwing {@code InterruptedException} if interrupted
655 >     * while waiting, or returning immediately if the current phase is
656 >     * not equal to the given phase value or this phaser is
657 >     * terminated.
658 >     *
659 >     * @param phase an arrival phase number, or negative value if
660 >     * terminated; this argument is normally the value returned by a
661 >     * previous call to {@code arrive} or {@code arriveAndDeregister}.
662 >     * @return the next arrival phase number, or a negative value
663 >     * if terminated or argument is negative
664       * @throws InterruptedException if thread interrupted while waiting
665       */
666 <    public int awaitAdvanceInterruptibly(int phase) throws InterruptedException {
666 >    public int awaitAdvanceInterruptibly(int phase)
667 >        throws InterruptedException {
668 >        Phaser rt;
669 >        int p = (int)(state >>> PHASE_SHIFT);
670          if (phase < 0)
671              return phase;
672 <        long s = getReconciledState();
673 <        int p = phaseOf(s);
674 <        if (p != phase)
675 <            return p;
676 <        if (unarrivedOf(s) != 0)
677 <            parent.awaitAdvanceInterruptibly(phase);
678 <        return interruptibleWait(phase);
672 >        if (p == phase) {
673 >            if ((p = (int)((rt = root).state >>> PHASE_SHIFT)) == phase) {
674 >                QNode node = new QNode(this, phase, true, false, 0L);
675 >                p = rt.internalAwaitAdvance(phase, node);
676 >                if (node.wasInterrupted)
677 >                    throw new InterruptedException();
678 >            }
679 >            else
680 >                reconcileState();
681 >        }
682 >        return p;
683      }
684  
685      /**
686 <     * Awaits the phase of the barrier to advance from the given value
687 <     * or the given timeout elapses, or returns immediately if
688 <     * argument is negative or this barrier is terminated.
689 <     * @param phase the phase on entry to this method
690 <     * @return the phase on exit from this method
686 >     * Awaits the phase of this phaser to advance from the given phase
687 >     * value or the given timeout to elapse, throwing {@code
688 >     * InterruptedException} if interrupted while waiting, or
689 >     * returning immediately if the current phase is not equal to the
690 >     * given phase value or this phaser is terminated.
691 >     *
692 >     * @param phase an arrival phase number, or negative value if
693 >     * terminated; this argument is normally the value returned by a
694 >     * previous call to {@code arrive} or {@code arriveAndDeregister}.
695 >     * @param timeout how long to wait before giving up, in units of
696 >     *        {@code unit}
697 >     * @param unit a {@code TimeUnit} determining how to interpret the
698 >     *        {@code timeout} parameter
699 >     * @return the next arrival phase number, or a negative value
700 >     * if terminated or argument is negative
701       * @throws InterruptedException if thread interrupted while waiting
702       * @throws TimeoutException if timed out while waiting
703       */
704 <    public int awaitAdvanceInterruptibly(int phase, long timeout, TimeUnit unit)
704 >    public int awaitAdvanceInterruptibly(int phase,
705 >                                         long timeout, TimeUnit unit)
706          throws InterruptedException, TimeoutException {
707 +        long nanos = unit.toNanos(timeout);
708 +        Phaser rt;
709 +        int p = (int)(state >>> PHASE_SHIFT);
710          if (phase < 0)
711              return phase;
712 <        long s = getReconciledState();
713 <        int p = phaseOf(s);
714 <        if (p != phase)
715 <            return p;
716 <        if (unarrivedOf(s) == 0)
717 <            parent.awaitAdvanceInterruptibly(phase, timeout, unit);
718 <        return timedWait(phase, unit.toNanos(timeout));
712 >        if (p == phase) {
713 >            if ((p = (int)((rt = root).state >>> PHASE_SHIFT)) == phase) {
714 >                QNode node = new QNode(this, phase, true, true, nanos);
715 >                p = rt.internalAwaitAdvance(phase, node);
716 >                if (node.wasInterrupted)
717 >                    throw new InterruptedException();
718 >                else if (p == phase)
719 >                    throw new TimeoutException();
720 >            }
721 >            else
722 >                reconcileState();
723 >        }
724 >        return p;
725      }
726  
727      /**
728 <     * Forces this barrier to enter termination state. Counts of
729 <     * arrived and registered parties are unaffected. If this phaser
730 <     * has a parent, it too is terminated. This method may be useful
731 <     * for coordinating recovery after one or more tasks encounter
728 >     * Forces this phaser to enter termination state.  Counts of
729 >     * registered parties are unaffected.  If this phaser is a member
730 >     * of a tiered set of phasers, then all of the phasers in the set
731 >     * are terminated.  If this phaser is already terminated, this
732 >     * method has no effect.  This method may be useful for
733 >     * coordinating recovery after one or more tasks encounter
734       * unexpected exceptions.
735       */
736      public void forceTermination() {
737 <        for (;;) {
738 <            long s = getReconciledState();
739 <            int phase = phaseOf(s);
740 <            int parties = partiesOf(s);
741 <            int unarrived = unarrivedOf(s);
742 <            if (phase < 0 ||
743 <                casState(s, stateFor(-1, parties, unarrived))) {
597 <                releaseWaiters(0);
737 >        // Only need to change root state
738 >        final Phaser root = this.root;
739 >        long s;
740 >        while ((s = root.state) >= 0) {
741 >            long next = (s & ~(long)(MAX_PARTIES)) | TERMINATION_BIT;
742 >            if (UNSAFE.compareAndSwapLong(root, stateOffset, s, next)) {
743 >                releaseWaiters(0); // signal all threads
744                  releaseWaiters(1);
599                if (parent != null)
600                    parent.forceTermination();
745                  return;
746              }
747          }
# Line 605 | Line 749 | public class Phaser {
749  
750      /**
751       * Returns the current phase number. The maximum phase number is
752 <     * <tt>Integer.MAX_VALUE</tt>, after which it restarts at
753 <     * zero. Upon termination, the phase number is negative.
752 >     * {@code Integer.MAX_VALUE}, after which it restarts at
753 >     * zero. Upon termination, the phase number is negative,
754 >     * in which case the prevailing phase prior to termination
755 >     * may be obtained via {@code getPhase() + Integer.MIN_VALUE}.
756 >     *
757       * @return the phase number, or a negative value if terminated
758       */
759      public final int getPhase() {
760 <        return phaseOf(getReconciledState());
760 >        return (int)(root.state >>> PHASE_SHIFT);
761      }
762  
763      /**
764 <     * Returns true if the current phase number equals the given phase.
765 <     * @param phase the phase
619 <     * @return true if the current phase number equals the given phase.
620 <     */
621 <    public final boolean hasPhase(int phase) {
622 <        return phaseOf(getReconciledState()) == phase;
623 <    }
624 <
625 <    /**
626 <     * Returns the number of parties registered at this barrier.
764 >     * Returns the number of parties registered at this phaser.
765 >     *
766       * @return the number of parties
767       */
768      public int getRegisteredParties() {
# Line 631 | Line 770 | public class Phaser {
770      }
771  
772      /**
773 <     * Returns the number of parties that have arrived at the current
774 <     * phase of this barrier.
773 >     * Returns the number of registered parties that have arrived at
774 >     * the current phase of this phaser.
775 >     *
776       * @return the number of arrived parties
777       */
778      public int getArrivedParties() {
779 <        return arrivedOf(state);
779 >        return arrivedOf(reconcileState());
780      }
781  
782      /**
783       * Returns the number of registered parties that have not yet
784 <     * arrived at the current phase of this barrier.
784 >     * arrived at the current phase of this phaser.
785 >     *
786       * @return the number of unarrived parties
787       */
788      public int getUnarrivedParties() {
789 <        return unarrivedOf(state);
789 >        return unarrivedOf(reconcileState());
790      }
791  
792      /**
793 <     * Returns the parent of this phaser, or null if none.
794 <     * @return the parent of this phaser, or null if none.
793 >     * Returns the parent of this phaser, or {@code null} if none.
794 >     *
795 >     * @return the parent of this phaser, or {@code null} if none
796       */
797      public Phaser getParent() {
798          return parent;
# Line 659 | Line 801 | public class Phaser {
801      /**
802       * Returns the root ancestor of this phaser, which is the same as
803       * this phaser if it has no parent.
804 <     * @return the root ancestor of this phaser.
804 >     *
805 >     * @return the root ancestor of this phaser
806       */
807      public Phaser getRoot() {
808          return root;
809      }
810  
811      /**
812 <     * Returns true if this barrier has been terminated.
813 <     * @return true if this barrier has been terminated
812 >     * Returns {@code true} if this phaser has been terminated.
813 >     *
814 >     * @return {@code true} if this phaser has been terminated
815       */
816      public boolean isTerminated() {
817 <        return getPhase() < 0;
817 >        return root.state < 0L;
818      }
819  
820      /**
821 <     * Overridable method to perform an action upon phase advance, and
822 <     * to control termination. This method is invoked whenever the
823 <     * barrier is tripped (and thus all other waiting parties are
824 <     * dormant). If it returns true, then, rather than advance the
825 <     * phase number, this barrier will be set to a final termination
826 <     * state, and subsequent calls to <tt>isTerminated</tt> will
827 <     * return true.
828 <     *
829 <     * <p> The default version returns true when the number of
830 <     * registered parties is zero. Normally, overrides that arrange
831 <     * termination for other reasons should also preserve this
832 <     * property.
833 <     *
834 <     * <p> You may override this method to perform an action with side
835 <     * effects visible to participating tasks, but it is in general
836 <     * only sensible to do so in designs where all parties register
837 <     * before any arrive, and all <tt>awaitAdvance</tt> at each phase.
838 <     * Otherwise, you cannot ensure lack of interference. In
839 <     * particular, this method may be invoked more than once per
840 <     * transition if other parties successfully register while the
841 <     * invocation of this method is in progress, thus postponing the
842 <     * transition until those parties also arrive, re-triggering this
843 <     * method.
844 <     *
845 <     * @param phase the phase number on entering the barrier
846 <     * @param registeredParties the current number of registered
847 <     * parties.
848 <     * @return true if this barrier should terminate
821 >     * Overridable method to perform an action upon impending phase
822 >     * advance, and to control termination. This method is invoked
823 >     * upon arrival of the party advancing this phaser (when all other
824 >     * waiting parties are dormant).  If this method returns {@code
825 >     * true}, this phaser will be set to a final termination state
826 >     * upon advance, and subsequent calls to {@link #isTerminated}
827 >     * will return true. Any (unchecked) Exception or Error thrown by
828 >     * an invocation of this method is propagated to the party
829 >     * attempting to advance this phaser, in which case no advance
830 >     * occurs.
831 >     *
832 >     * <p>The arguments to this method provide the state of the phaser
833 >     * prevailing for the current transition.  The effects of invoking
834 >     * arrival, registration, and waiting methods on this phaser from
835 >     * within {@code onAdvance} are unspecified and should not be
836 >     * relied on.
837 >     *
838 >     * <p>If this phaser is a member of a tiered set of phasers, then
839 >     * {@code onAdvance} is invoked only for its root phaser on each
840 >     * advance.
841 >     *
842 >     * <p>To support the most common use cases, the default
843 >     * implementation of this method returns {@code true} when the
844 >     * number of registered parties has become zero as the result of a
845 >     * party invoking {@code arriveAndDeregister}.  You can disable
846 >     * this behavior, thus enabling continuation upon future
847 >     * registrations, by overriding this method to always return
848 >     * {@code false}:
849 >     *
850 >     * <pre> {@code
851 >     * Phaser phaser = new Phaser() {
852 >     *   protected boolean onAdvance(int phase, int parties) { return false; }
853 >     * }}</pre>
854 >     *
855 >     * @param phase the current phase number on entry to this method,
856 >     * before this phaser is advanced
857 >     * @param registeredParties the current number of registered parties
858 >     * @return {@code true} if this phaser should terminate
859       */
860      protected boolean onAdvance(int phase, int registeredParties) {
861 <        return registeredParties <= 0;
861 >        return registeredParties == 0;
862      }
863  
864      /**
865       * Returns a string identifying this phaser, as well as its
866       * state.  The state, in brackets, includes the String {@code
867 <     * "phase ="} followed by the phase number, {@code "parties ="}
867 >     * "phase = "} followed by the phase number, {@code "parties = "}
868       * followed by the number of registered parties, and {@code
869 <     * "arrived ="} followed by the number of arrived parties
869 >     * "arrived = "} followed by the number of arrived parties.
870       *
871 <     * @return a string identifying this barrier, as well as its state
871 >     * @return a string identifying this phaser, as well as its state
872       */
873      public String toString() {
874 <        long s = getReconciledState();
721 <        return super.toString() + "[phase = " + phaseOf(s) + " parties = " + partiesOf(s) + " arrived = " + arrivedOf(s) + "]";
874 >        return stateToString(reconcileState());
875      }
876  
724    // methods for waiting
725
726    /** The number of CPUs, for spin control */
727    static final int NCPUS = Runtime.getRuntime().availableProcessors();
728
877      /**
878 <     * The number of times to spin before blocking in timed waits.
731 <     * The value is empirically derived.
878 >     * Implementation of toString and string-based error messages
879       */
880 <    static final int maxTimedSpins = (NCPUS < 2)? 0 : 32;
880 >    private String stateToString(long s) {
881 >        return super.toString() +
882 >            "[phase = " + phaseOf(s) +
883 >            " parties = " + partiesOf(s) +
884 >            " arrived = " + arrivedOf(s) + "]";
885 >    }
886  
887 <    /**
736 <     * The number of times to spin before blocking in untimed waits.
737 <     * This is greater than timed value because untimed waits spin
738 <     * faster since they don't need to check times on each spin.
739 <     */
740 <    static final int maxUntimedSpins = maxTimedSpins * 32;
887 >    // Waiting mechanics
888  
889      /**
890 <     * The number of nanoseconds for which it is faster to spin
744 <     * rather than to use timed park. A rough estimate suffices.
890 >     * Removes and signals threads from queue for phase.
891       */
892 <    static final long spinForTimeoutThreshold = 1000L;
893 <
894 <    /**
895 <     * Wait nodes for Treiber stack representing wait queue for non-FJ
896 <     * tasks.
897 <     */
898 <    static final class QNode {
899 <        QNode next;
900 <        volatile Thread thread; // nulled to cancel wait
901 <        QNode() {
902 <            thread = Thread.currentThread();
757 <        }
758 <        void signal() {
759 <            Thread t = thread;
760 <            if (t != null) {
761 <                thread = null;
892 >    private void releaseWaiters(int phase) {
893 >        QNode q;   // first element of queue
894 >        int p;     // its phase
895 >        Thread t;  // its thread
896 >        //        assert phase != phaseOf(root.state);
897 >        AtomicReference<QNode> head = (phase & 1) == 0 ? evenQ : oddQ;
898 >        while ((q = head.get()) != null &&
899 >               q.phase != (int)(root.state >>> PHASE_SHIFT)) {
900 >            if (head.compareAndSet(q, q.next) &&
901 >                (t = q.thread) != null) {
902 >                q.thread = null;
903                  LockSupport.unpark(t);
904              }
905          }
906      }
907  
908 +    /** The number of CPUs, for spin control */
909 +    private static final int NCPU = Runtime.getRuntime().availableProcessors();
910 +
911      /**
912 <     * Removes and signals waiting threads from wait queue
912 >     * The number of times to spin before blocking while waiting for
913 >     * advance, per arrival while waiting. On multiprocessors, fully
914 >     * blocking and waking up a large number of threads all at once is
915 >     * usually a very slow process, so we use rechargeable spins to
916 >     * avoid it when threads regularly arrive: When a thread in
917 >     * internalAwaitAdvance notices another arrival before blocking,
918 >     * and there appear to be enough CPUs available, it spins
919 >     * SPINS_PER_ARRIVAL more times before blocking. The value trades
920 >     * off good-citizenship vs big unnecessary slowdowns.
921       */
922 <    private void releaseWaiters(int phase) {
771 <        AtomicReference<QNode> head = queueFor(phase);
772 <        QNode q;
773 <        while ((q = head.get()) != null) {
774 <            if (head.compareAndSet(q, q.next))
775 <                q.signal();
776 <        }
777 <    }
922 >    static final int SPINS_PER_ARRIVAL = (NCPU < 2) ? 1 : 1 << 8;
923  
924      /**
925 <     * Enqueues node and waits unless aborted or signalled.
926 <     */
927 <    private int untimedWait(int phase) {
928 <        int spins = maxUntimedSpins;
929 <        QNode node = null;
930 <        boolean interrupted = false;
931 <        boolean queued = false;
925 >     * Possibly blocks and waits for phase to advance unless aborted.
926 >     * Call only from root node.
927 >     *
928 >     * @param phase current phase
929 >     * @param node if non-null, the wait node to track interrupt and timeout;
930 >     * if null, denotes noninterruptible wait
931 >     * @return current phase
932 >     */
933 >    private int internalAwaitAdvance(int phase, QNode node) {
934 >        releaseWaiters(phase-1);          // ensure old queue clean
935 >        boolean queued = false;           // true when node is enqueued
936 >        int lastUnarrived = 0;            // to increase spins upon change
937 >        int spins = SPINS_PER_ARRIVAL;
938 >        long s;
939          int p;
940 <        while ((p = getPhase()) == phase) {
941 <            interrupted = Thread.interrupted();
942 <            if (node != null) {
943 <                if (!queued) {
944 <                    AtomicReference<QNode> head = queueFor(phase);
945 <                    queued = head.compareAndSet(node.next = head.get(), node);
940 >        while ((p = (int)((s = state) >>> PHASE_SHIFT)) == phase) {
941 >            if (node == null) {           // spinning in noninterruptible mode
942 >                int unarrived = (int)s & UNARRIVED_MASK;
943 >                if (unarrived != lastUnarrived &&
944 >                    (lastUnarrived = unarrived) < NCPU)
945 >                    spins += SPINS_PER_ARRIVAL;
946 >                boolean interrupted = Thread.interrupted();
947 >                if (interrupted || --spins < 0) { // need node to record intr
948 >                    node = new QNode(this, phase, false, false, 0L);
949 >                    node.wasInterrupted = interrupted;
950                  }
795                else if (node.thread != null)
796                    LockSupport.park(this);
951              }
952 <            else if (spins <= 0)
799 <                node = new QNode();
800 <            else
801 <                --spins;
802 <        }
803 <        if (node != null)
804 <            node.thread = null;
805 <        if (interrupted)
806 <            Thread.currentThread().interrupt();
807 <        releaseWaiters(phase);
808 <        return p;
809 <    }
810 <
811 <    /**
812 <     * Messier interruptible version
813 <     */
814 <    private int interruptibleWait(int phase) throws InterruptedException {
815 <        int spins = maxUntimedSpins;
816 <        QNode node = null;
817 <        boolean queued = false;
818 <        boolean interrupted = false;
819 <        int p;
820 <        while ((p = getPhase()) == phase) {
821 <            if (interrupted = Thread.interrupted())
952 >            else if (node.isReleasable()) // done or aborted
953                  break;
954 <            if (node != null) {
955 <                if (!queued) {
956 <                    AtomicReference<QNode> head = queueFor(phase);
957 <                    queued = head.compareAndSet(node.next = head.get(), node);
954 >            else if (!queued) {           // push onto queue
955 >                AtomicReference<QNode> head = (phase & 1) == 0 ? evenQ : oddQ;
956 >                QNode q = node.next = head.get();
957 >                if ((q == null || q.phase == phase) &&
958 >                    (int)(state >>> PHASE_SHIFT) == phase) // avoid stale enq
959 >                    queued = head.compareAndSet(q, node);
960 >            }
961 >            else {
962 >                try {
963 >                    ForkJoinPool.managedBlock(node);
964 >                } catch (InterruptedException ie) {
965 >                    node.wasInterrupted = true;
966                  }
828                else if (node.thread != null)
829                    LockSupport.park(this);
967              }
831            else if (spins <= 0)
832                node = new QNode();
833            else
834                --spins;
968          }
969 <        if (node != null)
970 <            node.thread = null;
971 <        if (interrupted)
972 <            throw new InterruptedException();
969 >
970 >        if (node != null) {
971 >            if (node.thread != null)
972 >                node.thread = null;       // avoid need for unpark()
973 >            if (node.wasInterrupted && !node.interruptible)
974 >                Thread.currentThread().interrupt();
975 >            if (p == phase && (p = (int)(state >>> PHASE_SHIFT)) == phase)
976 >                return p;                 // recheck abort
977 >        }
978          releaseWaiters(phase);
979          return p;
980      }
981  
982      /**
983 <     * Even messier timeout version.
983 >     * Wait nodes for Treiber stack representing wait queue
984       */
985 <    private int timedWait(int phase, long nanos)
986 <        throws InterruptedException, TimeoutException {
987 <        int p;
988 <        if ((p = getPhase()) == phase) {
989 <            long lastTime = System.nanoTime();
990 <            int spins = maxTimedSpins;
991 <            QNode node = null;
992 <            boolean queued = false;
993 <            boolean interrupted = false;
994 <            while ((p = getPhase()) == phase) {
995 <                if (interrupted = Thread.interrupted())
996 <                    break;
997 <                long now = System.nanoTime();
998 <                if ((nanos -= now - lastTime) <= 0)
999 <                    break;
1000 <                lastTime = now;
1001 <                if (node != null) {
1002 <                    if (!queued) {
1003 <                        AtomicReference<QNode> head = queueFor(phase);
1004 <                        queued = head.compareAndSet(node.next = head.get(), node);
1005 <                    }
1006 <                    else if (node.thread != null &&
1007 <                             nanos > spinForTimeoutThreshold) {
1008 <                        LockSupport.parkNanos(this, nanos);
1009 <                    }
985 >    static final class QNode implements ForkJoinPool.ManagedBlocker {
986 >        final Phaser phaser;
987 >        final int phase;
988 >        final boolean interruptible;
989 >        final boolean timed;
990 >        boolean wasInterrupted;
991 >        long nanos;
992 >        long lastTime;
993 >        volatile Thread thread; // nulled to cancel wait
994 >        QNode next;
995 >
996 >        QNode(Phaser phaser, int phase, boolean interruptible,
997 >              boolean timed, long nanos) {
998 >            this.phaser = phaser;
999 >            this.phase = phase;
1000 >            this.interruptible = interruptible;
1001 >            this.nanos = nanos;
1002 >            this.timed = timed;
1003 >            this.lastTime = timed ? System.nanoTime() : 0L;
1004 >            thread = Thread.currentThread();
1005 >        }
1006 >
1007 >        public boolean isReleasable() {
1008 >            if (thread == null)
1009 >                return true;
1010 >            if (phaser.getPhase() != phase) {
1011 >                thread = null;
1012 >                return true;
1013 >            }
1014 >            if (Thread.interrupted())
1015 >                wasInterrupted = true;
1016 >            if (wasInterrupted && interruptible) {
1017 >                thread = null;
1018 >                return true;
1019 >            }
1020 >            if (timed) {
1021 >                if (nanos > 0L) {
1022 >                    long now = System.nanoTime();
1023 >                    nanos -= now - lastTime;
1024 >                    lastTime = now;
1025                  }
1026 <                else if (spins <= 0)
1027 <                    node = new QNode();
1028 <                else
1029 <                    --spins;
1030 <            }
1031 <            if (node != null)
1032 <                node.thread = null;
1033 <            if (interrupted)
1034 <                throw new InterruptedException();
1035 <            if (p == phase && (p = getPhase()) == phase)
1036 <                throw new TimeoutException();
1026 >                if (nanos <= 0L) {
1027 >                    thread = null;
1028 >                    return true;
1029 >                }
1030 >            }
1031 >            return false;
1032 >        }
1033 >
1034 >        public boolean block() {
1035 >            if (isReleasable())
1036 >                return true;
1037 >            else if (!timed)
1038 >                LockSupport.park(this);
1039 >            else if (nanos > 0)
1040 >                LockSupport.parkNanos(this, nanos);
1041 >            return isReleasable();
1042          }
885        releaseWaiters(phase);
886        return p;
1043      }
1044  
1045 <    // Temporary Unsafe mechanics for preliminary release
1045 >    // Unsafe mechanics
1046  
1047 <    static final Unsafe _unsafe;
1048 <    static final long stateOffset;
1047 >    private static final sun.misc.Unsafe UNSAFE = getUnsafe();
1048 >    private static final long stateOffset =
1049 >        objectFieldOffset("state", Phaser.class);
1050  
1051 <    static {
1051 >    private static long objectFieldOffset(String field, Class<?> klazz) {
1052          try {
1053 <            if (Phaser.class.getClassLoader() != null) {
1054 <                Field f = Unsafe.class.getDeclaredField("theUnsafe");
1055 <                f.setAccessible(true);
1056 <                _unsafe = (Unsafe)f.get(null);
1057 <            }
1058 <            else
902 <                _unsafe = Unsafe.getUnsafe();
903 <            stateOffset = _unsafe.objectFieldOffset
904 <                (Phaser.class.getDeclaredField("state"));
905 <        } catch (Exception e) {
906 <            throw new RuntimeException("Could not initialize intrinsics", e);
1053 >            return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
1054 >        } catch (NoSuchFieldException e) {
1055 >            // Convert Exception to corresponding Error
1056 >            NoSuchFieldError error = new NoSuchFieldError(field);
1057 >            error.initCause(e);
1058 >            throw error;
1059          }
1060      }
1061  
1062 <    final boolean casState(long cmp, long val) {
1063 <        return _unsafe.compareAndSwapLong(this, stateOffset, cmp, val);
1062 >    /**
1063 >     * Returns a sun.misc.Unsafe.  Suitable for use in a 3rd party package.
1064 >     * Replace with a simple call to Unsafe.getUnsafe when integrating
1065 >     * into a jdk.
1066 >     *
1067 >     * @return a sun.misc.Unsafe
1068 >     */
1069 >    private static sun.misc.Unsafe getUnsafe() {
1070 >        try {
1071 >            return sun.misc.Unsafe.getUnsafe();
1072 >        } catch (SecurityException se) {
1073 >            try {
1074 >                return java.security.AccessController.doPrivileged
1075 >                    (new java.security
1076 >                     .PrivilegedExceptionAction<sun.misc.Unsafe>() {
1077 >                        public sun.misc.Unsafe run() throws Exception {
1078 >                            java.lang.reflect.Field f = sun.misc
1079 >                                .Unsafe.class.getDeclaredField("theUnsafe");
1080 >                            f.setAccessible(true);
1081 >                            return (sun.misc.Unsafe) f.get(null);
1082 >                        }});
1083 >            } catch (java.security.PrivilegedActionException e) {
1084 >                throw new RuntimeException("Could not initialize intrinsics",
1085 >                                           e.getCause());
1086 >            }
1087 >        }
1088      }
1089   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines