ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/Phaser.java
(Generate patch)

Comparing jsr166/src/jsr166y/Phaser.java (file contents):
Revision 1.50 by dl, Sat Nov 6 16:12:10 2010 UTC vs.
Revision 1.58 by dl, Wed Nov 24 15:48:01 2010 UTC

# Line 6 | Line 6
6  
7   package jsr166y;
8  
9 < import java.util.concurrent.*;
9 > import java.util.concurrent.TimeUnit;
10 > import java.util.concurrent.TimeoutException;
11   import java.util.concurrent.atomic.AtomicReference;
12   import java.util.concurrent.locks.LockSupport;
13  
# Line 85 | Line 86 | import java.util.concurrent.locks.LockSu
86   * #forceTermination} is also available to abruptly release waiting
87   * threads and allow them to terminate.
88   *
89 < * <p> <b>Tiering.</b> Phasers may be <em>tiered</em> (i.e., arranged
90 < * in tree structures) to reduce contention. Phasers with large
91 < * numbers of parties that would otherwise experience heavy
89 > * <p> <b>Tiering.</b> Phasers may be <em>tiered</em> (i.e.,
90 > * constructed in tree structures) to reduce contention. Phasers with
91 > * large numbers of parties that would otherwise experience heavy
92   * synchronization contention costs may instead be set up so that
93   * groups of sub-phasers share a common parent.  This may greatly
94   * increase throughput even though it incurs greater per-operation
# Line 226 | Line 227 | public class Phaser {
227       * Barrier state representation. Conceptually, a barrier contains
228       * four values:
229       *
230 <     * * parties -- the number of parties to wait (16 bits)
231 <     * * unarrived -- the number of parties yet to hit barrier (16 bits)
232 <     * * phase -- the generation of the barrier (31 bits)
233 <     * * terminated -- set if barrier is terminated (1 bit)
230 >     * * unarrived -- the number of parties yet to hit barrier (bits  0-15)
231 >     * * parties -- the number of parties to wait              (bits 16-31)
232 >     * * phase -- the generation of the barrier                (bits 32-62)
233 >     * * terminated -- set if barrier is terminated            (bit  63 / sign)
234       *
235       * However, to efficiently maintain atomicity, these values are
236       * packed into a single (atomic) long. Termination uses the sign
237       * bit of 32 bit representation of phase, so phase is set to -1 on
238       * termination. Good performance relies on keeping state decoding
239       * and encoding simple, and keeping race windows short.
239     *
240     * Note: there are some cheats in arrive() that rely on unarrived
241     * count being lowest 16 bits.
240       */
241      private volatile long state;
242  
243 <    private static final int ushortMask = 0xffff;
244 <    private static final int phaseMask  = 0x7fffffff;
243 >    private static final int  MAX_PARTIES    = 0xffff;
244 >    private static final int  MAX_PHASE      = 0x7fffffff;
245 >    private static final int  PARTIES_SHIFT  = 16;
246 >    private static final int  PHASE_SHIFT    = 32;
247 >    private static final int  UNARRIVED_MASK = 0xffff;
248 >    private static final long PARTIES_MASK   = 0xffff0000L; // for masking long
249 >    private static final long ONE_ARRIVAL    = 1L;
250 >    private static final long ONE_PARTY      = 1L << PARTIES_SHIFT;
251 >    private static final long TERMINATION_PHASE  = -1L << PHASE_SHIFT;
252 >
253 >    // The following unpacking methods are usually manually inlined
254  
255      private static int unarrivedOf(long s) {
256 <        return (int) (s & ushortMask);
256 >        return (int)s & UNARRIVED_MASK;
257      }
258  
259      private static int partiesOf(long s) {
260 <        return ((int) s) >>> 16;
260 >        return (int)s >>> PARTIES_SHIFT;
261      }
262  
263      private static int phaseOf(long s) {
264 <        return (int) (s >>> 32);
264 >        return (int) (s >>> PHASE_SHIFT);
265      }
266  
267      private static int arrivedOf(long s) {
268          return partiesOf(s) - unarrivedOf(s);
269      }
270  
264    private static long stateFor(int phase, int parties, int unarrived) {
265        return ((((long) phase) << 32) | (((long) parties) << 16) |
266                (long) unarrived);
267    }
268
269    private static long trippedStateFor(int phase, int parties) {
270        long lp = (long) parties;
271        return (((long) phase) << 32) | (lp << 16) | lp;
272    }
273
274    /**
275     * Returns message string for bad bounds exceptions.
276     */
277    private static String badBounds(int parties, int unarrived) {
278        return ("Attempt to set " + unarrived +
279                " unarrived of " + parties + " parties");
280    }
281
271      /**
272       * The parent of this phaser, or null if none
273       */
# Line 290 | Line 279 | public class Phaser {
279       */
280      private final Phaser root;
281  
293    // Wait queues
294
282      /**
283       * Heads of Treiber stacks for waiting threads. To eliminate
284       * contention when releasing some threads while adding others, we
# Line 306 | Line 293 | public class Phaser {
293      }
294  
295      /**
296 <     * Returns current state, first resolving lagged propagation from
297 <     * root if necessary.
296 >     * Main implementation for methods arrive and arriveAndDeregister.
297 >     * Manually tuned to speed up and minimize race windows for the
298 >     * common case of just decrementing unarrived field.
299 >     *
300 >     * @param adj - adjustment to apply to state -- either
301 >     * ONE_ARRIVAL (for arrive) or
302 >     * ONE_ARRIVAL|ONE_PARTY (for arriveAndDeregister)
303 >     */
304 >    private int doArrive(long adj) {
305 >        for (;;) {
306 >            long s = state;
307 >            int phase = (int)(s >>> PHASE_SHIFT);
308 >            if (phase < 0)
309 >                return phase;
310 >            int unarrived = (int)s & UNARRIVED_MASK;
311 >            if (unarrived == 0)
312 >                checkBadArrive(s);
313 >            else if (UNSAFE.compareAndSwapLong(this, stateOffset, s, s-=adj)) {
314 >                if (unarrived == 1) {
315 >                    long p = s & PARTIES_MASK; // unshifted parties field
316 >                    long lu = p >>> PARTIES_SHIFT;
317 >                    int u = (int)lu;
318 >                    int nextPhase = (phase + 1) & MAX_PHASE;
319 >                    long next = ((long)nextPhase << PHASE_SHIFT) | p | lu;
320 >                    final Phaser parent = this.parent;
321 >                    if (parent == null) {
322 >                        if (onAdvance(phase, u))
323 >                            next |= TERMINATION_PHASE; // obliterate phase
324 >                        UNSAFE.compareAndSwapLong(this, stateOffset, s, next);
325 >                        releaseWaiters(phase);
326 >                    }
327 >                    else {
328 >                        parent.doArrive((u == 0) ?
329 >                                        ONE_ARRIVAL|ONE_PARTY : ONE_ARRIVAL);
330 >                        if ((int)(parent.state >>> PHASE_SHIFT) != nextPhase ||
331 >                            ((int)(state >>> PHASE_SHIFT) != nextPhase &&
332 >                             !UNSAFE.compareAndSwapLong(this, stateOffset,
333 >                                                        s, next)))
334 >                            reconcileState();
335 >                    }
336 >                }
337 >                return phase;
338 >            }
339 >        }
340 >    }
341 >
342 >    /**
343 >     * Rechecks state and throws bounds exceptions on arrival -- called
344 >     * only if unarrived is apparently zero.
345       */
346 <    private long getReconciledState() {
347 <        return (parent == null) ? state : reconcileState();
346 >    private void checkBadArrive(long s) {
347 >        if (reconcileState() == s)
348 >            throw new IllegalStateException
349 >                ("Attempted arrival of unregistered party for " +
350 >                 stateToString(s));
351      }
352  
353      /**
354 <     * Recursively resolves state.
354 >     * Implementation of register, bulkRegister
355 >     *
356 >     * @param registrations number to add to both parties and
357 >     * unarrived fields. Must be greater than zero.
358 >     */
359 >    private int doRegister(int registrations) {
360 >        // adjustment to state
361 >        long adj = ((long)registrations << PARTIES_SHIFT) | registrations;
362 >        final Phaser parent = this.parent;
363 >        for (;;) {
364 >            long s = (parent == null) ? state : reconcileState();
365 >            int parties = (int)s >>> PARTIES_SHIFT;
366 >            int phase = (int)(s >>> PHASE_SHIFT);
367 >            if (phase < 0)
368 >                return phase;
369 >            else if (parties != 0 && ((int)s & UNARRIVED_MASK) == 0)
370 >                internalAwaitAdvance(phase, null); // wait for onAdvance
371 >            else if (registrations > MAX_PARTIES - parties)
372 >                throw new IllegalStateException(badRegister(s));
373 >            else if (UNSAFE.compareAndSwapLong(this, stateOffset, s, s + adj))
374 >                return phase;
375 >        }
376 >    }
377 >
378 >    /**
379 >     * Returns message string for out of bounds exceptions on registration.
380 >     */
381 >    private String badRegister(long s) {
382 >        return "Attempt to register more than " +
383 >            MAX_PARTIES + " parties for " + stateToString(s);
384 >    }
385 >
386 >    /**
387 >     * Recursively resolves lagged phase propagation from root if necessary.
388       */
389      private long reconcileState() {
390          Phaser par = parent;
391          long s = state;
392          if (par != null) {
393 <            int phase, rootPhase;
394 <            while ((phase = phaseOf(s)) >= 0 &&
395 <                   (rootPhase = phaseOf(root.state)) != phase &&
396 <                   (rootPhase < 0 || unarrivedOf(s) == 0)) {
397 <                int parentPhase = phaseOf(par.getReconciledState());
398 <                if (parentPhase != phase) {
399 <                    long next = trippedStateFor(parentPhase, partiesOf(s));
400 <                    if (state == s)
401 <                        UNSAFE.compareAndSwapLong(this, stateOffset, s, next);
393 >            Phaser rt = root;
394 >            int phase, rPhase;
395 >            while ((phase = (int)(s >>> PHASE_SHIFT)) >= 0 &&
396 >                   (rPhase = (int)(rt.state >>> PHASE_SHIFT)) != phase) {
397 >                if ((int)(par.state >>> PHASE_SHIFT) != rPhase)
398 >                    par.reconcileState();
399 >                else if (rPhase < 0 || ((int)s & UNARRIVED_MASK) == 0) {
400 >                    long u = s & PARTIES_MASK; // reset unarrived to parties
401 >                    long next = ((((long) rPhase) << PHASE_SHIFT) | u |
402 >                                 (u >>> PARTIES_SHIFT));
403 >                    if (state == s &&
404 >                        UNSAFE.compareAndSwapLong(this, stateOffset,
405 >                                                  s, s = next))
406 >                        break;
407                  }
408                  s = state;
409              }
# Line 358 | Line 433 | public class Phaser {
433      }
434  
435      /**
436 <     * Creates a new phaser with the given parent, without any
362 <     * initially registered parties. If parent is non-null this phaser
363 <     * is registered with the parent and its initial phase number is
364 <     * the same as that of parent phaser.
436 >     * Equivalent to {@link #Phaser(Phaser, int) Phaser(parent, 0)}.
437       *
438       * @param parent the parent phaser
439       */
# Line 371 | Line 443 | public class Phaser {
443  
444      /**
445       * Creates a new phaser with the given parent and number of
446 <     * registered unarrived parties. If parent is non-null, this phaser
447 <     * is registered with the parent and its initial phase number is
448 <     * the same as that of parent phaser.
446 >     * registered unarrived parties. If parent is non-null, this
447 >     * phaser is registered with the parent and its initial phase
448 >     * number is the same as that of parent phaser.  If the number of
449 >     * parties is zero, the parent phaser will not proceed until this
450 >     * child phaser registers parties and advances, or this child
451 >     * phaser deregisters with its parent, or the parent is otherwise
452 >     * terminated.  This child Phaser will be deregistered from its
453 >     * parent automatically upon any invocation of the child's {@link
454 >     * #arriveAndDeregister} method that results in the child's number
455 >     * of registered parties becoming zero. (Although rarely
456 >     * appropriate, this child may also explicity deregister from its
457 >     * parent using {@code getParent().arriveAndDeregister()}.)  After
458 >     * deregistration, the child cannot re-register. (Instead, you can
459 >     * create a new child Phaser.)
460       *
461       * @param parent the parent phaser
462       * @param parties the number of parties required to trip barrier
# Line 381 | Line 464 | public class Phaser {
464       * or greater than the maximum number of parties supported
465       */
466      public Phaser(Phaser parent, int parties) {
467 <        if (parties < 0 || parties > ushortMask)
467 >        if (parties >>> PARTIES_SHIFT != 0)
468              throw new IllegalArgumentException("Illegal number of parties");
469          int phase;
470          this.parent = parent;
# Line 390 | Line 473 | public class Phaser {
473              this.root = r;
474              this.evenQ = r.evenQ;
475              this.oddQ = r.oddQ;
476 <            phase = parent.register();
476 >            phase = parent.doRegister(1);
477          }
478          else {
479              this.root = this;
# Line 398 | Line 481 | public class Phaser {
481              this.oddQ = new AtomicReference<QNode>();
482              phase = 0;
483          }
484 <        this.state = trippedStateFor(phase, parties);
484 >        long p = (long)parties;
485 >        this.state = (((long)phase) << PHASE_SHIFT) | p | (p << PARTIES_SHIFT);
486      }
487  
488      /**
# Line 434 | Line 518 | public class Phaser {
518      }
519  
520      /**
437     * Shared code for register, bulkRegister
438     */
439    private int doRegister(int registrations) {
440        Phaser par = parent;
441        long s;
442        int phase;
443        while ((phase = phaseOf(s = par==null? state:reconcileState())) >= 0) {
444            int p = partiesOf(s);
445            int u = unarrivedOf(s);
446            int unarrived = u + registrations;
447            int parties = p + registrations;
448            if (u == 0 && p != 0)  // if tripped, wait for advance
449                untimedWait(phase);
450            else if (parties > ushortMask)
451                throw new IllegalStateException(badBounds(parties, unarrived));
452            else if (par == null || phaseOf(root.state) == phase) {
453                long next = stateFor(phase, parties, unarrived);
454                if (UNSAFE.compareAndSwapLong(this, stateOffset, s, next))
455                    break;
456            }
457        }
458        return phase;
459    }
460
461    /**
521       * Arrives at the barrier, but does not wait for others.  (You can
522       * in turn wait for others via {@link #awaitAdvance}).  It is an
523       * unenforced usage error for an unregistered party to invoke this
# Line 469 | Line 528 | public class Phaser {
528       * of unarrived parties would become negative
529       */
530      public int arrive() {
531 <        Phaser par = parent;
473 <        long s;
474 <        int phase;
475 <        while ((phase = phaseOf(s = par==null? state:reconcileState())) >= 0) {
476 <            int parties = partiesOf(s);
477 <            int unarrived = unarrivedOf(s) - 1;
478 <            if (unarrived > 0) {                // Not the last arrival
479 <                if (UNSAFE.compareAndSwapLong(this, stateOffset, s, s - 1))
480 <                    break;                      // s-1 adds one arrival
481 <            }
482 <            else if (unarrived < 0)
483 <                throw new IllegalStateException(badBounds(parties, unarrived));
484 <            else if (par == null) {             // directly trip
485 <                long next = trippedStateFor(onAdvance(phase, parties) ? -1 :
486 <                                            ((phase + 1) & phaseMask),
487 <                                            parties);
488 <                if (UNSAFE.compareAndSwapLong(this, stateOffset, s, next)) {
489 <                    releaseWaiters(phase);
490 <                    break;
491 <                }
492 <            }
493 <            else if (phaseOf(root.state) == phase &&
494 <                     UNSAFE.compareAndSwapLong(this, stateOffset, s, s - 1)) {
495 <                par.arrive();                   // cascade to parent
496 <                reconcileState();
497 <                break;
498 <            }
499 <        }
500 <        return phase;
531 >        return doArrive(ONE_ARRIVAL);
532      }
533  
534      /**
# Line 514 | Line 545 | public class Phaser {
545       * of registered or unarrived parties would become negative
546       */
547      public int arriveAndDeregister() {
548 <        // similar to arrive, but too different to merge
518 <        Phaser par = parent;
519 <        long s;
520 <        int phase;
521 <        while ((phase = phaseOf(s = par==null? state:reconcileState())) >= 0) {
522 <            int parties = partiesOf(s) - 1;
523 <            int unarrived = unarrivedOf(s) - 1;
524 <            if (unarrived > 0) {
525 <                long next = stateFor(phase, parties, unarrived);
526 <                if (UNSAFE.compareAndSwapLong(this, stateOffset, s, next))
527 <                    break;
528 <            }
529 <            else if (unarrived < 0)
530 <                throw new IllegalStateException(badBounds(parties, unarrived));
531 <            else if (par == null) {
532 <                long next = trippedStateFor(onAdvance(phase, parties)? -1:
533 <                                            (phase + 1) & phaseMask,
534 <                                            parties);
535 <                if (UNSAFE.compareAndSwapLong(this, stateOffset, s, next)) {
536 <                    releaseWaiters(phase);
537 <                    break;
538 <                }
539 <            }
540 <            else if (phaseOf(root.state) == phase) {
541 <                long next = stateFor(phase, parties, 0);
542 <                if (UNSAFE.compareAndSwapLong(this, stateOffset, s, next)) {
543 <                    if (parties == 0)
544 <                        par.arriveAndDeregister();
545 <                    else
546 <                        par.arrive();
547 <                    reconcileState();
548 <                    break;
549 <                }
550 <            }
551 <        }
552 <        return phase;
548 >        return doArrive(ONE_ARRIVAL|ONE_PARTY);
549      }
550  
551      /**
# Line 584 | Line 580 | public class Phaser {
580      public int awaitAdvance(int phase) {
581          if (phase < 0)
582              return phase;
583 <        int p = getPhase();
584 <        if (p != phase)
585 <            return p;
590 <        return untimedWait(phase);
583 >        long s = (parent == null) ? state : reconcileState();
584 >        int p = (int)(s >>> PHASE_SHIFT);
585 >        return (p != phase) ? p : internalAwaitAdvance(phase, null);
586      }
587  
588      /**
# Line 608 | Line 603 | public class Phaser {
603          throws InterruptedException {
604          if (phase < 0)
605              return phase;
606 <        int p = getPhase();
607 <        if (p != phase)
608 <            return p;
609 <        return interruptibleWait(phase);
606 >        long s = (parent == null) ? state : reconcileState();
607 >        int p = (int)(s >>> PHASE_SHIFT);
608 >        if (p == phase) {
609 >            QNode node = new QNode(this, phase, true, false, 0L);
610 >            p = internalAwaitAdvance(phase, node);
611 >            if (node.wasInterrupted)
612 >                throw new InterruptedException();
613 >        }
614 >        return p;
615      }
616  
617      /**
# Line 637 | Line 637 | public class Phaser {
637      public int awaitAdvanceInterruptibly(int phase,
638                                           long timeout, TimeUnit unit)
639          throws InterruptedException, TimeoutException {
640        long nanos = unit.toNanos(timeout);
640          if (phase < 0)
641              return phase;
642 <        int p = getPhase();
643 <        if (p != phase)
644 <            return p;
645 <        return timedWait(phase, nanos);
642 >        long s = (parent == null) ? state : reconcileState();
643 >        int p = (int)(s >>> PHASE_SHIFT);
644 >        if (p == phase) {
645 >            long nanos = unit.toNanos(timeout);
646 >            QNode node = new QNode(this, phase, true, true, nanos);
647 >            p = internalAwaitAdvance(phase, node);
648 >            if (node.wasInterrupted)
649 >                throw new InterruptedException();
650 >            else if (p == phase)
651 >                throw new TimeoutException();
652 >        }
653 >        return p;
654      }
655  
656      /**
657 <     * Forces this barrier to enter termination state. Counts of
658 <     * arrived and registered parties are unaffected. If this phaser
659 <     * has a parent, it too is terminated. This method may be useful
660 <     * for coordinating recovery after one or more tasks encounter
661 <     * unexpected exceptions.
657 >     * Forces this barrier to enter termination state.  Counts of
658 >     * arrived and registered parties are unaffected.  If this phaser
659 >     * is a member of a tiered set of phasers, then all of the phasers
660 >     * in the set are terminated.  If this phaser is already
661 >     * terminated, this method has no effect.  This method may be
662 >     * useful for coordinating recovery after one or more tasks
663 >     * encounter unexpected exceptions.
664       */
665      public void forceTermination() {
666 <        Phaser r = root;    // force at root then reconcile
666 >        // Only need to change root state
667 >        final Phaser root = this.root;
668          long s;
669 <        while (phaseOf(s = r.state) >= 0)
670 <            UNSAFE.compareAndSwapLong(r, stateOffset, s,
671 <                                      stateFor(-1, partiesOf(s),
672 <                                               unarrivedOf(s)));
673 <        reconcileState();
674 <        releaseWaiters(0);  // ensure wakeups on both queues
675 <        releaseWaiters(1);
669 >        while ((s = root.state) >= 0) {
670 >            if (UNSAFE.compareAndSwapLong(root, stateOffset,
671 >                                          s, s | TERMINATION_PHASE)) {
672 >                releaseWaiters(0); // signal all threads
673 >                releaseWaiters(1);
674 >                return;
675 >            }
676 >        }
677      }
678  
679      /**
# Line 673 | Line 684 | public class Phaser {
684       * @return the phase number, or a negative value if terminated
685       */
686      public final int getPhase() {
687 <        return phaseOf(getReconciledState());
687 >        return (int)(root.state >>> PHASE_SHIFT);
688      }
689  
690      /**
# Line 682 | Line 693 | public class Phaser {
693       * @return the number of parties
694       */
695      public int getRegisteredParties() {
696 <        return partiesOf(getReconciledState());
696 >        return partiesOf(state);
697      }
698  
699      /**
# Line 692 | Line 703 | public class Phaser {
703       * @return the number of arrived parties
704       */
705      public int getArrivedParties() {
706 <        return arrivedOf(getReconciledState());
706 >        return arrivedOf(parent==null? state : reconcileState());
707      }
708  
709      /**
# Line 702 | Line 713 | public class Phaser {
713       * @return the number of unarrived parties
714       */
715      public int getUnarrivedParties() {
716 <        return unarrivedOf(getReconciledState());
716 >        return unarrivedOf(parent==null? state : reconcileState());
717      }
718  
719      /**
# Line 730 | Line 741 | public class Phaser {
741       * @return {@code true} if this barrier has been terminated
742       */
743      public boolean isTerminated() {
744 <        return getPhase() < 0;
744 >        return root.state < 0L;
745      }
746  
747      /**
# Line 746 | Line 757 | public class Phaser {
757       * which case no advance occurs.
758       *
759       * <p>The arguments to this method provide the state of the phaser
760 <     * prevailing for the current transition.  The results and effects
761 <     * of invoking phase-related methods (including {@code getPhase}
751 <     * as well as arrival, registration, and waiting methods) from
760 >     * prevailing for the current transition.  The effects of invoking
761 >     * arrival, registration, and waiting methods on this Phaser from
762       * within {@code onAdvance} are unspecified and should not be
763 <     * relied on. Similarly, while it is possible to override this
764 <     * method to produce side-effects visible to participating tasks,
765 <     * it is in general safe to do so only in designs in which all
766 <     * parties register before any arrive, and all {@link
767 <     * #awaitAdvance} at each phase.
763 >     * relied on.
764 >     *
765 >     * <p>If this Phaser is a member of a tiered set of Phasers, then
766 >     * {@code onAdvance} is invoked only for its root Phaser on each
767 >     * advance.
768       *
769       * <p>The default version returns {@code true} when the number of
770       * registered parties is zero. Normally, overrides that arrange
# Line 779 | Line 789 | public class Phaser {
789       * @return a string identifying this barrier, as well as its state
790       */
791      public String toString() {
792 <        long s = getReconciledState();
792 >        return stateToString(reconcileState());
793 >    }
794 >
795 >    /**
796 >     * Implementation of toString and string-based error messages
797 >     */
798 >    private String stateToString(long s) {
799          return super.toString() +
800              "[phase = " + phaseOf(s) +
801              " parties = " + partiesOf(s) +
802              " arrived = " + arrivedOf(s) + "]";
803      }
804  
805 <    // methods for waiting
805 >    // Waiting mechanics
806 >
807 >    /**
808 >     * Removes and signals threads from queue for phase.
809 >     */
810 >    private void releaseWaiters(int phase) {
811 >        AtomicReference<QNode> head = queueFor(phase);
812 >        QNode q;
813 >        int p;
814 >        while ((q = head.get()) != null &&
815 >               ((p = q.phase) == phase ||
816 >                (int)(root.state >>> PHASE_SHIFT) != p)) {
817 >            if (head.compareAndSet(q, q.next))
818 >                q.signal();
819 >        }
820 >    }
821 >
822 >    /** The number of CPUs, for spin control */
823 >    private static final int NCPU = Runtime.getRuntime().availableProcessors();
824 >
825 >    /**
826 >     * The number of times to spin before blocking while waiting for
827 >     * advance, per arrival while waiting. On multiprocessors, fully
828 >     * blocking and waking up a large number of threads all at once is
829 >     * usually a very slow process, so we use rechargeable spins to
830 >     * avoid it when threads regularly arrive: When a thread in
831 >     * internalAwaitAdvance notices another arrival before blocking,
832 >     * and there appear to be enough CPUs available, it spins
833 >     * SPINS_PER_ARRIVAL more times before blocking. Plus, even on
834 >     * uniprocessors, there is at least one intervening Thread.yield
835 >     * before blocking. The value trades off good-citizenship vs big
836 >     * unnecessary slowdowns.
837 >     */
838 >    static final int SPINS_PER_ARRIVAL = (NCPU < 2) ? 1 : 1 << 8;
839 >
840 >    /**
841 >     * Possibly blocks and waits for phase to advance unless aborted.
842 >     *
843 >     * @param phase current phase
844 >     * @param node if non-null, the wait node to track interrupt and timeout;
845 >     * if null, denotes noninterruptible wait
846 >     * @return current phase
847 >     */
848 >    private int internalAwaitAdvance(int phase, QNode node) {
849 >        Phaser current = this;       // to eventually wait at root if tiered
850 >        boolean queued = false;      // true when node is enqueued
851 >        int lastUnarrived = -1;      // to increase spins upon change
852 >        int spins = SPINS_PER_ARRIVAL;
853 >        long s;
854 >        int p;
855 >        while ((p = (int)((s = current.state) >>> PHASE_SHIFT)) == phase) {
856 >            Phaser par;
857 >            int unarrived = (int)s & UNARRIVED_MASK;
858 >            if (unarrived != lastUnarrived) {
859 >                if (lastUnarrived == -1) // ensure old queue clean
860 >                    releaseWaiters(phase-1);
861 >                if ((lastUnarrived = unarrived) < NCPU)
862 >                    spins += SPINS_PER_ARRIVAL;
863 >            }
864 >            else if (unarrived == 0 && (par = current.parent) != null) {
865 >                current = par;       // if all arrived, use parent
866 >                par = par.parent;
867 >                lastUnarrived = -1;
868 >            }
869 >            else if (spins > 0) {
870 >                if (--spins == (SPINS_PER_ARRIVAL >>> 1))
871 >                    Thread.yield();  // yield midway through spin
872 >            }
873 >            else if (node == null)   // must be noninterruptible
874 >                node = new QNode(this, phase, false, false, 0L);
875 >            else if (node.isReleasable()) {
876 >                if ((p = (int)(root.state >>> PHASE_SHIFT)) != phase)
877 >                    break;
878 >                else
879 >                    return phase;    // aborted
880 >            }
881 >            else if (!queued) {      // push onto queue
882 >                AtomicReference<QNode> head = queueFor(phase);
883 >                QNode q = head.get();
884 >                if (q == null || q.phase == phase) {
885 >                    node.next = q;
886 >                    if ((p = (int)(root.state >>> PHASE_SHIFT)) != phase)
887 >                        break;       // recheck to avoid stale enqueue
888 >                    else
889 >                        queued = head.compareAndSet(q, node);
890 >                }
891 >            }
892 >            else {
893 >                try {
894 >                    ForkJoinPool.managedBlock(node);
895 >                } catch (InterruptedException ie) {
896 >                    node.wasInterrupted = true;
897 >                }
898 >            }
899 >        }
900 >        releaseWaiters(phase);
901 >        if (node != null)
902 >            node.onRelease();
903 >        return p;
904 >    }
905  
906      /**
907       * Wait nodes for Treiber stack representing wait queue
# Line 794 | Line 909 | public class Phaser {
909      static final class QNode implements ForkJoinPool.ManagedBlocker {
910          final Phaser phaser;
911          final int phase;
797        final long startTime;
798        final long nanos;
799        final boolean timed;
912          final boolean interruptible;
913 <        volatile boolean wasInterrupted = false;
913 >        final boolean timed;
914 >        boolean wasInterrupted;
915 >        long nanos;
916 >        long lastTime;
917          volatile Thread thread; // nulled to cancel wait
918          QNode next;
919  
920          QNode(Phaser phaser, int phase, boolean interruptible,
921 <              boolean timed, long startTime, long nanos) {
921 >              boolean timed, long nanos) {
922              this.phaser = phaser;
923              this.phase = phase;
809            this.timed = timed;
924              this.interruptible = interruptible;
811            this.startTime = startTime;
925              this.nanos = nanos;
926 +            this.timed = timed;
927 +            this.lastTime = timed? System.nanoTime() : 0L;
928              thread = Thread.currentThread();
929          }
930  
931          public boolean isReleasable() {
932 <            return (thread == null ||
933 <                    phaser.getPhase() != phase ||
934 <                    (interruptible && wasInterrupted) ||
935 <                    (timed && (nanos - (System.nanoTime() - startTime)) <= 0));
932 >            Thread t = thread;
933 >            if (t != null) {
934 >                if (phaser.getPhase() != phase)
935 >                    t = null;
936 >                else {
937 >                    if (Thread.interrupted())
938 >                        wasInterrupted = true;
939 >                    if (interruptible && wasInterrupted)
940 >                        t = null;
941 >                    else if (timed) {
942 >                        if (nanos > 0) {
943 >                            long now = System.nanoTime();
944 >                            nanos -= now - lastTime;
945 >                            lastTime = now;
946 >                        }
947 >                        if (nanos <= 0)
948 >                            t = null;
949 >                    }
950 >                }
951 >                if (t != null)
952 >                    return false;
953 >                thread = null;
954 >            }
955 >            return true;
956          }
957  
958          public boolean block() {
959 <            if (Thread.interrupted()) {
960 <                wasInterrupted = true;
961 <                if (interruptible)
827 <                    return true;
828 <            }
829 <            if (!timed)
959 >            if (isReleasable())
960 >                return true;
961 >            else if (!timed)
962                  LockSupport.park(this);
963 <            else {
964 <                long waitTime = nanos - (System.nanoTime() - startTime);
833 <                if (waitTime <= 0)
834 <                    return true;
835 <                LockSupport.parkNanos(this, waitTime);
836 <            }
963 >            else if (nanos > 0)
964 >                LockSupport.parkNanos(this, nanos);
965              return isReleasable();
966          }
967  
# Line 845 | Line 973 | public class Phaser {
973              }
974          }
975  
976 <        boolean doWait() {
977 <            if (thread != null) {
978 <                try {
979 <                    ForkJoinPool.managedBlock(this);
980 <                } catch (InterruptedException ie) {
853 <                    wasInterrupted = true; // can't currently happen
854 <                }
855 <            }
856 <            return wasInterrupted;
857 <        }
858 <    }
859 <
860 <    /**
861 <     * Removes and signals waiting threads from wait queue.
862 <     */
863 <    private void releaseWaiters(int phase) {
864 <        AtomicReference<QNode> head = queueFor(phase);
865 <        QNode q;
866 <        while ((q = head.get()) != null) {
867 <            if (head.compareAndSet(q, q.next))
868 <                q.signal();
869 <        }
870 <    }
871 <
872 <    /**
873 <     * Tries to enqueue given node in the appropriate wait queue.
874 <     *
875 <     * @return true if successful
876 <     */
877 <    private boolean tryEnqueue(QNode node) {
878 <        AtomicReference<QNode> head = queueFor(node.phase);
879 <        return head.compareAndSet(node.next = head.get(), node);
880 <    }
881 <
882 <    /**
883 <     * The number of times to spin before blocking waiting for advance.
884 <     */
885 <    static final int MAX_SPINS =
886 <        Runtime.getRuntime().availableProcessors() == 1 ? 0 : 1 << 8;
887 <
888 <    /**
889 <     * Enqueues node and waits unless aborted or signalled.
890 <     *
891 <     * @return current phase
892 <     */
893 <    private int untimedWait(int phase) {
894 <        QNode node = null;
895 <        boolean queued = false;
896 <        boolean interrupted = false;
897 <        int spins = MAX_SPINS;
898 <        int p;
899 <        while ((p = getPhase()) == phase) {
900 <            if (Thread.interrupted())
901 <                interrupted = true;
902 <            else if (spins > 0) {
903 <                if (--spins == 0)
904 <                    Thread.yield();
905 <            }
906 <            else if (node == null)
907 <                node = new QNode(this, phase, false, false, 0, 0);
908 <            else if (!queued)
909 <                queued = tryEnqueue(node);
910 <            else if (node.doWait())
911 <                interrupted = true;
912 <        }
913 <        if (node != null)
914 <            node.thread = null;
915 <        releaseWaiters(phase);
916 <        if (interrupted)
917 <            Thread.currentThread().interrupt();
918 <        return p;
919 <    }
920 <
921 <    /**
922 <     * Interruptible version
923 <     * @return current phase
924 <     */
925 <    private int interruptibleWait(int phase) throws InterruptedException {
926 <        QNode node = null;
927 <        boolean queued = false;
928 <        boolean interrupted = false;
929 <        int spins = MAX_SPINS;
930 <        int p;
931 <        while ((p = getPhase()) == phase && !interrupted) {
932 <            if (Thread.interrupted())
933 <                interrupted = true;
934 <            else if (spins > 0) {
935 <                if (--spins == 0)
936 <                    Thread.yield();
937 <            }
938 <            else if (node == null)
939 <                node = new QNode(this, phase, true, false, 0, 0);
940 <            else if (!queued)
941 <                queued = tryEnqueue(node);
942 <            else if (node.doWait())
943 <                interrupted = true;
976 >        void onRelease() { // actions upon return from internalAwaitAdvance
977 >            if (!interruptible && wasInterrupted)
978 >                Thread.currentThread().interrupt();
979 >            if (thread != null)
980 >                thread = null;
981          }
945        if (node != null)
946            node.thread = null;
947        if (p != phase || (p = getPhase()) != phase)
948            releaseWaiters(phase);
949        if (interrupted)
950            throw new InterruptedException();
951        return p;
952    }
982  
954    /**
955     * Timeout version.
956     * @return current phase
957     */
958    private int timedWait(int phase, long nanos)
959        throws InterruptedException, TimeoutException {
960        long startTime = System.nanoTime();
961        QNode node = null;
962        boolean queued = false;
963        boolean interrupted = false;
964        int spins = MAX_SPINS;
965        int p;
966        while ((p = getPhase()) == phase && !interrupted) {
967            if (Thread.interrupted())
968                interrupted = true;
969            else if (nanos - (System.nanoTime() - startTime) <= 0)
970                break;
971            else if (spins > 0) {
972                if (--spins == 0)
973                    Thread.yield();
974            }
975            else if (node == null)
976                node = new QNode(this, phase, true, true, startTime, nanos);
977            else if (!queued)
978                queued = tryEnqueue(node);
979            else if (node.doWait())
980                interrupted = true;
981        }
982        if (node != null)
983            node.thread = null;
984        if (p != phase || (p = getPhase()) != phase)
985            releaseWaiters(phase);
986        if (interrupted)
987            throw new InterruptedException();
988        if (p == phase)
989            throw new TimeoutException();
990        return p;
983      }
984  
985      // Unsafe mechanics

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines