ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/Phaser.java
(Generate patch)

Comparing jsr166/src/jsr166y/Phaser.java (file contents):
Revision 1.4 by dl, Sat Sep 6 13:19:17 2008 UTC vs.
Revision 1.50 by dl, Sat Nov 6 16:12:10 2010 UTC

# Line 5 | Line 5
5   */
6  
7   package jsr166y;
8 +
9   import java.util.concurrent.*;
10 < import java.util.concurrent.atomic.*;
10 > import java.util.concurrent.atomic.AtomicReference;
11   import java.util.concurrent.locks.LockSupport;
11 import sun.misc.Unsafe;
12 import java.lang.reflect.*;
12  
13   /**
14 < * A reusable synchronization barrier, similar in functionality to a
15 < * {@link java.util.concurrent.CyclicBarrier} and {@link
16 < * java.util.concurrent.CountDownLatch} but supporting more flexible
17 < * usage.
14 > * A reusable synchronization barrier, similar in functionality to
15 > * {@link java.util.concurrent.CyclicBarrier CyclicBarrier} and
16 > * {@link java.util.concurrent.CountDownLatch CountDownLatch}
17 > * but supporting more flexible usage.
18 > *
19 > * <p> <b>Registration.</b> Unlike the case for other barriers, the
20 > * number of parties <em>registered</em> to synchronize on a phaser
21 > * may vary over time.  Tasks may be registered at any time (using
22 > * methods {@link #register}, {@link #bulkRegister}, or forms of
23 > * constructors establishing initial numbers of parties), and
24 > * optionally deregistered upon any arrival (using {@link
25 > * #arriveAndDeregister}).  As is the case with most basic
26 > * synchronization constructs, registration and deregistration affect
27 > * only internal counts; they do not establish any further internal
28 > * bookkeeping, so tasks cannot query whether they are registered.
29 > * (However, you can introduce such bookkeeping by subclassing this
30 > * class.)
31 > *
32 > * <p> <b>Synchronization.</b> Like a {@code CyclicBarrier}, a {@code
33 > * Phaser} may be repeatedly awaited.  Method {@link
34 > * #arriveAndAwaitAdvance} has effect analogous to {@link
35 > * java.util.concurrent.CyclicBarrier#await CyclicBarrier.await}. Each
36 > * generation of a {@code Phaser} has an associated phase number. The
37 > * phase number starts at zero, and advances when all parties arrive
38 > * at the barrier, wrapping around to zero after reaching {@code
39 > * Integer.MAX_VALUE}. The use of phase numbers enables independent
40 > * control of actions upon arrival at a barrier and upon awaiting
41 > * others, via two kinds of methods that may be invoked by any
42 > * registered party:
43   *
44   * <ul>
45   *
46 < * <li> The number of parties synchronizing on a phaser may vary over
47 < * time.  A task may register to be a party at any time, and may
48 < * deregister upon arriving at the barrier.  As is the case with most
49 < * basic synchronization constructs, registration and deregistration
50 < * affect only internal counts; they do not establish any further
51 < * internal bookkeeping, so tasks cannot query whether they are
52 < * registered. (However, you can introduce such bookkeeping in by
53 < * subclassing this class.)
54 < *
55 < * <li> Each generation has an associated phase value, starting at
56 < * zero, and advancing when all parties reach the barrier (wrapping
57 < * around to zero after reaching <tt>Integer.MAX_VALUE</tt>).
58 < *
59 < * <li> Like a CyclicBarrier, a Phaser may be repeatedly awaited.
60 < * Method <tt>arriveAndAwaitAdvance</tt> has effect analogous to
61 < * <tt>CyclicBarrier.await</tt>.  However, Phasers separate two
62 < * aspects of coordination, that may also be invoked independently:
63 < *
64 < * <ul>
46 > *   <li> <b>Arrival.</b> Methods {@link #arrive} and
47 > *       {@link #arriveAndDeregister} record arrival at a
48 > *       barrier. These methods do not block, but return an associated
49 > *       <em>arrival phase number</em>; that is, the phase number of
50 > *       the barrier to which the arrival applied. When the final
51 > *       party for a given phase arrives, an optional barrier action
52 > *       is performed and the phase advances.  Barrier actions,
53 > *       performed by the party triggering a phase advance, are
54 > *       arranged by overriding method {@link #onAdvance(int, int)},
55 > *       which also controls termination. Overriding this method is
56 > *       similar to, but more flexible than, providing a barrier
57 > *       action to a {@code CyclicBarrier}.
58 > *
59 > *   <li> <b>Waiting.</b> Method {@link #awaitAdvance} requires an
60 > *       argument indicating an arrival phase number, and returns when
61 > *       the barrier advances to (or is already at) a different phase.
62 > *       Unlike similar constructions using {@code CyclicBarrier},
63 > *       method {@code awaitAdvance} continues to wait even if the
64 > *       waiting thread is interrupted. Interruptible and timeout
65 > *       versions are also available, but exceptions encountered while
66 > *       tasks wait interruptibly or with timeout do not change the
67 > *       state of the barrier. If necessary, you can perform any
68 > *       associated recovery within handlers of those exceptions,
69 > *       often after invoking {@code forceTermination}.  Phasers may
70 > *       also be used by tasks executing in a {@link ForkJoinPool},
71 > *       which will ensure sufficient parallelism to execute tasks
72 > *       when others are blocked waiting for a phase to advance.
73   *
42 *   <li> Arriving at a barrier. Methods <tt>arrive</tt> and
43 *       <tt>arriveAndDeregister</tt> do not block, but return
44 *       the phase value current upon entry to the method.
45 *
46 *   <li> Awaiting others. Method <tt>awaitAdvance</tt> requires an
47 *       argument indicating the entry phase, and returns when the
48 *       barrier advances to a new phase.
74   * </ul>
75   *
76 < *
77 < * <li> Barrier actions, performed by the task triggering a phase
78 < * advance while others may be waiting, are arranged by overriding
79 < * method <tt>onAdvance</tt>, that also controls termination.
80 < * Overriding this method may be used to similar but more flecible
81 < * effect as providing a barrier action to a CyclicBarrier.
82 < *
58 < * <li> Phasers may enter a <em>termination</em> state in which all
59 < * await actions immediately return, indicating (via a negative phase
60 < * value) that execution is complete.  Termination is triggered by
61 < * executing the overridable <tt>onAdvance</tt> method that is invoked
62 < * each time the barrier is about to be tripped. When a Phaser is
63 < * controlling an action with a fixed number of iterations, it is
76 > * <p> <b>Termination.</b> A {@code Phaser} may enter a
77 > * <em>termination</em> state in which all synchronization methods
78 > * immediately return without updating phaser state or waiting for
79 > * advance, and indicating (via a negative phase value) that execution
80 > * is complete.  Termination is triggered when an invocation of {@code
81 > * onAdvance} returns {@code true}.  As illustrated below, when
82 > * phasers control actions with a fixed number of iterations, it is
83   * often convenient to override this method to cause termination when
84 < * the current phase number reaches a threshold. Method
85 < * <tt>forceTermination</tt> is also available to abruptly release
86 < * waiting threads and allow them to terminate.
84 > * the current phase number reaches a threshold. Method {@link
85 > * #forceTermination} is also available to abruptly release waiting
86 > * threads and allow them to terminate.
87   *
88 < * <li> Phasers may be tiered to reduce contention. Phasers with large
88 > * <p> <b>Tiering.</b> Phasers may be <em>tiered</em> (i.e., arranged
89 > * in tree structures) to reduce contention. Phasers with large
90   * numbers of parties that would otherwise experience heavy
91 < * synchronization contention costs may instead be arranged in trees.
92 < * This will typically greatly increase throughput even though it
93 < * incurs somewhat greater per-operation overhead.
94 < *
95 < * <li> By default, <tt>awaitAdvance</tt> continues to wait even if
96 < * the waiting thread is interrupted. And unlike the case in
97 < * CyclicBarriers, exceptions encountered while tasks wait
98 < * interruptibly or with timeout do not change the state of the
99 < * barrier. If necessary, you can perform any associated recovery
100 < * within handlers of those exceptions, often after invoking
101 < * <tt>forceTermination</tt>.
102 < *
103 < * </ul>
91 > * synchronization contention costs may instead be set up so that
92 > * groups of sub-phasers share a common parent.  This may greatly
93 > * increase throughput even though it incurs greater per-operation
94 > * overhead.
95 > *
96 > * <p><b>Monitoring.</b> While synchronization methods may be invoked
97 > * only by registered parties, the current state of a phaser may be
98 > * monitored by any caller.  At any given moment there are {@link
99 > * #getRegisteredParties} parties in total, of which {@link
100 > * #getArrivedParties} have arrived at the current phase ({@link
101 > * #getPhase}).  When the remaining ({@link #getUnarrivedParties})
102 > * parties arrive, the phase advances.  The values returned by these
103 > * methods may reflect transient states and so are not in general
104 > * useful for synchronization control.  Method {@link #toString}
105 > * returns snapshots of these state queries in a form convenient for
106 > * informal monitoring.
107   *
108   * <p><b>Sample usages:</b>
109   *
110 < * <p>A Phaser may be used instead of a <tt>CountdownLatch</tt> to control
111 < * a one-shot action serving a variable number of parties. The typical
112 < * idiom is for the method setting this up to first register, then
113 < * start the actions, then deregister, as in:
114 < *
115 < * <pre>
116 < *  void runTasks(List&lt;Runnable&gt; list) {
117 < *    final Phaser phaser = new Phaser(1); // "1" to register self
118 < *    for (Runnable r : list) {
119 < *      phaser.register();
120 < *      new Thread() {
121 < *        public void run() {
122 < *          phaser.arriveAndAwaitAdvance(); // await all creation
123 < *          r.run();
124 < *          phaser.arriveAndDeregister();   // signal completion
125 < *        }
126 < *      }.start();
110 > * <p>A {@code Phaser} may be used instead of a {@code CountDownLatch}
111 > * to control a one-shot action serving a variable number of parties.
112 > * The typical idiom is for the method setting this up to first
113 > * register, then start the actions, then deregister, as in:
114 > *
115 > *  <pre> {@code
116 > * void runTasks(List<Runnable> tasks) {
117 > *   final Phaser phaser = new Phaser(1); // "1" to register self
118 > *   // create and start threads
119 > *   for (Runnable task : tasks) {
120 > *     phaser.register();
121 > *     new Thread() {
122 > *       public void run() {
123 > *         phaser.arriveAndAwaitAdvance(); // await all creation
124 > *         task.run();
125 > *       }
126 > *     }.start();
127   *   }
128 < *   phaser.arrive(); // allow threads to start
129 < *   int p = phaser.arriveAndDeregister(); // deregister self
130 < *   otherActions(); // do other things while tasks execute
131 < *   phaser.awaitAdvance(p); // wait for all tasks to arrive
109 < * }
110 < * </pre>
128 > *
129 > *   // allow threads to start and deregister self
130 > *   phaser.arriveAndDeregister();
131 > * }}</pre>
132   *
133   * <p>One way to cause a set of threads to repeatedly perform actions
134 < * for a given number of iterations is to override <tt>onAdvance</tt>:
134 > * for a given number of iterations is to override {@code onAdvance}:
135   *
136 < * <pre>
137 < *  void startTasks(List&lt;Runnable&gt; list, final int iterations) {
138 < *    final Phaser phaser = new Phaser() {
139 < *       public boolean onAdvance(int phase, int registeredParties) {
140 < *         return phase &gt;= iterations || registeredParties == 0;
136 > *  <pre> {@code
137 > * void startTasks(List<Runnable> tasks, final int iterations) {
138 > *   final Phaser phaser = new Phaser() {
139 > *     protected boolean onAdvance(int phase, int registeredParties) {
140 > *       return phase >= iterations || registeredParties == 0;
141 > *     }
142 > *   };
143 > *   phaser.register();
144 > *   for (final Runnable task : tasks) {
145 > *     phaser.register();
146 > *     new Thread() {
147 > *       public void run() {
148 > *         do {
149 > *           task.run();
150 > *           phaser.arriveAndAwaitAdvance();
151 > *         } while (!phaser.isTerminated());
152   *       }
153 < *    };
122 < *    phaser.register();
123 < *    for (Runnable r : list) {
124 < *      phaser.register();
125 < *      new Thread() {
126 < *        public void run() {
127 < *           do {
128 < *             r.run();
129 < *             phaser.arriveAndAwaitAdvance();
130 < *           } while(!phaser.isTerminated();
131 < *        }
132 < *      }.start();
153 > *     }.start();
154   *   }
155   *   phaser.arriveAndDeregister(); // deregister self, don't wait
156 < * }
157 < * </pre>
156 > * }}</pre>
157 > *
158 > * If the main task must later await termination, it
159 > * may re-register and then execute a similar loop:
160 > *  <pre> {@code
161 > *   // ...
162 > *   phaser.register();
163 > *   while (!phaser.isTerminated())
164 > *     phaser.arriveAndAwaitAdvance();}</pre>
165 > *
166 > * <p>Related constructions may be used to await particular phase numbers
167 > * in contexts where you are sure that the phase will never wrap around
168 > * {@code Integer.MAX_VALUE}. For example:
169 > *
170 > *  <pre> {@code
171 > * void awaitPhase(Phaser phaser, int phase) {
172 > *   int p = phaser.register(); // assumes caller not already registered
173 > *   while (p < phase) {
174 > *     if (phaser.isTerminated())
175 > *       // ... deal with unexpected termination
176 > *     else
177 > *       p = phaser.arriveAndAwaitAdvance();
178 > *   }
179 > *   phaser.arriveAndDeregister();
180 > * }}</pre>
181   *
182 < * <p> To create a set of tasks using a tree of Phasers,
182 > *
183 > * <p>To create a set of tasks using a tree of phasers,
184   * you could use code of the following form, assuming a
185 < * Task class with a constructor accepting a Phaser that
186 < * it registers for upon construction:
142 < * <pre>
143 < *  void build(Task[] actions, int lo, int hi, Phaser b) {
144 < *    int step = (hi - lo) / TASKS_PER_PHASER;
145 < *    if (step &gt; 1) {
146 < *       int i = lo;
147 < *       while (i &lt; hi) {
148 < *         int r = Math.min(i + step, hi);
149 < *         build(actions, i, r, new Phaser(b));
150 < *         i = r;
151 < *       }
152 < *    }
153 < *    else {
154 < *      for (int i = lo; i &lt; hi; ++i)
155 < *        actions[i] = new Task(b);
156 < *        // assumes new Task(b) performs b.register()
157 < *    }
158 < *  }
159 < *  // .. initially called, for n tasks via
160 < *  build(new Task[n], 0, n, new Phaser());
161 < * </pre>
185 > * Task class with a constructor accepting a phaser that
186 > * it registers with upon construction:
187   *
188 < * The best value of <tt>TASKS_PER_PHASER</tt> depends mainly on
188 > *  <pre> {@code
189 > * void build(Task[] actions, int lo, int hi, Phaser ph) {
190 > *   if (hi - lo > TASKS_PER_PHASER) {
191 > *     for (int i = lo; i < hi; i += TASKS_PER_PHASER) {
192 > *       int j = Math.min(i + TASKS_PER_PHASER, hi);
193 > *       build(actions, i, j, new Phaser(ph));
194 > *     }
195 > *   } else {
196 > *     for (int i = lo; i < hi; ++i)
197 > *       actions[i] = new Task(ph);
198 > *       // assumes new Task(ph) performs ph.register()
199 > *   }
200 > * }
201 > * // .. initially called, for n tasks via
202 > * build(new Task[n], 0, n, new Phaser());}</pre>
203 > *
204 > * The best value of {@code TASKS_PER_PHASER} depends mainly on
205   * expected barrier synchronization rates. A value as low as four may
206   * be appropriate for extremely small per-barrier task bodies (thus
207   * high rates), or up to hundreds for extremely large ones.
208   *
168 * </pre>
169 *
209   * <p><b>Implementation notes</b>: This implementation restricts the
210   * maximum number of parties to 65535. Attempts to register additional
211 < * parties result in IllegalStateExceptions. However, you can and
211 > * parties result in {@code IllegalStateException}. However, you can and
212   * should create tiered phasers to accommodate arbitrarily large sets
213   * of participants.
214 + *
215 + * @since 1.7
216 + * @author Doug Lea
217   */
218   public class Phaser {
219      /*
# Line 192 | Line 234 | public class Phaser {
234       * However, to efficiently maintain atomicity, these values are
235       * packed into a single (atomic) long. Termination uses the sign
236       * bit of 32 bit representation of phase, so phase is set to -1 on
237 <     * termination. Good performace relies on keeping state decoding
237 >     * termination. Good performance relies on keeping state decoding
238       * and encoding simple, and keeping race windows short.
239       *
240       * Note: there are some cheats in arrive() that rely on unarrived
241 <     * being lowest 16 bits.
241 >     * count being lowest 16 bits.
242       */
243      private volatile long state;
244  
245 <    private static final int ushortBits = 16;
246 <    private static final int ushortMask =  (1 << ushortBits) - 1;
205 <    private static final int phaseMask = 0x7fffffff;
245 >    private static final int ushortMask = 0xffff;
246 >    private static final int phaseMask  = 0x7fffffff;
247  
248      private static int unarrivedOf(long s) {
249 <        return (int)(s & ushortMask);
249 >        return (int) (s & ushortMask);
250      }
251  
252      private static int partiesOf(long s) {
253 <        return (int)(s & (ushortMask << 16)) >>> 16;
253 >        return ((int) s) >>> 16;
254      }
255  
256      private static int phaseOf(long s) {
257 <        return (int)(s >>> 32);
257 >        return (int) (s >>> 32);
258      }
259  
260      private static int arrivedOf(long s) {
# Line 221 | Line 262 | public class Phaser {
262      }
263  
264      private static long stateFor(int phase, int parties, int unarrived) {
265 <        return (((long)phase) << 32) | ((parties << 16) | unarrived);
265 >        return ((((long) phase) << 32) | (((long) parties) << 16) |
266 >                (long) unarrived);
267      }
268  
269      private static long trippedStateFor(int phase, int parties) {
270 <        return (((long)phase) << 32) | ((parties << 16) | parties);
270 >        long lp = (long) parties;
271 >        return (((long) phase) << 32) | (lp << 16) | lp;
272      }
273  
274 <    private static IllegalStateException badBounds(int parties, int unarrived) {
275 <        return new IllegalStateException
276 <            ("Attempt to set " + unarrived +
277 <             " unarrived of " + parties + " parties");
274 >    /**
275 >     * Returns message string for bad bounds exceptions.
276 >     */
277 >    private static String badBounds(int parties, int unarrived) {
278 >        return ("Attempt to set " + unarrived +
279 >                " unarrived of " + parties + " parties");
280      }
281  
282      /**
# Line 240 | Line 285 | public class Phaser {
285      private final Phaser parent;
286  
287      /**
288 <     * The root of Phaser tree. Equals this if not in a tree.  Used to
288 >     * The root of phaser tree. Equals this if not in a tree.  Used to
289       * support faster state push-down.
290       */
291      private final Phaser root;
# Line 248 | Line 293 | public class Phaser {
293      // Wait queues
294  
295      /**
296 <     * Heads of Treiber stacks waiting for nonFJ threads. To eliminate
297 <     * contention while releasing some threads while adding others, we
296 >     * Heads of Treiber stacks for waiting threads. To eliminate
297 >     * contention when releasing some threads while adding others, we
298       * use two of them, alternating across even and odd phases.
299 +     * Subphasers share queues with root to speed up releases.
300       */
301 <    private final AtomicReference<QNode> evenQ = new AtomicReference<QNode>();
302 <    private final AtomicReference<QNode> oddQ  = new AtomicReference<QNode>();
301 >    private final AtomicReference<QNode> evenQ;
302 >    private final AtomicReference<QNode> oddQ;
303  
304      private AtomicReference<QNode> queueFor(int phase) {
305 <        return (phase & 1) == 0? evenQ : oddQ;
305 >        return ((phase & 1) == 0) ? evenQ : oddQ;
306      }
307  
308      /**
# Line 264 | Line 310 | public class Phaser {
310       * root if necessary.
311       */
312      private long getReconciledState() {
313 <        return parent == null? state : reconcileState();
313 >        return (parent == null) ? state : reconcileState();
314      }
315  
316      /**
317       * Recursively resolves state.
318       */
319      private long reconcileState() {
320 <        Phaser p = parent;
320 >        Phaser par = parent;
321          long s = state;
322 <        if (p != null) {
323 <            while (unarrivedOf(s) == 0 && phaseOf(s) != phaseOf(root.state)) {
324 <                long parentState = p.getReconciledState();
325 <                int parentPhase = phaseOf(parentState);
326 <                int phase = phaseOf(s = state);
327 <                if (phase != parentPhase) {
322 >        if (par != null) {
323 >            int phase, rootPhase;
324 >            while ((phase = phaseOf(s)) >= 0 &&
325 >                   (rootPhase = phaseOf(root.state)) != phase &&
326 >                   (rootPhase < 0 || unarrivedOf(s) == 0)) {
327 >                int parentPhase = phaseOf(par.getReconciledState());
328 >                if (parentPhase != phase) {
329                      long next = trippedStateFor(parentPhase, partiesOf(s));
330 <                    if (casState(s, next)) {
331 <                        releaseWaiters(phase);
285 <                        s = next;
286 <                    }
330 >                    if (state == s)
331 >                        UNSAFE.compareAndSwapLong(this, stateOffset, s, next);
332                  }
333 +                s = state;
334              }
335          }
336          return s;
337      }
338  
339      /**
340 <     * Creates a new Phaser without any initially registered parties,
341 <     * initial phase number 0, and no parent.
340 >     * Creates a new phaser without any initially registered parties,
341 >     * initial phase number 0, and no parent. Any thread using this
342 >     * phaser will need to first register for it.
343       */
344      public Phaser() {
345 <        this(null);
345 >        this(null, 0);
346      }
347  
348      /**
349 <     * Creates a new Phaser with the given numbers of registered
349 >     * Creates a new phaser with the given number of registered
350       * unarrived parties, initial phase number 0, and no parent.
351 <     * @param parties the number of parties required to trip barrier.
351 >     *
352 >     * @param parties the number of parties required to trip barrier
353       * @throws IllegalArgumentException if parties less than zero
354 <     * or greater than the maximum number of parties supported.
354 >     * or greater than the maximum number of parties supported
355       */
356      public Phaser(int parties) {
357          this(null, parties);
358      }
359  
360      /**
361 <     * Creates a new Phaser with the given parent, without any
361 >     * Creates a new phaser with the given parent, without any
362       * initially registered parties. If parent is non-null this phaser
363       * is registered with the parent and its initial phase number is
364       * the same as that of parent phaser.
365 <     * @param parent the parent phaser.
365 >     *
366 >     * @param parent the parent phaser
367       */
368      public Phaser(Phaser parent) {
369 <        int phase = 0;
321 <        this.parent = parent;
322 <        if (parent != null) {
323 <            this.root = parent.root;
324 <            phase = parent.register();
325 <        }
326 <        else
327 <            this.root = this;
328 <        this.state = trippedStateFor(phase, 0);
369 >        this(parent, 0);
370      }
371  
372      /**
373 <     * Creates a new Phaser with the given parent and numbers of
374 <     * registered unarrived parties. If parent is non-null this phaser
373 >     * Creates a new phaser with the given parent and number of
374 >     * registered unarrived parties. If parent is non-null, this phaser
375       * is registered with the parent and its initial phase number is
376       * the same as that of parent phaser.
377 <     * @param parent the parent phaser.
378 <     * @param parties the number of parties required to trip barrier.
377 >     *
378 >     * @param parent the parent phaser
379 >     * @param parties the number of parties required to trip barrier
380       * @throws IllegalArgumentException if parties less than zero
381 <     * or greater than the maximum number of parties supported.
381 >     * or greater than the maximum number of parties supported
382       */
383      public Phaser(Phaser parent, int parties) {
384          if (parties < 0 || parties > ushortMask)
385              throw new IllegalArgumentException("Illegal number of parties");
386 <        int phase = 0;
386 >        int phase;
387          this.parent = parent;
388          if (parent != null) {
389 <            this.root = parent.root;
389 >            Phaser r = parent.root;
390 >            this.root = r;
391 >            this.evenQ = r.evenQ;
392 >            this.oddQ = r.oddQ;
393              phase = parent.register();
394          }
395 <        else
395 >        else {
396              this.root = this;
397 +            this.evenQ = new AtomicReference<QNode>();
398 +            this.oddQ = new AtomicReference<QNode>();
399 +            phase = 0;
400 +        }
401          this.state = trippedStateFor(phase, parties);
402      }
403  
404      /**
405       * Adds a new unarrived party to this phaser.
406 <     * @return the current barrier phase number upon registration
406 >     * If an ongoing invocation of {@link #onAdvance} is in progress,
407 >     * this method may wait until its completion before registering.
408 >     *
409 >     * @return the arrival phase number to which this registration applied
410       * @throws IllegalStateException if attempting to register more
411 <     * than the maximum supported number of parties.
411 >     * than the maximum supported number of parties
412       */
413      public int register() {
414          return doRegister(1);
# Line 364 | Line 416 | public class Phaser {
416  
417      /**
418       * Adds the given number of new unarrived parties to this phaser.
419 <     * @param parties the number of parties required to trip barrier.
420 <     * @return the current barrier phase number upon registration
419 >     * If an ongoing invocation of {@link #onAdvance} is in progress,
420 >     * this method may wait until its completion before registering.
421 >     *
422 >     * @param parties the number of additional parties required to trip barrier
423 >     * @return the arrival phase number to which this registration applied
424       * @throws IllegalStateException if attempting to register more
425 <     * than the maximum supported number of parties.
425 >     * than the maximum supported number of parties
426 >     * @throws IllegalArgumentException if {@code parties < 0}
427       */
428      public int bulkRegister(int parties) {
429          if (parties < 0)
# Line 381 | Line 437 | public class Phaser {
437       * Shared code for register, bulkRegister
438       */
439      private int doRegister(int registrations) {
440 +        Phaser par = parent;
441 +        long s;
442          int phase;
443 <        for (;;) {
444 <            long s = getReconciledState();
445 <            phase = phaseOf(s);
446 <            int unarrived = unarrivedOf(s) + registrations;
447 <            int parties = partiesOf(s) + registrations;
448 <            if (phase < 0)
449 <                break;
450 <            if (parties > ushortMask || unarrived > ushortMask)
451 <                throw badBounds(parties, unarrived);
452 <            if (phase == phaseOf(root.state) &&
453 <                casState(s, stateFor(phase, parties, unarrived)))
454 <                break;
443 >        while ((phase = phaseOf(s = par==null? state:reconcileState())) >= 0) {
444 >            int p = partiesOf(s);
445 >            int u = unarrivedOf(s);
446 >            int unarrived = u + registrations;
447 >            int parties = p + registrations;
448 >            if (u == 0 && p != 0)  // if tripped, wait for advance
449 >                untimedWait(phase);
450 >            else if (parties > ushortMask)
451 >                throw new IllegalStateException(badBounds(parties, unarrived));
452 >            else if (par == null || phaseOf(root.state) == phase) {
453 >                long next = stateFor(phase, parties, unarrived);
454 >                if (UNSAFE.compareAndSwapLong(this, stateOffset, s, next))
455 >                    break;
456 >            }
457          }
458          return phase;
459      }
460  
461      /**
462       * Arrives at the barrier, but does not wait for others.  (You can
463 <     * in turn wait for others via {@link #awaitAdvance}).
463 >     * in turn wait for others via {@link #awaitAdvance}).  It is an
464 >     * unenforced usage error for an unregistered party to invoke this
465 >     * method.
466       *
467 <     * @return the barrier phase number upon entry to this method, or a
406 <     * negative value if terminated;
467 >     * @return the arrival phase number, or a negative value if terminated
468       * @throws IllegalStateException if not terminated and the number
469 <     * of unarrived parties would become negative.
469 >     * of unarrived parties would become negative
470       */
471      public int arrive() {
472 +        Phaser par = parent;
473 +        long s;
474          int phase;
475 <        for (;;) {
413 <            long s = state;
414 <            phase = phaseOf(s);
475 >        while ((phase = phaseOf(s = par==null? state:reconcileState())) >= 0) {
476              int parties = partiesOf(s);
477              int unarrived = unarrivedOf(s) - 1;
478 <            if (unarrived > 0) {        // Not the last arrival
479 <                if (casState(s, s - 1)) // s-1 adds one arrival
480 <                    break;
478 >            if (unarrived > 0) {                // Not the last arrival
479 >                if (UNSAFE.compareAndSwapLong(this, stateOffset, s, s - 1))
480 >                    break;                      // s-1 adds one arrival
481              }
482 <            else if (unarrived == 0) {  // the last arrival
483 <                Phaser par = parent;
484 <                if (par == null) {      // directly trip
485 <                    if (casState
486 <                        (s,
487 <                         trippedStateFor(onAdvance(phase, parties)? -1 :
488 <                                         ((phase + 1) & phaseMask), parties))) {
489 <                        releaseWaiters(phase);
490 <                        break;
430 <                    }
431 <                }
432 <                else {                  // cascade to parent
433 <                    if (casState(s, s - 1)) { // zeroes unarrived
434 <                        par.arrive();
435 <                        reconcileState();
436 <                        break;
437 <                    }
482 >            else if (unarrived < 0)
483 >                throw new IllegalStateException(badBounds(parties, unarrived));
484 >            else if (par == null) {             // directly trip
485 >                long next = trippedStateFor(onAdvance(phase, parties) ? -1 :
486 >                                            ((phase + 1) & phaseMask),
487 >                                            parties);
488 >                if (UNSAFE.compareAndSwapLong(this, stateOffset, s, next)) {
489 >                    releaseWaiters(phase);
490 >                    break;
491                  }
492              }
493 <            else if (phase < 0) // Don't throw exception if terminated
494 <                break;
495 <            else if (phase != phaseOf(root.state)) // or if unreconciled
493 >            else if (phaseOf(root.state) == phase &&
494 >                     UNSAFE.compareAndSwapLong(this, stateOffset, s, s - 1)) {
495 >                par.arrive();                   // cascade to parent
496                  reconcileState();
497 <            else
498 <                throw badBounds(parties, unarrived);
497 >                break;
498 >            }
499          }
500          return phase;
501      }
502  
503      /**
504 <     * Arrives at the barrier, and deregisters from it, without
505 <     * waiting for others. Deregistration reduces number of parties
504 >     * Arrives at the barrier and deregisters from it without waiting
505 >     * for others. Deregistration reduces the number of parties
506       * required to trip the barrier in future phases.  If this phaser
507       * has a parent, and deregistration causes this phaser to have
508 <     * zero parties, this phaser is also deregistered from its parent.
508 >     * zero parties, this phaser also arrives at and is deregistered
509 >     * from its parent.  It is an unenforced usage error for an
510 >     * unregistered party to invoke this method.
511       *
512 <     * @return the current barrier phase number upon entry to
458 <     * this method, or a negative value if terminated;
512 >     * @return the arrival phase number, or a negative value if terminated
513       * @throws IllegalStateException if not terminated and the number
514 <     * of registered or unarrived parties would become negative.
514 >     * of registered or unarrived parties would become negative
515       */
516      public int arriveAndDeregister() {
517 <        // similar code to arrive, but too different to merge
517 >        // similar to arrive, but too different to merge
518          Phaser par = parent;
519 +        long s;
520          int phase;
521 <        for (;;) {
467 <            long s = state;
468 <            phase = phaseOf(s);
521 >        while ((phase = phaseOf(s = par==null? state:reconcileState())) >= 0) {
522              int parties = partiesOf(s) - 1;
523              int unarrived = unarrivedOf(s) - 1;
524 <            if (parties >= 0) {
525 <                if (unarrived > 0 || (unarrived == 0 && par != null)) {
526 <                    if (casState
474 <                        (s,
475 <                         stateFor(phase, parties, unarrived))) {
476 <                        if (unarrived == 0) {
477 <                            par.arriveAndDeregister();
478 <                            reconcileState();
479 <                        }
480 <                        break;
481 <                    }
482 <                    continue;
483 <                }
484 <                if (unarrived == 0) {
485 <                    if (casState
486 <                        (s,
487 <                         trippedStateFor(onAdvance(phase, parties)? -1 :
488 <                                         ((phase + 1) & phaseMask), parties))) {
489 <                        releaseWaiters(phase);
490 <                        break;
491 <                    }
492 <                    continue;
493 <                }
494 <                if (phase < 0)
524 >            if (unarrived > 0) {
525 >                long next = stateFor(phase, parties, unarrived);
526 >                if (UNSAFE.compareAndSwapLong(this, stateOffset, s, next))
527                      break;
528 <                if (par != null && phase != phaseOf(root.state)) {
528 >            }
529 >            else if (unarrived < 0)
530 >                throw new IllegalStateException(badBounds(parties, unarrived));
531 >            else if (par == null) {
532 >                long next = trippedStateFor(onAdvance(phase, parties)? -1:
533 >                                            (phase + 1) & phaseMask,
534 >                                            parties);
535 >                if (UNSAFE.compareAndSwapLong(this, stateOffset, s, next)) {
536 >                    releaseWaiters(phase);
537 >                    break;
538 >                }
539 >            }
540 >            else if (phaseOf(root.state) == phase) {
541 >                long next = stateFor(phase, parties, 0);
542 >                if (UNSAFE.compareAndSwapLong(this, stateOffset, s, next)) {
543 >                    if (parties == 0)
544 >                        par.arriveAndDeregister();
545 >                    else
546 >                        par.arrive();
547                      reconcileState();
548 <                    continue;
548 >                    break;
549                  }
550              }
501            throw badBounds(parties, unarrived);
551          }
552          return phase;
553      }
554  
555      /**
556       * Arrives at the barrier and awaits others. Equivalent in effect
557 <     * to <tt>awaitAdvance(arrive())</tt>.  If you instead need to
558 <     * await with interruption of timeout, and/or deregister upon
559 <     * arrival, you can arrange them using analogous constructions.
560 <     * @return the phase on entry to this method
557 >     * to {@code awaitAdvance(arrive())}.  If you need to await with
558 >     * interruption or timeout, you can arrange this with an analogous
559 >     * construction using one of the other forms of the {@code
560 >     * awaitAdvance} method.  If instead you need to deregister upon
561 >     * arrival, use {@link #arriveAndDeregister}. It is an unenforced
562 >     * usage error for an unregistered party to invoke this method.
563 >     *
564 >     * @return the arrival phase number, or a negative number if terminated
565       * @throws IllegalStateException if not terminated and the number
566 <     * of unarrived parties would become negative.
566 >     * of unarrived parties would become negative
567       */
568      public int arriveAndAwaitAdvance() {
569          return awaitAdvance(arrive());
570      }
571  
572      /**
573 <     * Awaits the phase of the barrier to advance from the given
574 <     * value, or returns immediately if argument is negative or this
575 <     * barrier is terminated.
576 <     * @param phase the phase on entry to this method
577 <     * @return the phase on exit from this method
573 >     * Awaits the phase of the barrier to advance from the given phase
574 >     * value, returning immediately if the current phase of the
575 >     * barrier is not equal to the given phase value or this barrier
576 >     * is terminated.
577 >     *
578 >     * @param phase an arrival phase number, or negative value if
579 >     * terminated; this argument is normally the value returned by a
580 >     * previous call to {@code arrive} or its variants
581 >     * @return the next arrival phase number, or a negative value
582 >     * if terminated or argument is negative
583       */
584      public int awaitAdvance(int phase) {
585          if (phase < 0)
586              return phase;
587 <        long s = getReconciledState();
530 <        int p = phaseOf(s);
587 >        int p = getPhase();
588          if (p != phase)
589              return p;
533        if (unarrivedOf(s) == 0)
534            parent.awaitAdvance(phase);
535        // Fall here even if parent waited, to reconcile and help release
590          return untimedWait(phase);
591      }
592  
593      /**
594 <     * Awaits the phase of the barrier to advance from the given
595 <     * value, or returns immediately if argumet is negative or this
596 <     * barrier is terminated, or throws InterruptedException if
597 <     * interrupted while waiting.
598 <     * @param phase the phase on entry to this method
599 <     * @return the phase on exit from this method
594 >     * Awaits the phase of the barrier to advance from the given phase
595 >     * value, throwing {@code InterruptedException} if interrupted
596 >     * while waiting, or returning immediately if the current phase of
597 >     * the barrier is not equal to the given phase value or this
598 >     * barrier is terminated.
599 >     *
600 >     * @param phase an arrival phase number, or negative value if
601 >     * terminated; this argument is normally the value returned by a
602 >     * previous call to {@code arrive} or its variants
603 >     * @return the next arrival phase number, or a negative value
604 >     * if terminated or argument is negative
605       * @throws InterruptedException if thread interrupted while waiting
606       */
607 <    public int awaitAdvanceInterruptibly(int phase) throws InterruptedException {
607 >    public int awaitAdvanceInterruptibly(int phase)
608 >        throws InterruptedException {
609          if (phase < 0)
610              return phase;
611 <        long s = getReconciledState();
552 <        int p = phaseOf(s);
611 >        int p = getPhase();
612          if (p != phase)
613              return p;
555        if (unarrivedOf(s) != 0)
556            parent.awaitAdvanceInterruptibly(phase);
614          return interruptibleWait(phase);
615      }
616  
617      /**
618 <     * Awaits the phase of the barrier to advance from the given value
619 <     * or the given timeout elapses, or returns immediately if
620 <     * argument is negative or this barrier is terminated.
621 <     * @param phase the phase on entry to this method
622 <     * @return the phase on exit from this method
618 >     * Awaits the phase of the barrier to advance from the given phase
619 >     * value or the given timeout to elapse, throwing {@code
620 >     * InterruptedException} if interrupted while waiting, or
621 >     * returning immediately if the current phase of the barrier is
622 >     * not equal to the given phase value or this barrier is
623 >     * terminated.
624 >     *
625 >     * @param phase an arrival phase number, or negative value if
626 >     * terminated; this argument is normally the value returned by a
627 >     * previous call to {@code arrive} or its variants
628 >     * @param timeout how long to wait before giving up, in units of
629 >     *        {@code unit}
630 >     * @param unit a {@code TimeUnit} determining how to interpret the
631 >     *        {@code timeout} parameter
632 >     * @return the next arrival phase number, or a negative value
633 >     * if terminated or argument is negative
634       * @throws InterruptedException if thread interrupted while waiting
635       * @throws TimeoutException if timed out while waiting
636       */
637 <    public int awaitAdvanceInterruptibly(int phase, long timeout, TimeUnit unit)
637 >    public int awaitAdvanceInterruptibly(int phase,
638 >                                         long timeout, TimeUnit unit)
639          throws InterruptedException, TimeoutException {
640 +        long nanos = unit.toNanos(timeout);
641          if (phase < 0)
642              return phase;
643 <        long s = getReconciledState();
574 <        int p = phaseOf(s);
643 >        int p = getPhase();
644          if (p != phase)
645              return p;
646 <        if (unarrivedOf(s) == 0)
578 <            parent.awaitAdvanceInterruptibly(phase, timeout, unit);
579 <        return timedWait(phase, unit.toNanos(timeout));
646 >        return timedWait(phase, nanos);
647      }
648  
649      /**
# Line 587 | Line 654 | public class Phaser {
654       * unexpected exceptions.
655       */
656      public void forceTermination() {
657 <        for (;;) {
658 <            long s = getReconciledState();
659 <            int phase = phaseOf(s);
660 <            int parties = partiesOf(s);
661 <            int unarrived = unarrivedOf(s);
662 <            if (phase < 0 ||
663 <                casState(s, stateFor(-1, parties, unarrived))) {
664 <                releaseWaiters(0);
665 <                releaseWaiters(1);
599 <                if (parent != null)
600 <                    parent.forceTermination();
601 <                return;
602 <            }
603 <        }
657 >        Phaser r = root;    // force at root then reconcile
658 >        long s;
659 >        while (phaseOf(s = r.state) >= 0)
660 >            UNSAFE.compareAndSwapLong(r, stateOffset, s,
661 >                                      stateFor(-1, partiesOf(s),
662 >                                               unarrivedOf(s)));
663 >        reconcileState();
664 >        releaseWaiters(0);  // ensure wakeups on both queues
665 >        releaseWaiters(1);
666      }
667  
668      /**
669       * Returns the current phase number. The maximum phase number is
670 <     * <tt>Integer.MAX_VALUE</tt>, after which it restarts at
670 >     * {@code Integer.MAX_VALUE}, after which it restarts at
671       * zero. Upon termination, the phase number is negative.
672 +     *
673       * @return the phase number, or a negative value if terminated
674       */
675      public final int getPhase() {
# Line 614 | Line 677 | public class Phaser {
677      }
678  
679      /**
617     * Returns true if the current phase number equals the given phase.
618     * @param phase the phase
619     * @return true if the current phase number equals the given phase.
620     */
621    public final boolean hasPhase(int phase) {
622        return phaseOf(getReconciledState()) == phase;
623    }
624
625    /**
680       * Returns the number of parties registered at this barrier.
681 +     *
682       * @return the number of parties
683       */
684      public int getRegisteredParties() {
685 <        return partiesOf(state);
685 >        return partiesOf(getReconciledState());
686      }
687  
688      /**
689 <     * Returns the number of parties that have arrived at the current
690 <     * phase of this barrier.
689 >     * Returns the number of registered parties that have arrived at
690 >     * the current phase of this barrier.
691 >     *
692       * @return the number of arrived parties
693       */
694      public int getArrivedParties() {
695 <        return arrivedOf(state);
695 >        return arrivedOf(getReconciledState());
696      }
697  
698      /**
699       * Returns the number of registered parties that have not yet
700       * arrived at the current phase of this barrier.
701 +     *
702       * @return the number of unarrived parties
703       */
704      public int getUnarrivedParties() {
705 <        return unarrivedOf(state);
705 >        return unarrivedOf(getReconciledState());
706      }
707  
708      /**
709 <     * Returns the parent of this phaser, or null if none.
710 <     * @return the parent of this phaser, or null if none.
709 >     * Returns the parent of this phaser, or {@code null} if none.
710 >     *
711 >     * @return the parent of this phaser, or {@code null} if none
712       */
713      public Phaser getParent() {
714          return parent;
# Line 659 | Line 717 | public class Phaser {
717      /**
718       * Returns the root ancestor of this phaser, which is the same as
719       * this phaser if it has no parent.
720 <     * @return the root ancestor of this phaser.
720 >     *
721 >     * @return the root ancestor of this phaser
722       */
723      public Phaser getRoot() {
724          return root;
725      }
726  
727      /**
728 <     * Returns true if this barrier has been terminated.
729 <     * @return true if this barrier has been terminated
728 >     * Returns {@code true} if this barrier has been terminated.
729 >     *
730 >     * @return {@code true} if this barrier has been terminated
731       */
732      public boolean isTerminated() {
733          return getPhase() < 0;
734      }
735  
736      /**
737 <     * Overridable method to perform an action upon phase advance, and
738 <     * to control termination. This method is invoked whenever the
739 <     * barrier is tripped (and thus all other waiting parties are
740 <     * dormant). If it returns true, then, rather than advance the
741 <     * phase number, this barrier will be set to a final termination
742 <     * state, and subsequent calls to <tt>isTerminated</tt> will
743 <     * return true.
737 >     * Overridable method to perform an action upon impending phase
738 >     * advance, and to control termination. This method is invoked
739 >     * upon arrival of the party tripping the barrier (when all other
740 >     * waiting parties are dormant).  If this method returns {@code
741 >     * true}, then, rather than advance the phase number, this barrier
742 >     * will be set to a final termination state, and subsequent calls
743 >     * to {@link #isTerminated} will return true. Any (unchecked)
744 >     * Exception or Error thrown by an invocation of this method is
745 >     * propagated to the party attempting to trip the barrier, in
746 >     * which case no advance occurs.
747 >     *
748 >     * <p>The arguments to this method provide the state of the phaser
749 >     * prevailing for the current transition.  The results and effects
750 >     * of invoking phase-related methods (including {@code getPhase}
751 >     * as well as arrival, registration, and waiting methods) from
752 >     * within {@code onAdvance} are unspecified and should not be
753 >     * relied on. Similarly, while it is possible to override this
754 >     * method to produce side-effects visible to participating tasks,
755 >     * it is in general safe to do so only in designs in which all
756 >     * parties register before any arrive, and all {@link
757 >     * #awaitAdvance} at each phase.
758       *
759 <     * <p> The default version returns true when the number of
759 >     * <p>The default version returns {@code true} when the number of
760       * registered parties is zero. Normally, overrides that arrange
761       * termination for other reasons should also preserve this
762       * property.
763       *
690     * <p> You may override this method to perform an action with side
691     * effects visible to participating tasks, but it is in general
692     * only sensible to do so in designs where all parties register
693     * before any arrive, and all <tt>awaitAdvance</tt> at each phase.
694     * Otherwise, you cannot ensure lack of interference. In
695     * particular, this method may be invoked more than once per
696     * transition if other parties successfully register while the
697     * invocation of this method is in progress, thus postponing the
698     * transition until those parties also arrive, re-triggering this
699     * method.
700     *
764       * @param phase the phase number on entering the barrier
765 <     * @param registeredParties the current number of registered
766 <     * parties.
704 <     * @return true if this barrier should terminate
765 >     * @param registeredParties the current number of registered parties
766 >     * @return {@code true} if this barrier should terminate
767       */
768      protected boolean onAdvance(int phase, int registeredParties) {
769          return registeredParties <= 0;
# Line 710 | Line 772 | public class Phaser {
772      /**
773       * Returns a string identifying this phaser, as well as its
774       * state.  The state, in brackets, includes the String {@code
775 <     * "phase ="} followed by the phase number, {@code "parties ="}
775 >     * "phase = "} followed by the phase number, {@code "parties = "}
776       * followed by the number of registered parties, and {@code
777 <     * "arrived ="} followed by the number of arrived parties
777 >     * "arrived = "} followed by the number of arrived parties.
778       *
779       * @return a string identifying this barrier, as well as its state
780       */
781      public String toString() {
782          long s = getReconciledState();
783 <        return super.toString() + "[phase = " + phaseOf(s) + " parties = " + partiesOf(s) + " arrived = " + arrivedOf(s) + "]";
783 >        return super.toString() +
784 >            "[phase = " + phaseOf(s) +
785 >            " parties = " + partiesOf(s) +
786 >            " arrived = " + arrivedOf(s) + "]";
787      }
788  
789      // methods for waiting
790  
726    /** The number of CPUs, for spin control */
727    static final int NCPUS = Runtime.getRuntime().availableProcessors();
728
791      /**
792 <     * The number of times to spin before blocking in timed waits.
731 <     * The value is empirically derived.
792 >     * Wait nodes for Treiber stack representing wait queue
793       */
794 <    static final int maxTimedSpins = (NCPUS < 2)? 0 : 32;
794 >    static final class QNode implements ForkJoinPool.ManagedBlocker {
795 >        final Phaser phaser;
796 >        final int phase;
797 >        final long startTime;
798 >        final long nanos;
799 >        final boolean timed;
800 >        final boolean interruptible;
801 >        volatile boolean wasInterrupted = false;
802 >        volatile Thread thread; // nulled to cancel wait
803 >        QNode next;
804  
805 <    /**
806 <     * The number of times to spin before blocking in untimed waits.
807 <     * This is greater than timed value because untimed waits spin
808 <     * faster since they don't need to check times on each spin.
809 <     */
810 <    static final int maxUntimedSpins = maxTimedSpins * 32;
805 >        QNode(Phaser phaser, int phase, boolean interruptible,
806 >              boolean timed, long startTime, long nanos) {
807 >            this.phaser = phaser;
808 >            this.phase = phase;
809 >            this.timed = timed;
810 >            this.interruptible = interruptible;
811 >            this.startTime = startTime;
812 >            this.nanos = nanos;
813 >            thread = Thread.currentThread();
814 >        }
815  
816 <    /**
817 <     * The number of nanoseconds for which it is faster to spin
818 <     * rather than to use timed park. A rough estimate suffices.
819 <     */
820 <    static final long spinForTimeoutThreshold = 1000L;
816 >        public boolean isReleasable() {
817 >            return (thread == null ||
818 >                    phaser.getPhase() != phase ||
819 >                    (interruptible && wasInterrupted) ||
820 >                    (timed && (nanos - (System.nanoTime() - startTime)) <= 0));
821 >        }
822  
823 <    /**
824 <     * Wait nodes for Treiber stack representing wait queue for non-FJ
825 <     * tasks.
826 <     */
827 <    static final class QNode {
828 <        QNode next;
829 <        volatile Thread thread; // nulled to cancel wait
830 <        QNode() {
831 <            thread = Thread.currentThread();
823 >        public boolean block() {
824 >            if (Thread.interrupted()) {
825 >                wasInterrupted = true;
826 >                if (interruptible)
827 >                    return true;
828 >            }
829 >            if (!timed)
830 >                LockSupport.park(this);
831 >            else {
832 >                long waitTime = nanos - (System.nanoTime() - startTime);
833 >                if (waitTime <= 0)
834 >                    return true;
835 >                LockSupport.parkNanos(this, waitTime);
836 >            }
837 >            return isReleasable();
838          }
839 +
840          void signal() {
841              Thread t = thread;
842              if (t != null) {
# Line 762 | Line 844 | public class Phaser {
844                  LockSupport.unpark(t);
845              }
846          }
847 +
848 +        boolean doWait() {
849 +            if (thread != null) {
850 +                try {
851 +                    ForkJoinPool.managedBlock(this);
852 +                } catch (InterruptedException ie) {
853 +                    wasInterrupted = true; // can't currently happen
854 +                }
855 +            }
856 +            return wasInterrupted;
857 +        }
858      }
859  
860      /**
861 <     * Removes and signals waiting threads from wait queue
861 >     * Removes and signals waiting threads from wait queue.
862       */
863      private void releaseWaiters(int phase) {
864          AtomicReference<QNode> head = queueFor(phase);
# Line 777 | Line 870 | public class Phaser {
870      }
871  
872      /**
873 +     * Tries to enqueue given node in the appropriate wait queue.
874 +     *
875 +     * @return true if successful
876 +     */
877 +    private boolean tryEnqueue(QNode node) {
878 +        AtomicReference<QNode> head = queueFor(node.phase);
879 +        return head.compareAndSet(node.next = head.get(), node);
880 +    }
881 +
882 +    /**
883 +     * The number of times to spin before blocking waiting for advance.
884 +     */
885 +    static final int MAX_SPINS =
886 +        Runtime.getRuntime().availableProcessors() == 1 ? 0 : 1 << 8;
887 +
888 +    /**
889       * Enqueues node and waits unless aborted or signalled.
890 +     *
891 +     * @return current phase
892       */
893      private int untimedWait(int phase) {
783        int spins = maxUntimedSpins;
894          QNode node = null;
785        boolean interrupted = false;
895          boolean queued = false;
896 +        boolean interrupted = false;
897 +        int spins = MAX_SPINS;
898          int p;
899          while ((p = getPhase()) == phase) {
900 <            interrupted = Thread.interrupted();
901 <            if (node != null) {
902 <                if (!queued) {
903 <                    AtomicReference<QNode> head = queueFor(phase);
904 <                    queued = head.compareAndSet(node.next = head.get(), node);
794 <                }
795 <                else if (node.thread != null)
796 <                    LockSupport.park(this);
900 >            if (Thread.interrupted())
901 >                interrupted = true;
902 >            else if (spins > 0) {
903 >                if (--spins == 0)
904 >                    Thread.yield();
905              }
906 <            else if (spins <= 0)
907 <                node = new QNode();
908 <            else
909 <                --spins;
906 >            else if (node == null)
907 >                node = new QNode(this, phase, false, false, 0, 0);
908 >            else if (!queued)
909 >                queued = tryEnqueue(node);
910 >            else if (node.doWait())
911 >                interrupted = true;
912          }
913          if (node != null)
914              node.thread = null;
915 +        releaseWaiters(phase);
916          if (interrupted)
917              Thread.currentThread().interrupt();
807        releaseWaiters(phase);
918          return p;
919      }
920  
921      /**
922 <     * Messier interruptible version
922 >     * Interruptible version
923 >     * @return current phase
924       */
925      private int interruptibleWait(int phase) throws InterruptedException {
815        int spins = maxUntimedSpins;
926          QNode node = null;
927          boolean queued = false;
928          boolean interrupted = false;
929 +        int spins = MAX_SPINS;
930          int p;
931 <        while ((p = getPhase()) == phase) {
932 <            if (interrupted = Thread.interrupted())
933 <                break;
934 <            if (node != null) {
935 <                if (!queued) {
936 <                    AtomicReference<QNode> head = queueFor(phase);
826 <                    queued = head.compareAndSet(node.next = head.get(), node);
827 <                }
828 <                else if (node.thread != null)
829 <                    LockSupport.park(this);
931 >        while ((p = getPhase()) == phase && !interrupted) {
932 >            if (Thread.interrupted())
933 >                interrupted = true;
934 >            else if (spins > 0) {
935 >                if (--spins == 0)
936 >                    Thread.yield();
937              }
938 <            else if (spins <= 0)
939 <                node = new QNode();
940 <            else
941 <                --spins;
938 >            else if (node == null)
939 >                node = new QNode(this, phase, true, false, 0, 0);
940 >            else if (!queued)
941 >                queued = tryEnqueue(node);
942 >            else if (node.doWait())
943 >                interrupted = true;
944          }
945          if (node != null)
946              node.thread = null;
947 +        if (p != phase || (p = getPhase()) != phase)
948 +            releaseWaiters(phase);
949          if (interrupted)
950              throw new InterruptedException();
840        releaseWaiters(phase);
951          return p;
952      }
953  
954      /**
955 <     * Even messier timeout version.
955 >     * Timeout version.
956 >     * @return current phase
957       */
958      private int timedWait(int phase, long nanos)
959          throws InterruptedException, TimeoutException {
960 +        long startTime = System.nanoTime();
961 +        QNode node = null;
962 +        boolean queued = false;
963 +        boolean interrupted = false;
964 +        int spins = MAX_SPINS;
965          int p;
966 <        if ((p = getPhase()) == phase) {
967 <            long lastTime = System.nanoTime();
968 <            int spins = maxTimedSpins;
969 <            QNode node = null;
970 <            boolean queued = false;
971 <            boolean interrupted = false;
972 <            while ((p = getPhase()) == phase) {
973 <                if (interrupted = Thread.interrupted())
974 <                    break;
975 <                long now = System.nanoTime();
976 <                if ((nanos -= now - lastTime) <= 0)
977 <                    break;
978 <                lastTime = now;
979 <                if (node != null) {
980 <                    if (!queued) {
865 <                        AtomicReference<QNode> head = queueFor(phase);
866 <                        queued = head.compareAndSet(node.next = head.get(), node);
867 <                    }
868 <                    else if (node.thread != null &&
869 <                             nanos > spinForTimeoutThreshold) {
870 <                        LockSupport.parkNanos(this, nanos);
871 <                    }
872 <                }
873 <                else if (spins <= 0)
874 <                    node = new QNode();
875 <                else
876 <                    --spins;
877 <            }
878 <            if (node != null)
879 <                node.thread = null;
880 <            if (interrupted)
881 <                throw new InterruptedException();
882 <            if (p == phase && (p = getPhase()) == phase)
883 <                throw new TimeoutException();
966 >        while ((p = getPhase()) == phase && !interrupted) {
967 >            if (Thread.interrupted())
968 >                interrupted = true;
969 >            else if (nanos - (System.nanoTime() - startTime) <= 0)
970 >                break;
971 >            else if (spins > 0) {
972 >                if (--spins == 0)
973 >                    Thread.yield();
974 >            }
975 >            else if (node == null)
976 >                node = new QNode(this, phase, true, true, startTime, nanos);
977 >            else if (!queued)
978 >                queued = tryEnqueue(node);
979 >            else if (node.doWait())
980 >                interrupted = true;
981          }
982 <        releaseWaiters(phase);
982 >        if (node != null)
983 >            node.thread = null;
984 >        if (p != phase || (p = getPhase()) != phase)
985 >            releaseWaiters(phase);
986 >        if (interrupted)
987 >            throw new InterruptedException();
988 >        if (p == phase)
989 >            throw new TimeoutException();
990          return p;
991      }
992  
993 <    // Temporary Unsafe mechanics for preliminary release
993 >    // Unsafe mechanics
994  
995 <    static final Unsafe _unsafe;
996 <    static final long stateOffset;
995 >    private static final sun.misc.Unsafe UNSAFE = getUnsafe();
996 >    private static final long stateOffset =
997 >        objectFieldOffset("state", Phaser.class);
998  
999 <    static {
999 >    private static long objectFieldOffset(String field, Class<?> klazz) {
1000          try {
1001 <            if (Phaser.class.getClassLoader() != null) {
1002 <                Field f = Unsafe.class.getDeclaredField("theUnsafe");
1003 <                f.setAccessible(true);
1004 <                _unsafe = (Unsafe)f.get(null);
1005 <            }
1006 <            else
902 <                _unsafe = Unsafe.getUnsafe();
903 <            stateOffset = _unsafe.objectFieldOffset
904 <                (Phaser.class.getDeclaredField("state"));
905 <        } catch (Exception e) {
906 <            throw new RuntimeException("Could not initialize intrinsics", e);
1001 >            return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
1002 >        } catch (NoSuchFieldException e) {
1003 >            // Convert Exception to corresponding Error
1004 >            NoSuchFieldError error = new NoSuchFieldError(field);
1005 >            error.initCause(e);
1006 >            throw error;
1007          }
1008      }
1009  
1010 <    final boolean casState(long cmp, long val) {
1011 <        return _unsafe.compareAndSwapLong(this, stateOffset, cmp, val);
1010 >    /**
1011 >     * Returns a sun.misc.Unsafe.  Suitable for use in a 3rd party package.
1012 >     * Replace with a simple call to Unsafe.getUnsafe when integrating
1013 >     * into a jdk.
1014 >     *
1015 >     * @return a sun.misc.Unsafe
1016 >     */
1017 >    private static sun.misc.Unsafe getUnsafe() {
1018 >        try {
1019 >            return sun.misc.Unsafe.getUnsafe();
1020 >        } catch (SecurityException se) {
1021 >            try {
1022 >                return java.security.AccessController.doPrivileged
1023 >                    (new java.security
1024 >                     .PrivilegedExceptionAction<sun.misc.Unsafe>() {
1025 >                        public sun.misc.Unsafe run() throws Exception {
1026 >                            java.lang.reflect.Field f = sun.misc
1027 >                                .Unsafe.class.getDeclaredField("theUnsafe");
1028 >                            f.setAccessible(true);
1029 >                            return (sun.misc.Unsafe) f.get(null);
1030 >                        }});
1031 >            } catch (java.security.PrivilegedActionException e) {
1032 >                throw new RuntimeException("Could not initialize intrinsics",
1033 >                                           e.getCause());
1034 >            }
1035 >        }
1036      }
1037   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines