ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/Phaser.java
(Generate patch)

Comparing jsr166/src/jsr166y/Phaser.java (file contents):
Revision 1.52 by dl, Sat Nov 13 01:27:13 2010 UTC vs.
Revision 1.66 by jsr166, Wed Dec 1 19:12:53 2010 UTC

# Line 34 | Line 34 | import java.util.concurrent.locks.LockSu
34   * Phaser} may be repeatedly awaited.  Method {@link
35   * #arriveAndAwaitAdvance} has effect analogous to {@link
36   * java.util.concurrent.CyclicBarrier#await CyclicBarrier.await}. Each
37 < * generation of a {@code Phaser} has an associated phase number. The
38 < * phase number starts at zero, and advances when all parties arrive
39 < * at the barrier, wrapping around to zero after reaching {@code
37 > * generation of a phaser has an associated phase number. The phase
38 > * number starts at zero, and advances when all parties arrive at the
39 > * phaser, wrapping around to zero after reaching {@code
40   * Integer.MAX_VALUE}. The use of phase numbers enables independent
41 < * control of actions upon arrival at a barrier and upon awaiting
41 > * control of actions upon arrival at a phaser and upon awaiting
42   * others, via two kinds of methods that may be invoked by any
43   * registered party:
44   *
45   * <ul>
46   *
47   *   <li> <b>Arrival.</b> Methods {@link #arrive} and
48 < *       {@link #arriveAndDeregister} record arrival at a
49 < *       barrier. These methods do not block, but return an associated
50 < *       <em>arrival phase number</em>; that is, the phase number of
51 < *       the barrier to which the arrival applied. When the final
52 < *       party for a given phase arrives, an optional barrier action
53 < *       is performed and the phase advances.  Barrier actions,
54 < *       performed by the party triggering a phase advance, are
55 < *       arranged by overriding method {@link #onAdvance(int, int)},
56 < *       which also controls termination. Overriding this method is
57 < *       similar to, but more flexible than, providing a barrier
58 < *       action to a {@code CyclicBarrier}.
48 > *       {@link #arriveAndDeregister} record arrival.  These methods
49 > *       do not block, but return an associated <em>arrival phase
50 > *       number</em>; that is, the phase number of the phaser to which
51 > *       the arrival applied. When the final party for a given phase
52 > *       arrives, an optional action is performed and the phase
53 > *       advances.  These actions are performed by the party
54 > *       triggering a phase advance, and are arranged by overriding
55 > *       method {@link #onAdvance(int, int)}, which also controls
56 > *       termination. Overriding this method is similar to, but more
57 > *       flexible than, providing a barrier action to a {@code
58 > *       CyclicBarrier}.
59   *
60   *   <li> <b>Waiting.</b> Method {@link #awaitAdvance} requires an
61   *       argument indicating an arrival phase number, and returns when
62 < *       the barrier advances to (or is already at) a different phase.
62 > *       the phaser advances to (or is already at) a different phase.
63   *       Unlike similar constructions using {@code CyclicBarrier},
64   *       method {@code awaitAdvance} continues to wait even if the
65   *       waiting thread is interrupted. Interruptible and timeout
66   *       versions are also available, but exceptions encountered while
67   *       tasks wait interruptibly or with timeout do not change the
68 < *       state of the barrier. If necessary, you can perform any
68 > *       state of the phaser. If necessary, you can perform any
69   *       associated recovery within handlers of those exceptions,
70   *       often after invoking {@code forceTermination}.  Phasers may
71   *       also be used by tasks executing in a {@link ForkJoinPool},
# Line 74 | Line 74 | import java.util.concurrent.locks.LockSu
74   *
75   * </ul>
76   *
77 < * <p> <b>Termination.</b> A {@code Phaser} may enter a
78 < * <em>termination</em> state in which all synchronization methods
79 < * immediately return without updating phaser state or waiting for
80 < * advance, and indicating (via a negative phase value) that execution
81 < * is complete.  Termination is triggered when an invocation of {@code
82 < * onAdvance} returns {@code true}.  As illustrated below, when
83 < * phasers control actions with a fixed number of iterations, it is
84 < * often convenient to override this method to cause termination when
85 < * the current phase number reaches a threshold. Method {@link
86 < * #forceTermination} is also available to abruptly release waiting
87 < * threads and allow them to terminate.
88 < *
89 < * <p> <b>Tiering.</b> Phasers may be <em>tiered</em> (i.e., arranged
90 < * in tree structures) to reduce contention. Phasers with large
91 < * numbers of parties that would otherwise experience heavy
77 > * <p> <b>Termination.</b> A phaser may enter a <em>termination</em>
78 > * state in which all synchronization methods immediately return
79 > * without updating phaser state or waiting for advance, and
80 > * indicating (via a negative phase value) that execution is complete.
81 > * Termination is triggered when an invocation of {@code onAdvance}
82 > * returns {@code true}. The default implementation returns {@code
83 > * true} if a deregistration has caused the number of registered
84 > * parties to become zero.  As illustrated below, when phasers control
85 > * actions with a fixed number of iterations, it is often convenient
86 > * to override this method to cause termination when the current phase
87 > * number reaches a threshold. Method {@link #forceTermination} is
88 > * also available to abruptly release waiting threads and allow them
89 > * to terminate.
90 > *
91 > * <p> <b>Tiering.</b> Phasers may be <em>tiered</em> (i.e.,
92 > * constructed in tree structures) to reduce contention. Phasers with
93 > * large numbers of parties that would otherwise experience heavy
94   * synchronization contention costs may instead be set up so that
95   * groups of sub-phasers share a common parent.  This may greatly
96   * increase throughput even though it incurs greater per-operation
# Line 181 | Line 183 | import java.util.concurrent.locks.LockSu
183   * }}</pre>
184   *
185   *
186 < * <p>To create a set of tasks using a tree of phasers,
187 < * you could use code of the following form, assuming a
188 < * Task class with a constructor accepting a phaser that
189 < * it registers with upon construction:
186 > * <p>To create a set of {@code n} tasks using a tree of phasers, you
187 > * could use code of the following form, assuming a Task class with a
188 > * constructor accepting a {@code Phaser} that it registers with upon
189 > * construction. After invocation of {@code build(new Task[n], 0, n,
190 > * new Phaser())}, these tasks could then be started, for example by
191 > * submitting to a pool:
192   *
193   *  <pre> {@code
194 < * void build(Task[] actions, int lo, int hi, Phaser ph) {
194 > * void build(Task[] tasks, int lo, int hi, Phaser ph) {
195   *   if (hi - lo > TASKS_PER_PHASER) {
196   *     for (int i = lo; i < hi; i += TASKS_PER_PHASER) {
197   *       int j = Math.min(i + TASKS_PER_PHASER, hi);
198 < *       build(actions, i, j, new Phaser(ph));
198 > *       build(tasks, i, j, new Phaser(ph));
199   *     }
200   *   } else {
201   *     for (int i = lo; i < hi; ++i)
202 < *       actions[i] = new Task(ph);
202 > *       tasks[i] = new Task(ph);
203   *       // assumes new Task(ph) performs ph.register()
204   *   }
205 < * }
202 < * // .. initially called, for n tasks via
203 < * build(new Task[n], 0, n, new Phaser());}</pre>
205 > * }}</pre>
206   *
207   * The best value of {@code TASKS_PER_PHASER} depends mainly on
208 < * expected barrier synchronization rates. A value as low as four may
209 < * be appropriate for extremely small per-barrier task bodies (thus
208 > * expected synchronization rates. A value as low as four may
209 > * be appropriate for extremely small per-phase task bodies (thus
210   * high rates), or up to hundreds for extremely large ones.
211   *
212   * <p><b>Implementation notes</b>: This implementation restricts the
# Line 224 | Line 226 | public class Phaser {
226       */
227  
228      /**
229 <     * Barrier state representation. Conceptually, a barrier contains
228 <     * four values:
229 >     * Primary state representation, holding four fields:
230       *
231       * * unarrived -- the number of parties yet to hit barrier (bits  0-15)
232       * * parties -- the number of parties to wait              (bits 16-31)
233       * * phase -- the generation of the barrier                (bits 32-62)
234       * * terminated -- set if barrier is terminated            (bit  63 / sign)
235       *
236 <     * However, to efficiently maintain atomicity, these values are
237 <     * packed into a single (atomic) long. Termination uses the sign
238 <     * bit of 32 bit representation of phase, so phase is set to -1 on
239 <     * termination. Good performance relies on keeping state decoding
240 <     * and encoding simple, and keeping race windows short.
236 >     * Except that a phaser with no registered parties is
237 >     * distinguished with the otherwise illegal state of having zero
238 >     * parties and one unarrived parties (encoded as EMPTY below).
239 >     *
240 >     * To efficiently maintain atomicity, these values are packed into
241 >     * a single (atomic) long. Good performance relies on keeping
242 >     * state decoding and encoding simple, and keeping race windows
243 >     * short.
244 >     *
245 >     * All state updates are performed via CAS except initial
246 >     * registration of a sub-phaser (i.e., one with a non-null
247 >     * parent).  In this (relatively rare) case, we use built-in
248 >     * synchronization to lock while first registering with its
249 >     * parent.
250 >     *
251 >     * The phase of a subphaser is allowed to lag that of its
252 >     * ancestors until it is actually accessed.  Method reconcileState
253 >     * is usually attempted only only when the number of unarrived
254 >     * parties appears to be zero, which indicates a potential lag in
255 >     * updating phase after the root advanced.
256       */
257      private volatile long state;
258  
259 <    private static final int  MAX_COUNT      = 0xffff;
260 <    private static final int  MAX_PHASE      = 0x7fffffff;
261 <    private static final int  PARTIES_SHIFT  = 16;
262 <    private static final int  PHASE_SHIFT    = 32;
263 <    private static final long UNARRIVED_MASK = 0xffffL;
264 <    private static final long PARTIES_MASK   = 0xffff0000L;
265 <    private static final long ONE_ARRIVAL    = 1L;
266 <    private static final long ONE_PARTY      = 1L << PARTIES_SHIFT;
267 <    private static final long TERMINATION_PHASE  = -1L << PHASE_SHIFT;
259 >    private static final int  MAX_PARTIES     = 0xffff;
260 >    private static final int  MAX_PHASE       = 0x7fffffff;
261 >    private static final int  PARTIES_SHIFT   = 16;
262 >    private static final int  PHASE_SHIFT     = 32;
263 >    private static final int  UNARRIVED_MASK  = 0xffff;      // to mask ints
264 >    private static final long PARTIES_MASK    = 0xffff0000L; // to mask longs
265 >    private static final long TERMINATION_BIT = 1L << 63;
266 >
267 >    // some special values
268 >    private static final int  ONE_ARRIVAL     = 1;
269 >    private static final int  ONE_PARTY       = 1 << PARTIES_SHIFT;
270 >    private static final int  EMPTY           = 1;
271  
272      // The following unpacking methods are usually manually inlined
273  
274      private static int unarrivedOf(long s) {
275 <        return (int) (s & UNARRIVED_MASK);
275 >        int counts = (int)s;
276 >        return (counts == EMPTY) ? 0 : counts & UNARRIVED_MASK;
277      }
278  
279      private static int partiesOf(long s) {
280 <        return ((int) (s & PARTIES_MASK)) >>> PARTIES_SHIFT;
280 >        int counts = (int)s;
281 >        return (counts == EMPTY) ? 0 : counts >>> PARTIES_SHIFT;
282      }
283  
284      private static int phaseOf(long s) {
# Line 265 | Line 286 | public class Phaser {
286      }
287  
288      private static int arrivedOf(long s) {
289 <        return partiesOf(s) - unarrivedOf(s);
289 >        int counts = (int)s;
290 >        return (counts == EMPTY) ? 0 :
291 >            (counts >>> PARTIES_SHIFT) - (counts & UNARRIVED_MASK);
292      }
293  
294      /**
# Line 274 | Line 297 | public class Phaser {
297      private final Phaser parent;
298  
299      /**
300 <     * The root of phaser tree. Equals this if not in a tree.  Used to
278 <     * support faster state push-down.
300 >     * The root of phaser tree. Equals this if not in a tree.
301       */
302      private final Phaser root;
303  
# Line 293 | Line 315 | public class Phaser {
315      }
316  
317      /**
318 +     * Returns message string for bounds exceptions on arrival.
319 +     */
320 +    private String badArrive(long s) {
321 +        return "Attempted arrival of unregistered party for " +
322 +            stateToString(s);
323 +    }
324 +
325 +    /**
326 +     * Returns message string for bounds exceptions on registration.
327 +     */
328 +    private String badRegister(long s) {
329 +        return "Attempt to register more than " +
330 +            MAX_PARTIES + " parties for " + stateToString(s);
331 +    }
332 +
333 +    /**
334       * Main implementation for methods arrive and arriveAndDeregister.
335       * Manually tuned to speed up and minimize race windows for the
336       * common case of just decrementing unarrived field.
337       *
338 <     * @param adj - adjustment to apply to state -- either
301 <     * ONE_ARRIVAL (for arrive) or
302 <     * ONE_ARRIVAL|ONE_PARTY (for arriveAndDeregister)
338 >     * @param deregister false for arrive, true for arriveAndDeregister
339       */
340 <    private int doArrive(long adj) {
340 >    private int doArrive(boolean deregister) {
341 >        int adj = deregister ? ONE_ARRIVAL|ONE_PARTY : ONE_ARRIVAL;
342          long s;
343 <        int phase, unarrived;
343 >        int phase;
344          while ((phase = (int)((s = state) >>> PHASE_SHIFT)) >= 0) {
345 <            if ((unarrived = (int)(s & UNARRIVED_MASK)) != 0) {
346 <                if (UNSAFE.compareAndSwapLong(this, stateOffset, s, s -= adj)) {
347 <                    if (unarrived == 1) {
348 <                        Phaser par;
349 <                        long p = s & PARTIES_MASK; // unshifted parties field
350 <                        long lu = p >>> PARTIES_SHIFT;
351 <                        int u = (int)lu;
352 <                        int nextPhase = (phase + 1) & MAX_PHASE;
353 <                        long next = ((long)nextPhase << PHASE_SHIFT) | p | lu;
354 <                        if ((par = parent) == null) {
355 <                            UNSAFE.compareAndSwapLong
356 <                                (this, stateOffset, s, onAdvance(phase, u)?
357 <                                 next | TERMINATION_PHASE : next);
358 <                            releaseWaiters(phase);
359 <                        }
360 <                        else {
361 <                            par.doArrive(u == 0?
362 <                                         ONE_ARRIVAL|ONE_PARTY : ONE_ARRIVAL);
363 <                            if ((int)(par.state >>> PHASE_SHIFT) != nextPhase ||
364 <                                ((int)(state >>> PHASE_SHIFT) != nextPhase &&
365 <                                 !UNSAFE.compareAndSwapLong(this, stateOffset,
366 <                                                            s, next)))
367 <                                reconcileState();
368 <                        }
345 >            int counts = (int)s;
346 >            int unarrived = counts & UNARRIVED_MASK;
347 >            if (counts == EMPTY || unarrived == 0) {
348 >                if (reconcileState() == s)
349 >                    throw new IllegalStateException(badArrive(s));
350 >            }
351 >            else if (UNSAFE.compareAndSwapLong(this, stateOffset, s, s-=adj)) {
352 >                if (unarrived == 1) {
353 >                    long n = s & PARTIES_MASK;       // unshifted parties field
354 >                    int u = ((int)n) >>> PARTIES_SHIFT;
355 >                    Phaser par = parent;
356 >                    if (par != null) {
357 >                        par.doArrive(u == 0);
358 >                        reconcileState();
359 >                    }
360 >                    else {
361 >                        n |= (((long)((phase+1) & MAX_PHASE)) << PHASE_SHIFT);
362 >                        if (onAdvance(phase, u))
363 >                            n |= TERMINATION_BIT;
364 >                        else if (u == 0)
365 >                            n |= EMPTY;             // reset to unregistered
366 >                        else
367 >                            n |= (long)u;           // reset unarr to parties
368 >                        // assert state == s || isTerminated();
369 >                        UNSAFE.compareAndSwapLong(this, stateOffset, s, n);
370 >                        releaseWaiters(phase);
371                      }
333                    break;
372                  }
373 +                break;
374              }
336            else if (state == s && reconcileState() == s) // recheck
337                throw new IllegalStateException(badArrive());
375          }
376          return phase;
377      }
378  
379      /**
343     * Returns message string for bounds exceptions on arrival.
344     * Declared out of-line from doArrive to reduce string op bulk.
345     */
346    private String badArrive() {
347        return ("Attempted arrival of unregistered party for " +
348                this.toString());
349    }
350
351    /**
380       * Implementation of register, bulkRegister
381       *
382 <     * @param registrations number to add to both parties and unarrived fields
382 >     * @param registrations number to add to both parties and
383 >     * unarrived fields. Must be greater than zero.
384       */
385      private int doRegister(int registrations) {
386 <        long adj = (long)registrations; // adjustment to state
387 <        adj |= adj << PARTIES_SHIFT;
386 >        // adjustment to state
387 >        long adj = ((long)registrations << PARTIES_SHIFT) | registrations;
388          Phaser par = parent;
360        long s;
389          int phase;
390 <        while ((phase = (int)((s = (par == null? state : reconcileState()))
391 <                              >>> PHASE_SHIFT)) >= 0) {
392 <            int parties = ((int)(s & PARTIES_MASK)) >>> PARTIES_SHIFT;
393 <            if (parties != 0 && (s & UNARRIVED_MASK) == 0)
394 <                internalAwaitAdvance(phase, null); // wait for onAdvance
395 <            else if (parties + registrations > MAX_COUNT)
396 <                throw new IllegalStateException(badRegister());
397 <            else if (UNSAFE.compareAndSwapLong(this, stateOffset, s, s + adj))
390 >        for (;;) {
391 >            long s = state;
392 >            int counts = (int)s;
393 >            int parties = counts >>> PARTIES_SHIFT;
394 >            int unarrived = counts & UNARRIVED_MASK;
395 >            if (registrations > MAX_PARTIES - parties)
396 >                throw new IllegalStateException(badRegister(s));
397 >            else if ((phase = (int)(s >>> PHASE_SHIFT)) < 0)
398                  break;
399 +            else if (counts != EMPTY) {             // not 1st registration
400 +                if (par == null || reconcileState() == s) {
401 +                    if (unarrived == 0)             // wait out advance
402 +                        root.internalAwaitAdvance(phase, null);
403 +                    else if (UNSAFE.compareAndSwapLong(this, stateOffset,
404 +                                                       s, s + adj))
405 +                        break;
406 +                }
407 +            }
408 +            else if (par == null) {                 // 1st root registration
409 +                long next = (((long) phase) << PHASE_SHIFT) | adj;
410 +                if (UNSAFE.compareAndSwapLong(this, stateOffset, s, next))
411 +                    break;
412 +            }
413 +            else {
414 +                synchronized (this) {               // 1st sub registration
415 +                    if (state == s) {               // recheck under lock
416 +                        par.doRegister(1);
417 +                        do {                        // force current phase
418 +                            phase = (int)(root.state >>> PHASE_SHIFT);
419 +                            // assert phase < 0 || (int)state == EMPTY;
420 +                        } while (!UNSAFE.compareAndSwapLong
421 +                                 (this, stateOffset, state,
422 +                                  (((long) phase) << PHASE_SHIFT) | adj));
423 +                        break;
424 +                    }
425 +                }
426 +            }
427          }
428          return phase;
429      }
430  
431      /**
432 <     * Returns message string for bounds exceptions on registration
377 <     */
378 <    private String badRegister() {
379 <        return ("Attempt to register more than " + MAX_COUNT + " parties for "+
380 <                this.toString());
381 <    }
382 <
383 <    /**
384 <     * Recursively resolves lagged phase propagation from root if
385 <     * necessary.
432 >     * Resolves lagged phase propagation from root if necessary.
433       */
434      private long reconcileState() {
388        Phaser par = parent;
389        if (par == null)
390            return state;
435          Phaser rt = root;
436 <        long s;
437 <        int phase, rPhase;
438 <        while ((phase = (int)((s = state) >>> PHASE_SHIFT)) >= 0 &&
439 <               (rPhase = (int)(rt.state >>> PHASE_SHIFT)) != phase) {
440 <            if (rPhase < 0 || (s & UNARRIVED_MASK) == 0) {
441 <                long ps = par.parent == null? par.state : par.reconcileState();
442 <                int pPhase = (int)(ps >>> PHASE_SHIFT);
443 <                if (pPhase < 0 || pPhase == ((phase + 1) & MAX_PHASE)) {
444 <                    if (state != s)
445 <                        continue;
446 <                    long p = s & PARTIES_MASK;
447 <                    long next = ((((long) pPhase) << PHASE_SHIFT) |
448 <                                 (p >>> PARTIES_SHIFT) | p);
449 <                    if (UNSAFE.compareAndSwapLong(this, stateOffset, s, next))
406 <                        return next;
436 >        long s = state;
437 >        if (rt != this) {
438 >            int phase;
439 >            while ((phase = (int)(rt.state >>> PHASE_SHIFT)) !=
440 >                   (int)(s >>> PHASE_SHIFT)) {
441 >                // assert phase < 0 || unarrivedOf(s) == 0
442 >                long t;                             // to reread s
443 >                long p = s & PARTIES_MASK;          // unshifted parties field
444 >                long n = (((long) phase) << PHASE_SHIFT) | p;
445 >                if (phase >= 0) {
446 >                    if (p == 0L)
447 >                        n |= EMPTY;                 // reset to empty
448 >                    else
449 >                        n |= p >>> PARTIES_SHIFT;   // set unarr to parties
450                  }
451 +                if ((t = state) == s &&
452 +                    UNSAFE.compareAndSwapLong(this, stateOffset, s, s = n))
453 +                    break;
454 +                s = t;
455              }
409            if (state == s)
410                releaseWaiters(phase); // help release others
456          }
457          return s;
458      }
459  
460      /**
461 <     * Creates a new phaser without any initially registered parties,
462 <     * initial phase number 0, and no parent. Any thread using this
461 >     * Creates a new phaser with no initially registered parties, no
462 >     * parent, and initial phase number 0. Any thread using this
463       * phaser will need to first register for it.
464       */
465      public Phaser() {
# Line 423 | Line 468 | public class Phaser {
468  
469      /**
470       * Creates a new phaser with the given number of registered
471 <     * unarrived parties, initial phase number 0, and no parent.
471 >     * unarrived parties, no parent, and initial phase number 0.
472       *
473 <     * @param parties the number of parties required to trip barrier
473 >     * @param parties the number of parties required to advance to the
474 >     * next phase
475       * @throws IllegalArgumentException if parties less than zero
476       * or greater than the maximum number of parties supported
477       */
# Line 434 | Line 480 | public class Phaser {
480      }
481  
482      /**
483 <     * Creates a new phaser with the given parent, without any
438 <     * initially registered parties. If parent is non-null this phaser
439 <     * is registered with the parent and its initial phase number is
440 <     * the same as that of parent phaser.
483 >     * Equivalent to {@link #Phaser(Phaser, int) Phaser(parent, 0)}.
484       *
485       * @param parent the parent phaser
486       */
# Line 447 | Line 490 | public class Phaser {
490  
491      /**
492       * Creates a new phaser with the given parent and number of
493 <     * registered unarrived parties. If parent is non-null, this phaser
494 <     * is registered with the parent and its initial phase number is
495 <     * the same as that of parent phaser.
493 >     * registered unarrived parties. Registration and deregistration
494 >     * of this child phaser with its parent are managed automatically.
495 >     * If the given parent is non-null, whenever this child phaser has
496 >     * any registered parties (as established in this constructor,
497 >     * {@link #register}, or {@link #bulkRegister}), this child phaser
498 >     * is registered with its parent. Whenever the number of
499 >     * registered parties becomes zero as the result of an invocation
500 >     * of {@link #arriveAndDeregister}, this child phaser is
501 >     * deregistered from its parent.
502       *
503       * @param parent the parent phaser
504 <     * @param parties the number of parties required to trip barrier
504 >     * @param parties the number of parties required to advance to the
505 >     * next phase
506       * @throws IllegalArgumentException if parties less than zero
507       * or greater than the maximum number of parties supported
508       */
509      public Phaser(Phaser parent, int parties) {
510 <        if (parties < 0 || parties > MAX_COUNT)
510 >        if (parties >>> PARTIES_SHIFT != 0)
511              throw new IllegalArgumentException("Illegal number of parties");
512 <        int phase;
512 >        int phase = 0;
513          this.parent = parent;
514          if (parent != null) {
515              Phaser r = parent.root;
516              this.root = r;
517              this.evenQ = r.evenQ;
518              this.oddQ = r.oddQ;
519 <            phase = parent.register();
519 >            if (parties != 0)
520 >                phase = parent.doRegister(1);
521          }
522          else {
523              this.root = this;
524              this.evenQ = new AtomicReference<QNode>();
525              this.oddQ = new AtomicReference<QNode>();
475            phase = 0;
526          }
527 <        long p = (long)parties;
528 <        this.state = (((long) phase) << PHASE_SHIFT) | p | (p << PARTIES_SHIFT);
527 >        this.state = (parties == 0) ? ((long) EMPTY) :
528 >            ((((long) phase) << PHASE_SHIFT) |
529 >             (((long) parties) << PARTIES_SHIFT) |
530 >             ((long) parties));
531      }
532  
533      /**
534 <     * Adds a new unarrived party to this phaser.
535 <     * If an ongoing invocation of {@link #onAdvance} is in progress,
536 <     * this method may wait until its completion before registering.
534 >     * Adds a new unarrived party to this phaser.  If an ongoing
535 >     * invocation of {@link #onAdvance} is in progress, this method
536 >     * may await its completion before returning.  If this phaser has
537 >     * a parent, and this phaser previously had no registered parties,
538 >     * this phaser is also registered with its parent.
539       *
540       * @return the arrival phase number to which this registration applied
541       * @throws IllegalStateException if attempting to register more
# Line 494 | Line 548 | public class Phaser {
548      /**
549       * Adds the given number of new unarrived parties to this phaser.
550       * If an ongoing invocation of {@link #onAdvance} is in progress,
551 <     * this method may wait until its completion before registering.
551 >     * this method may await its completion before returning.  If this
552 >     * phaser has a parent, and the given number of parities is
553 >     * greater than zero, and this phaser previously had no registered
554 >     * parties, this phaser is also registered with its parent.
555       *
556 <     * @param parties the number of additional parties required to trip barrier
556 >     * @param parties the number of additional parties required to
557 >     * advance to the next phase
558       * @return the arrival phase number to which this registration applied
559       * @throws IllegalStateException if attempting to register more
560       * than the maximum supported number of parties
# Line 505 | Line 563 | public class Phaser {
563      public int bulkRegister(int parties) {
564          if (parties < 0)
565              throw new IllegalArgumentException();
508        if (parties > MAX_COUNT)
509            throw new IllegalStateException(badRegister());
566          if (parties == 0)
567              return getPhase();
568          return doRegister(parties);
569      }
570  
571      /**
572 <     * Arrives at the barrier, but does not wait for others.  (You can
573 <     * in turn wait for others via {@link #awaitAdvance}).  It is an
574 <     * unenforced usage error for an unregistered party to invoke this
575 <     * method.
572 >     * Arrives at this phaser, without waiting for others to arrive.
573 >     *
574 >     * <p>It is a usage error for an unregistered party to invoke this
575 >     * method.  However, this error may result in an {@code
576 >     * IllegalStateException} only upon some subsequent operation on
577 >     * this phaser, if ever.
578       *
579       * @return the arrival phase number, or a negative value if terminated
580       * @throws IllegalStateException if not terminated and the number
581       * of unarrived parties would become negative
582       */
583      public int arrive() {
584 <        return doArrive(ONE_ARRIVAL);
584 >        return doArrive(false);
585      }
586  
587      /**
588 <     * Arrives at the barrier and deregisters from it without waiting
589 <     * for others. Deregistration reduces the number of parties
590 <     * required to trip the barrier in future phases.  If this phaser
588 >     * Arrives at this phaser and deregisters from it without waiting
589 >     * for others to arrive. Deregistration reduces the number of
590 >     * parties required to advance in future phases.  If this phaser
591       * has a parent, and deregistration causes this phaser to have
592 <     * zero parties, this phaser also arrives at and is deregistered
593 <     * from its parent.  It is an unenforced usage error for an
594 <     * unregistered party to invoke this method.
592 >     * zero parties, this phaser is also deregistered from its parent.
593 >     *
594 >     * <p>It is a usage error for an unregistered party to invoke this
595 >     * method.  However, this error may result in an {@code
596 >     * IllegalStateException} only upon some subsequent operation on
597 >     * this phaser, if ever.
598       *
599       * @return the arrival phase number, or a negative value if terminated
600       * @throws IllegalStateException if not terminated and the number
601       * of registered or unarrived parties would become negative
602       */
603      public int arriveAndDeregister() {
604 <        return doArrive(ONE_ARRIVAL|ONE_PARTY);
604 >        return doArrive(true);
605      }
606  
607      /**
608 <     * Arrives at the barrier and awaits others. Equivalent in effect
608 >     * Arrives at this phaser and awaits others. Equivalent in effect
609       * to {@code awaitAdvance(arrive())}.  If you need to await with
610       * interruption or timeout, you can arrange this with an analogous
611       * construction using one of the other forms of the {@code
612       * awaitAdvance} method.  If instead you need to deregister upon
613 <     * arrival, use {@link #arriveAndDeregister}. It is an unenforced
614 <     * usage error for an unregistered party to invoke this method.
613 >     * arrival, use {@code awaitAdvance(arriveAndDeregister())}.
614 >     *
615 >     * <p>It is a usage error for an unregistered party to invoke this
616 >     * method.  However, this error may result in an {@code
617 >     * IllegalStateException} only upon some subsequent operation on
618 >     * this phaser, if ever.
619       *
620       * @return the arrival phase number, or a negative number if terminated
621       * @throws IllegalStateException if not terminated and the number
622       * of unarrived parties would become negative
623       */
624      public int arriveAndAwaitAdvance() {
625 <        return awaitAdvance(arrive());
625 >        return awaitAdvance(doArrive(false));
626      }
627  
628      /**
629 <     * Awaits the phase of the barrier to advance from the given phase
630 <     * value, returning immediately if the current phase of the
631 <     * barrier is not equal to the given phase value or this barrier
567 <     * is terminated.
629 >     * Awaits the phase of this phaser to advance from the given phase
630 >     * value, returning immediately if the current phase is not equal
631 >     * to the given phase value or this phaser is terminated.
632       *
633       * @param phase an arrival phase number, or negative value if
634       * terminated; this argument is normally the value returned by a
635 <     * previous call to {@code arrive} or its variants
635 >     * previous call to {@code arrive} or {@code arriveAndDeregister}.
636       * @return the next arrival phase number, or a negative value
637       * if terminated or argument is negative
638       */
639      public int awaitAdvance(int phase) {
640 +        Phaser rt;
641 +        int p = (int)(state >>> PHASE_SHIFT);
642          if (phase < 0)
643              return phase;
644 <        int p = (int)((parent==null? state : reconcileState()) >>> PHASE_SHIFT);
645 <        if (p != phase)
646 <            return p;
647 <        return internalAwaitAdvance(phase, null);
644 >        if (p == phase) {
645 >            if ((p = (int)((rt = root).state >>> PHASE_SHIFT)) == phase)
646 >                return rt.internalAwaitAdvance(phase, null);
647 >            reconcileState();
648 >        }
649 >        return p;
650      }
651  
652      /**
653 <     * Awaits the phase of the barrier to advance from the given phase
653 >     * Awaits the phase of this phaser to advance from the given phase
654       * value, throwing {@code InterruptedException} if interrupted
655 <     * while waiting, or returning immediately if the current phase of
656 <     * the barrier is not equal to the given phase value or this
657 <     * barrier is terminated.
655 >     * while waiting, or returning immediately if the current phase is
656 >     * not equal to the given phase value or this phaser is
657 >     * terminated.
658       *
659       * @param phase an arrival phase number, or negative value if
660       * terminated; this argument is normally the value returned by a
661 <     * previous call to {@code arrive} or its variants
661 >     * previous call to {@code arrive} or {@code arriveAndDeregister}.
662       * @return the next arrival phase number, or a negative value
663       * if terminated or argument is negative
664       * @throws InterruptedException if thread interrupted while waiting
665       */
666      public int awaitAdvanceInterruptibly(int phase)
667          throws InterruptedException {
668 +        Phaser rt;
669 +        int p = (int)(state >>> PHASE_SHIFT);
670          if (phase < 0)
671              return phase;
672 <        int p = (int)((parent==null? state : reconcileState()) >>> PHASE_SHIFT);
673 <        if (p != phase)
674 <            return p;
675 <        QNode node = new QNode(this, phase, true, false, 0L);
676 <        p = internalAwaitAdvance(phase, node);
677 <        if (node.wasInterrupted)
678 <            throw new InterruptedException();
679 <        else
680 <            return p;
672 >        if (p == phase) {
673 >            if ((p = (int)((rt = root).state >>> PHASE_SHIFT)) == phase) {
674 >                QNode node = new QNode(this, phase, true, false, 0L);
675 >                p = rt.internalAwaitAdvance(phase, node);
676 >                if (node.wasInterrupted)
677 >                    throw new InterruptedException();
678 >            }
679 >            else
680 >                reconcileState();
681 >        }
682 >        return p;
683      }
684  
685      /**
686 <     * Awaits the phase of the barrier to advance from the given phase
686 >     * Awaits the phase of this phaser to advance from the given phase
687       * value or the given timeout to elapse, throwing {@code
688       * InterruptedException} if interrupted while waiting, or
689 <     * returning immediately if the current phase of the barrier is
690 <     * not equal to the given phase value or this barrier is
619 <     * terminated.
689 >     * returning immediately if the current phase is not equal to the
690 >     * given phase value or this phaser is terminated.
691       *
692       * @param phase an arrival phase number, or negative value if
693       * terminated; this argument is normally the value returned by a
694 <     * previous call to {@code arrive} or its variants
694 >     * previous call to {@code arrive} or {@code arriveAndDeregister}.
695       * @param timeout how long to wait before giving up, in units of
696       *        {@code unit}
697       * @param unit a {@code TimeUnit} determining how to interpret the
# Line 634 | Line 705 | public class Phaser {
705                                           long timeout, TimeUnit unit)
706          throws InterruptedException, TimeoutException {
707          long nanos = unit.toNanos(timeout);
708 +        Phaser rt;
709 +        int p = (int)(state >>> PHASE_SHIFT);
710          if (phase < 0)
711              return phase;
712 <        int p = (int)((parent==null? state : reconcileState()) >>> PHASE_SHIFT);
713 <        if (p != phase)
714 <            return p;
715 <        QNode node = new QNode(this, phase, true, true, nanos);
716 <        p = internalAwaitAdvance(phase, node);
717 <        if (node.wasInterrupted)
718 <            throw new InterruptedException();
719 <        else if (p == phase)
720 <            throw new TimeoutException();
721 <        else
722 <            return p;
712 >        if (p == phase) {
713 >            if ((p = (int)((rt = root).state >>> PHASE_SHIFT)) == phase) {
714 >                QNode node = new QNode(this, phase, true, true, nanos);
715 >                p = rt.internalAwaitAdvance(phase, node);
716 >                if (node.wasInterrupted)
717 >                    throw new InterruptedException();
718 >                else if (p == phase)
719 >                    throw new TimeoutException();
720 >            }
721 >            else
722 >                reconcileState();
723 >        }
724 >        return p;
725      }
726  
727      /**
728 <     * Forces this barrier to enter termination state. Counts of
729 <     * arrived and registered parties are unaffected. If this phaser
730 <     * has a parent, it too is terminated. This method may be useful
731 <     * for coordinating recovery after one or more tasks encounter
728 >     * Forces this phaser to enter termination state.  Counts of
729 >     * registered parties are unaffected.  If this phaser is a member
730 >     * of a tiered set of phasers, then all of the phasers in the set
731 >     * are terminated.  If this phaser is already terminated, this
732 >     * method has no effect.  This method may be useful for
733 >     * coordinating recovery after one or more tasks encounter
734       * unexpected exceptions.
735       */
736      public void forceTermination() {
737 <        Phaser r = root;    // force at root then reconcile
737 >        // Only need to change root state
738 >        final Phaser root = this.root;
739          long s;
740 <        while ((s = r.state) >= 0)
741 <            UNSAFE.compareAndSwapLong(r, stateOffset, s, s | TERMINATION_PHASE);
742 <        reconcileState();
743 <        releaseWaiters(0); // signal all threads
744 <        releaseWaiters(1);
740 >        while ((s = root.state) >= 0) {
741 >            long next = (s & ~(long)(MAX_PARTIES)) | TERMINATION_BIT;
742 >            if (UNSAFE.compareAndSwapLong(root, stateOffset, s, next)) {
743 >                releaseWaiters(0); // signal all threads
744 >                releaseWaiters(1);
745 >                return;
746 >            }
747 >        }
748      }
749  
750      /**
751       * Returns the current phase number. The maximum phase number is
752       * {@code Integer.MAX_VALUE}, after which it restarts at
753 <     * zero. Upon termination, the phase number is negative.
753 >     * zero. Upon termination, the phase number is negative,
754 >     * in which case the prevailing phase prior to termination
755 >     * may be obtained via {@code getPhase() + Integer.MIN_VALUE}.
756       *
757       * @return the phase number, or a negative value if terminated
758       */
759      public final int getPhase() {
760 <        return (int)((parent == null? state : reconcileState()) >>> PHASE_SHIFT);
760 >        return (int)(root.state >>> PHASE_SHIFT);
761      }
762  
763      /**
764 <     * Returns the number of parties registered at this barrier.
764 >     * Returns the number of parties registered at this phaser.
765       *
766       * @return the number of parties
767       */
768      public int getRegisteredParties() {
769 <        return partiesOf(parent == null? state : reconcileState());
769 >        return partiesOf(state);
770      }
771  
772      /**
773       * Returns the number of registered parties that have arrived at
774 <     * the current phase of this barrier.
774 >     * the current phase of this phaser.
775       *
776       * @return the number of arrived parties
777       */
778      public int getArrivedParties() {
779 <        return arrivedOf(parent == null? state : reconcileState());
779 >        return arrivedOf(reconcileState());
780      }
781  
782      /**
783       * Returns the number of registered parties that have not yet
784 <     * arrived at the current phase of this barrier.
784 >     * arrived at the current phase of this phaser.
785       *
786       * @return the number of unarrived parties
787       */
788      public int getUnarrivedParties() {
789 <        return unarrivedOf(parent == null? state : reconcileState());
789 >        return unarrivedOf(reconcileState());
790      }
791  
792      /**
# Line 726 | Line 809 | public class Phaser {
809      }
810  
811      /**
812 <     * Returns {@code true} if this barrier has been terminated.
812 >     * Returns {@code true} if this phaser has been terminated.
813       *
814 <     * @return {@code true} if this barrier has been terminated
814 >     * @return {@code true} if this phaser has been terminated
815       */
816      public boolean isTerminated() {
817 <        return (parent == null? state : reconcileState()) < 0;
817 >        return root.state < 0L;
818      }
819  
820      /**
821       * Overridable method to perform an action upon impending phase
822       * advance, and to control termination. This method is invoked
823 <     * upon arrival of the party tripping the barrier (when all other
823 >     * upon arrival of the party advancing this phaser (when all other
824       * waiting parties are dormant).  If this method returns {@code
825 <     * true}, then, rather than advance the phase number, this barrier
826 <     * will be set to a final termination state, and subsequent calls
827 <     * to {@link #isTerminated} will return true. Any (unchecked)
828 <     * Exception or Error thrown by an invocation of this method is
829 <     * propagated to the party attempting to trip the barrier, in
830 <     * which case no advance occurs.
825 >     * true}, this phaser will be set to a final termination state
826 >     * upon advance, and subsequent calls to {@link #isTerminated}
827 >     * will return true. Any (unchecked) Exception or Error thrown by
828 >     * an invocation of this method is propagated to the party
829 >     * attempting to advance this phaser, in which case no advance
830 >     * occurs.
831       *
832       * <p>The arguments to this method provide the state of the phaser
833       * prevailing for the current transition.  The effects of invoking
834 <     * arrival, registration, and waiting methods on this Phaser from
834 >     * arrival, registration, and waiting methods on this phaser from
835       * within {@code onAdvance} are unspecified and should not be
836       * relied on.
837       *
838 <     * <p>If this Phaser is a member of a tiered set of Phasers, then
839 <     * {@code onAdvance} is invoked only for its root Phaser on each
838 >     * <p>If this phaser is a member of a tiered set of phasers, then
839 >     * {@code onAdvance} is invoked only for its root phaser on each
840       * advance.
841       *
842 <     * <p>The default version returns {@code true} when the number of
843 <     * registered parties is zero. Normally, overrides that arrange
844 <     * termination for other reasons should also preserve this
845 <     * property.
842 >     * <p>To support the most common use cases, the default
843 >     * implementation of this method returns {@code true} when the
844 >     * number of registered parties has become zero as the result of a
845 >     * party invoking {@code arriveAndDeregister}.  You can disable
846 >     * this behavior, thus enabling continuation upon future
847 >     * registrations, by overriding this method to always return
848 >     * {@code false}:
849 >     *
850 >     * <pre> {@code
851 >     * Phaser phaser = new Phaser() {
852 >     *   protected boolean onAdvance(int phase, int parties) { return false; }
853 >     * }}</pre>
854       *
855 <     * @param phase the phase number on entering the barrier
855 >     * @param phase the current phase number on entry to this method,
856 >     * before this phaser is advanced
857       * @param registeredParties the current number of registered parties
858 <     * @return {@code true} if this barrier should terminate
858 >     * @return {@code true} if this phaser should terminate
859       */
860      protected boolean onAdvance(int phase, int registeredParties) {
861 <        return registeredParties <= 0;
861 >        return registeredParties == 0;
862      }
863  
864      /**
# Line 776 | Line 868 | public class Phaser {
868       * followed by the number of registered parties, and {@code
869       * "arrived = "} followed by the number of arrived parties.
870       *
871 <     * @return a string identifying this barrier, as well as its state
871 >     * @return a string identifying this phaser, as well as its state
872       */
873      public String toString() {
874 <        long s = reconcileState();
874 >        return stateToString(reconcileState());
875 >    }
876 >
877 >    /**
878 >     * Implementation of toString and string-based error messages
879 >     */
880 >    private String stateToString(long s) {
881          return super.toString() +
882              "[phase = " + phaseOf(s) +
883              " parties = " + partiesOf(s) +
884              " arrived = " + arrivedOf(s) + "]";
885      }
886  
887 +    // Waiting mechanics
888 +
889      /**
890 <     * Removes and signals threads from queue for phase
890 >     * Removes and signals threads from queue for phase.
891       */
892      private void releaseWaiters(int phase) {
893 <        AtomicReference<QNode> head = queueFor(phase);
894 <        QNode q;
895 <        int p;
893 >        QNode q;   // first element of queue
894 >        int p;     // its phase
895 >        Thread t;  // its thread
896 >        //        assert phase != phaseOf(root.state);
897 >        AtomicReference<QNode> head = (phase & 1) == 0 ? evenQ : oddQ;
898          while ((q = head.get()) != null &&
899 <               ((p = q.phase) == phase ||
900 <                (int)(root.state >>> PHASE_SHIFT) != p)) {
901 <            if (head.compareAndSet(q, q.next))
902 <                q.signal();
899 >               q.phase != (int)(root.state >>> PHASE_SHIFT)) {
900 >            if (head.compareAndSet(q, q.next) &&
901 >                (t = q.thread) != null) {
902 >                q.thread = null;
903 >                LockSupport.unpark(t);
904 >            }
905          }
906      }
907  
804    /**
805     * Tries to enqueue given node in the appropriate wait queue.
806     *
807     * @return true if successful
808     */
809    private boolean tryEnqueue(int phase, QNode node) {
810        releaseWaiters(phase-1); // ensure old queue clean
811        AtomicReference<QNode> head = queueFor(phase);
812        QNode q = head.get();
813        return ((q == null || q.phase == phase) &&
814                (int)(root.state >>> PHASE_SHIFT) == phase &&
815                head.compareAndSet(node.next = q, node));
816    }
817
908      /** The number of CPUs, for spin control */
909      private static final int NCPU = Runtime.getRuntime().availableProcessors();
910  
# Line 826 | Line 916 | public class Phaser {
916       * avoid it when threads regularly arrive: When a thread in
917       * internalAwaitAdvance notices another arrival before blocking,
918       * and there appear to be enough CPUs available, it spins
919 <     * SPINS_PER_ARRIVAL more times before continuing to try to
920 <     * block. The value trades off good-citizenship vs big unnecessary
831 <     * slowdowns.
919 >     * SPINS_PER_ARRIVAL more times before blocking. The value trades
920 >     * off good-citizenship vs big unnecessary slowdowns.
921       */
922 <    static final int SPINS_PER_ARRIVAL = NCPU < 2? 1 : 1 << 8;
922 >    static final int SPINS_PER_ARRIVAL = (NCPU < 2) ? 1 : 1 << 8;
923  
924      /**
925       * Possibly blocks and waits for phase to advance unless aborted.
926 +     * Call only from root node.
927       *
928       * @param phase current phase
929 <     * @param node if nonnull, the wait node to track interrupt and timeout;
929 >     * @param node if non-null, the wait node to track interrupt and timeout;
930       * if null, denotes noninterruptible wait
931       * @return current phase
932       */
933      private int internalAwaitAdvance(int phase, QNode node) {
934 <        Phaser current = this;       // to eventually wait at root if tiered
935 <        Phaser par = parent;
936 <        boolean queued = false;
934 >        releaseWaiters(phase-1);          // ensure old queue clean
935 >        boolean queued = false;           // true when node is enqueued
936 >        int lastUnarrived = 0;            // to increase spins upon change
937          int spins = SPINS_PER_ARRIVAL;
848        int lastUnarrived = -1;      // to increase spins upon change
938          long s;
939          int p;
940 <        while ((p = (int)((s = current.state) >>> PHASE_SHIFT)) == phase) {
941 <            int unarrived = (int)(s & UNARRIVED_MASK);
942 <            if (unarrived != lastUnarrived) {
943 <                if ((lastUnarrived = unarrived) < NCPU)
940 >        while ((p = (int)((s = state) >>> PHASE_SHIFT)) == phase) {
941 >            if (node == null) {           // spinning in noninterruptible mode
942 >                int unarrived = (int)s & UNARRIVED_MASK;
943 >                if (unarrived != lastUnarrived &&
944 >                    (lastUnarrived = unarrived) < NCPU)
945                      spins += SPINS_PER_ARRIVAL;
946 +                boolean interrupted = Thread.interrupted();
947 +                if (interrupted || --spins < 0) { // need node to record intr
948 +                    node = new QNode(this, phase, false, false, 0L);
949 +                    node.wasInterrupted = interrupted;
950 +                }
951              }
952 <            else if (unarrived == 0 && par != null) {
858 <                current = par;       // if all arrived, use parent
859 <                par = par.parent;
860 <            }
861 <            else if (spins > 0)
862 <                --spins;
863 <            else if (node == null)
864 <                node = new QNode(this, phase, false, false, 0L);
865 <            else if (node.isReleasable())
952 >            else if (node.isReleasable()) // done or aborted
953                  break;
954 <            else if (!queued)
955 <                queued = tryEnqueue(phase, node);
954 >            else if (!queued) {           // push onto queue
955 >                AtomicReference<QNode> head = (phase & 1) == 0 ? evenQ : oddQ;
956 >                QNode q = node.next = head.get();
957 >                if ((q == null || q.phase == phase) &&
958 >                    (int)(state >>> PHASE_SHIFT) == phase) // avoid stale enq
959 >                    queued = head.compareAndSet(q, node);
960 >            }
961              else {
962                  try {
963                      ForkJoinPool.managedBlock(node);
# Line 874 | Line 966 | public class Phaser {
966                  }
967              }
968          }
969 +
970          if (node != null) {
971              if (node.thread != null)
972 <                node.thread = null;
973 <            if (!node.interruptible && node.wasInterrupted)
972 >                node.thread = null;       // avoid need for unpark()
973 >            if (node.wasInterrupted && !node.interruptible)
974                  Thread.currentThread().interrupt();
975 +            if (p == phase && (p = (int)(state >>> PHASE_SHIFT)) == phase)
976 +                return p;                 // recheck abort
977          }
978 <        if (p == phase)
884 <            p = (int)(reconcileState() >>> PHASE_SHIFT);
885 <        if (p != phase)
886 <            releaseWaiters(phase);
978 >        releaseWaiters(phase);
979          return p;
980      }
981  
# Line 908 | Line 1000 | public class Phaser {
1000              this.interruptible = interruptible;
1001              this.nanos = nanos;
1002              this.timed = timed;
1003 <            this.lastTime = timed? System.nanoTime() : 0L;
1003 >            this.lastTime = timed ? System.nanoTime() : 0L;
1004              thread = Thread.currentThread();
1005          }
1006  
1007          public boolean isReleasable() {
1008 <            Thread t = thread;
1009 <            if (t != null) {
1010 <                if (phaser.getPhase() != phase)
919 <                    t = null;
920 <                else {
921 <                    if (Thread.interrupted())
922 <                        wasInterrupted = true;
923 <                    if (interruptible && wasInterrupted)
924 <                        t = null;
925 <                    else if (timed) {
926 <                        if (nanos > 0) {
927 <                            long now = System.nanoTime();
928 <                            nanos -= now - lastTime;
929 <                            lastTime = now;
930 <                        }
931 <                        if (nanos <= 0)
932 <                            t = null;
933 <                    }
934 <                }
935 <                if (t != null)
936 <                    return false;
1008 >            if (thread == null)
1009 >                return true;
1010 >            if (phaser.getPhase() != phase) {
1011                  thread = null;
1012 +                return true;
1013              }
1014 <            return true;
1014 >            if (Thread.interrupted())
1015 >                wasInterrupted = true;
1016 >            if (wasInterrupted && interruptible) {
1017 >                thread = null;
1018 >                return true;
1019 >            }
1020 >            if (timed) {
1021 >                if (nanos > 0L) {
1022 >                    long now = System.nanoTime();
1023 >                    nanos -= now - lastTime;
1024 >                    lastTime = now;
1025 >                }
1026 >                if (nanos <= 0L) {
1027 >                    thread = null;
1028 >                    return true;
1029 >                }
1030 >            }
1031 >            return false;
1032          }
1033  
1034          public boolean block() {
# Line 948 | Line 1040 | public class Phaser {
1040                  LockSupport.parkNanos(this, nanos);
1041              return isReleasable();
1042          }
951
952        void signal() {
953            Thread t = thread;
954            if (t != null) {
955                thread = null;
956                LockSupport.unpark(t);
957            }
958        }
1043      }
1044  
1045      // Unsafe mechanics

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines