ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/Phaser.java
(Generate patch)

Comparing jsr166/src/jsr166y/Phaser.java (file contents):
Revision 1.24 by jsr166, Mon Jul 27 21:41:53 2009 UTC vs.
Revision 1.54 by dl, Sat Nov 13 13:10:04 2010 UTC

# Line 6 | Line 6
6  
7   package jsr166y;
8  
9 < import java.util.concurrent.*;
10 <
9 > import java.util.concurrent.TimeUnit;
10 > import java.util.concurrent.TimeoutException;
11   import java.util.concurrent.atomic.AtomicReference;
12   import java.util.concurrent.locks.LockSupport;
13  
14   /**
15 < * A reusable synchronization barrier, similar in functionality to a
15 > * A reusable synchronization barrier, similar in functionality to
16   * {@link java.util.concurrent.CyclicBarrier CyclicBarrier} and
17   * {@link java.util.concurrent.CountDownLatch CountDownLatch}
18   * but supporting more flexible usage.
19   *
20 < * <ul>
21 < *
22 < * <li> The number of parties synchronizing on a phaser may vary over
23 < * time.  A task may register to be a party at any time, and may
24 < * deregister upon arriving at the barrier.  As is the case with most
25 < * basic synchronization constructs, registration and deregistration
26 < * affect only internal counts; they do not establish any further
27 < * internal bookkeeping, so tasks cannot query whether they are
28 < * registered. (However, you can introduce such bookkeeping by
29 < * subclassing this class.)
30 < *
31 < * <li> Each generation has an associated phase value, starting at
32 < * zero, and advancing when all parties reach the barrier (wrapping
33 < * around to zero after reaching {@code Integer.MAX_VALUE}).
34 < *
35 < * <li> Like a {@code CyclicBarrier}, a Phaser may be repeatedly
36 < * awaited.  Method {@link #arriveAndAwaitAdvance} has effect
37 < * analogous to {@link java.util.concurrent.CyclicBarrier#await
38 < * CyclicBarrier.await}.  However, phasers separate two aspects of
39 < * coordination, that may also be invoked independently:
20 > * <p> <b>Registration.</b> Unlike the case for other barriers, the
21 > * number of parties <em>registered</em> to synchronize on a phaser
22 > * may vary over time.  Tasks may be registered at any time (using
23 > * methods {@link #register}, {@link #bulkRegister}, or forms of
24 > * constructors establishing initial numbers of parties), and
25 > * optionally deregistered upon any arrival (using {@link
26 > * #arriveAndDeregister}).  As is the case with most basic
27 > * synchronization constructs, registration and deregistration affect
28 > * only internal counts; they do not establish any further internal
29 > * bookkeeping, so tasks cannot query whether they are registered.
30 > * (However, you can introduce such bookkeeping by subclassing this
31 > * class.)
32 > *
33 > * <p> <b>Synchronization.</b> Like a {@code CyclicBarrier}, a {@code
34 > * Phaser} may be repeatedly awaited.  Method {@link
35 > * #arriveAndAwaitAdvance} has effect analogous to {@link
36 > * java.util.concurrent.CyclicBarrier#await CyclicBarrier.await}. Each
37 > * generation of a {@code Phaser} has an associated phase number. The
38 > * phase number starts at zero, and advances when all parties arrive
39 > * at the barrier, wrapping around to zero after reaching {@code
40 > * Integer.MAX_VALUE}. The use of phase numbers enables independent
41 > * control of actions upon arrival at a barrier and upon awaiting
42 > * others, via two kinds of methods that may be invoked by any
43 > * registered party:
44   *
45   * <ul>
46   *
47 < *   <li> Arriving at a barrier. Methods {@link #arrive} and
48 < *       {@link #arriveAndDeregister} do not block, but return
49 < *       the phase value current upon entry to the method.
50 < *
51 < *   <li> Awaiting others. Method {@link #awaitAdvance} requires an
52 < *       argument indicating the entry phase, and returns when the
53 < *       barrier advances to a new phase.
54 < * </ul>
47 > *   <li> <b>Arrival.</b> Methods {@link #arrive} and
48 > *       {@link #arriveAndDeregister} record arrival at a
49 > *       barrier. These methods do not block, but return an associated
50 > *       <em>arrival phase number</em>; that is, the phase number of
51 > *       the barrier to which the arrival applied. When the final
52 > *       party for a given phase arrives, an optional barrier action
53 > *       is performed and the phase advances.  Barrier actions,
54 > *       performed by the party triggering a phase advance, are
55 > *       arranged by overriding method {@link #onAdvance(int, int)},
56 > *       which also controls termination. Overriding this method is
57 > *       similar to, but more flexible than, providing a barrier
58 > *       action to a {@code CyclicBarrier}.
59 > *
60 > *   <li> <b>Waiting.</b> Method {@link #awaitAdvance} requires an
61 > *       argument indicating an arrival phase number, and returns when
62 > *       the barrier advances to (or is already at) a different phase.
63 > *       Unlike similar constructions using {@code CyclicBarrier},
64 > *       method {@code awaitAdvance} continues to wait even if the
65 > *       waiting thread is interrupted. Interruptible and timeout
66 > *       versions are also available, but exceptions encountered while
67 > *       tasks wait interruptibly or with timeout do not change the
68 > *       state of the barrier. If necessary, you can perform any
69 > *       associated recovery within handlers of those exceptions,
70 > *       often after invoking {@code forceTermination}.  Phasers may
71 > *       also be used by tasks executing in a {@link ForkJoinPool},
72 > *       which will ensure sufficient parallelism to execute tasks
73 > *       when others are blocked waiting for a phase to advance.
74   *
75 + * </ul>
76   *
77 < * <li> Barrier actions, performed by the task triggering a phase
78 < * advance while others may be waiting, are arranged by overriding
79 < * method {@link #onAdvance}, that also controls termination.
80 < * Overriding this method may be used to similar but more flexible
81 < * effect as providing a barrier action to a {@code CyclicBarrier}.
82 < *
83 < * <li> Phasers may enter a <em>termination</em> state in which all
84 < * actions immediately return without updating phaser state or waiting
85 < * for advance, and indicating (via a negative phase value) that
86 < * execution is complete.  Termination is triggered by executing the
87 < * overridable {@code onAdvance} method that is invoked each time the
64 < * barrier is about to be tripped. When a phaser is controlling an
65 < * action with a fixed number of iterations, it is often convenient to
66 < * override this method to cause termination when the current phase
67 < * number reaches a threshold. Method {@link #forceTermination} is also
68 < * available to abruptly release waiting threads and allow them to
69 < * terminate.
77 > * <p> <b>Termination.</b> A {@code Phaser} may enter a
78 > * <em>termination</em> state in which all synchronization methods
79 > * immediately return without updating phaser state or waiting for
80 > * advance, and indicating (via a negative phase value) that execution
81 > * is complete.  Termination is triggered when an invocation of {@code
82 > * onAdvance} returns {@code true}.  As illustrated below, when
83 > * phasers control actions with a fixed number of iterations, it is
84 > * often convenient to override this method to cause termination when
85 > * the current phase number reaches a threshold. Method {@link
86 > * #forceTermination} is also available to abruptly release waiting
87 > * threads and allow them to terminate.
88   *
89 < * <li> Phasers may be tiered to reduce contention. Phasers with large
89 > * <p> <b>Tiering.</b> Phasers may be <em>tiered</em> (i.e., arranged
90 > * in tree structures) to reduce contention. Phasers with large
91   * numbers of parties that would otherwise experience heavy
92 < * synchronization contention costs may instead be arranged in trees.
93 < * This will typically greatly increase throughput even though it
94 < * incurs somewhat greater per-operation overhead.
95 < *
96 < * <li> By default, {@code awaitAdvance} continues to wait even if
97 < * the waiting thread is interrupted. And unlike the case in
98 < * {@code CyclicBarrier}, exceptions encountered while tasks wait
99 < * interruptibly or with timeout do not change the state of the
100 < * barrier. If necessary, you can perform any associated recovery
101 < * within handlers of those exceptions, often after invoking
102 < * {@code forceTermination}.
103 < *
104 < * <li>Phasers ensure lack of starvation when used by ForkJoinTasks.
105 < *
106 < * </ul>
92 > * synchronization contention costs may instead be set up so that
93 > * groups of sub-phasers share a common parent.  This may greatly
94 > * increase throughput even though it incurs greater per-operation
95 > * overhead.
96 > *
97 > * <p><b>Monitoring.</b> While synchronization methods may be invoked
98 > * only by registered parties, the current state of a phaser may be
99 > * monitored by any caller.  At any given moment there are {@link
100 > * #getRegisteredParties} parties in total, of which {@link
101 > * #getArrivedParties} have arrived at the current phase ({@link
102 > * #getPhase}).  When the remaining ({@link #getUnarrivedParties})
103 > * parties arrive, the phase advances.  The values returned by these
104 > * methods may reflect transient states and so are not in general
105 > * useful for synchronization control.  Method {@link #toString}
106 > * returns snapshots of these state queries in a form convenient for
107 > * informal monitoring.
108   *
109   * <p><b>Sample usages:</b>
110   *
111   * <p>A {@code Phaser} may be used instead of a {@code CountDownLatch}
112 < * to control a one-shot action serving a variable number of
113 < * parties. The typical idiom is for the method setting this up to
114 < * first register, then start the actions, then deregister, as in:
112 > * to control a one-shot action serving a variable number of parties.
113 > * The typical idiom is for the method setting this up to first
114 > * register, then start the actions, then deregister, as in:
115   *
116   *  <pre> {@code
117 < * void runTasks(List<Runnable> list) {
117 > * void runTasks(List<Runnable> tasks) {
118   *   final Phaser phaser = new Phaser(1); // "1" to register self
119 < *   for (Runnable r : list) {
119 > *   // create and start threads
120 > *   for (Runnable task : tasks) {
121   *     phaser.register();
122   *     new Thread() {
123   *       public void run() {
124   *         phaser.arriveAndAwaitAdvance(); // await all creation
125 < *         r.run();
105 < *         phaser.arriveAndDeregister();   // signal completion
125 > *         task.run();
126   *       }
127   *     }.start();
128   *   }
129   *
130 < *   doSomethingOnBehalfOfWorkers();
131 < *   phaser.arrive(); // allow threads to start
112 < *   int p = phaser.arriveAndDeregister(); // deregister self  ...
113 < *   p = phaser.awaitAdvance(p); // ... and await arrival
114 < *   otherActions(); // do other things while tasks execute
115 < *   phaser.awaitAdvance(p); // await final completion
130 > *   // allow threads to start and deregister self
131 > *   phaser.arriveAndDeregister();
132   * }}</pre>
133   *
134   * <p>One way to cause a set of threads to repeatedly perform actions
135   * for a given number of iterations is to override {@code onAdvance}:
136   *
137   *  <pre> {@code
138 < * void startTasks(List<Runnable> list, final int iterations) {
138 > * void startTasks(List<Runnable> tasks, final int iterations) {
139   *   final Phaser phaser = new Phaser() {
140 < *     public boolean onAdvance(int phase, int registeredParties) {
140 > *     protected boolean onAdvance(int phase, int registeredParties) {
141   *       return phase >= iterations || registeredParties == 0;
142   *     }
143   *   };
144   *   phaser.register();
145 < *   for (Runnable r : list) {
145 > *   for (final Runnable task : tasks) {
146   *     phaser.register();
147   *     new Thread() {
148   *       public void run() {
149   *         do {
150 < *           r.run();
150 > *           task.run();
151   *           phaser.arriveAndAwaitAdvance();
152 < *         } while(!phaser.isTerminated();
152 > *         } while (!phaser.isTerminated());
153   *       }
154   *     }.start();
155   *   }
156   *   phaser.arriveAndDeregister(); // deregister self, don't wait
157   * }}</pre>
158   *
159 < * <p> To create a set of tasks using a tree of phasers,
159 > * If the main task must later await termination, it
160 > * may re-register and then execute a similar loop:
161 > *  <pre> {@code
162 > *   // ...
163 > *   phaser.register();
164 > *   while (!phaser.isTerminated())
165 > *     phaser.arriveAndAwaitAdvance();}</pre>
166 > *
167 > * <p>Related constructions may be used to await particular phase numbers
168 > * in contexts where you are sure that the phase will never wrap around
169 > * {@code Integer.MAX_VALUE}. For example:
170 > *
171 > *  <pre> {@code
172 > * void awaitPhase(Phaser phaser, int phase) {
173 > *   int p = phaser.register(); // assumes caller not already registered
174 > *   while (p < phase) {
175 > *     if (phaser.isTerminated())
176 > *       // ... deal with unexpected termination
177 > *     else
178 > *       p = phaser.arriveAndAwaitAdvance();
179 > *   }
180 > *   phaser.arriveAndDeregister();
181 > * }}</pre>
182 > *
183 > *
184 > * <p>To create a set of tasks using a tree of phasers,
185   * you could use code of the following form, assuming a
186   * Task class with a constructor accepting a phaser that
187 < * it registers for upon construction:
187 > * it registers with upon construction:
188 > *
189   *  <pre> {@code
190 < * void build(Task[] actions, int lo, int hi, Phaser b) {
191 < *   int step = (hi - lo) / TASKS_PER_PHASER;
192 < *   if (step > 1) {
193 < *     int i = lo;
194 < *     while (i < hi) {
153 < *       int r = Math.min(i + step, hi);
154 < *       build(actions, i, r, new Phaser(b));
155 < *       i = r;
190 > * void build(Task[] actions, int lo, int hi, Phaser ph) {
191 > *   if (hi - lo > TASKS_PER_PHASER) {
192 > *     for (int i = lo; i < hi; i += TASKS_PER_PHASER) {
193 > *       int j = Math.min(i + TASKS_PER_PHASER, hi);
194 > *       build(actions, i, j, new Phaser(ph));
195   *     }
196   *   } else {
197   *     for (int i = lo; i < hi; ++i)
198 < *       actions[i] = new Task(b);
199 < *       // assumes new Task(b) performs b.register()
198 > *       actions[i] = new Task(ph);
199 > *       // assumes new Task(ph) performs ph.register()
200   *   }
201   * }
202   * // .. initially called, for n tasks via
# Line 168 | Line 207 | import java.util.concurrent.locks.LockSu
207   * be appropriate for extremely small per-barrier task bodies (thus
208   * high rates), or up to hundreds for extremely large ones.
209   *
171 * </pre>
172 *
210   * <p><b>Implementation notes</b>: This implementation restricts the
211   * maximum number of parties to 65535. Attempts to register additional
212 < * parties result in IllegalStateExceptions. However, you can and
212 > * parties result in {@code IllegalStateException}. However, you can and
213   * should create tiered phasers to accommodate arbitrarily large sets
214   * of participants.
215   *
# Line 190 | Line 227 | public class Phaser {
227       * Barrier state representation. Conceptually, a barrier contains
228       * four values:
229       *
230 <     * * parties -- the number of parties to wait (16 bits)
231 <     * * unarrived -- the number of parties yet to hit barrier (16 bits)
232 <     * * phase -- the generation of the barrier (31 bits)
233 <     * * terminated -- set if barrier is terminated (1 bit)
230 >     * * unarrived -- the number of parties yet to hit barrier (bits  0-15)
231 >     * * parties -- the number of parties to wait              (bits 16-31)
232 >     * * phase -- the generation of the barrier                (bits 32-62)
233 >     * * terminated -- set if barrier is terminated            (bit  63 / sign)
234       *
235       * However, to efficiently maintain atomicity, these values are
236       * packed into a single (atomic) long. Termination uses the sign
237       * bit of 32 bit representation of phase, so phase is set to -1 on
238       * termination. Good performance relies on keeping state decoding
239       * and encoding simple, and keeping race windows short.
203     *
204     * Note: there are some cheats in arrive() that rely on unarrived
205     * count being lowest 16 bits.
240       */
241      private volatile long state;
242  
243 <    private static final int ushortBits = 16;
244 <    private static final int ushortMask = 0xffff;
245 <    private static final int phaseMask  = 0x7fffffff;
243 >    private static final int  MAX_COUNT      = 0xffff;
244 >    private static final int  MAX_PHASE      = 0x7fffffff;
245 >    private static final int  PARTIES_SHIFT  = 16;
246 >    private static final int  PHASE_SHIFT    = 32;
247 >    private static final long UNARRIVED_MASK = 0xffffL;
248 >    private static final long PARTIES_MASK   = 0xffff0000L;
249 >    private static final long ONE_ARRIVAL    = 1L;
250 >    private static final long ONE_PARTY      = 1L << PARTIES_SHIFT;
251 >    private static final long TERMINATION_PHASE  = -1L << PHASE_SHIFT;
252 >
253 >    // The following unpacking methods are usually manually inlined
254  
255      private static int unarrivedOf(long s) {
256 <        return (int) (s & ushortMask);
256 >        return (int) (s & UNARRIVED_MASK);
257      }
258  
259      private static int partiesOf(long s) {
260 <        return ((int) s) >>> 16;
260 >        return ((int) (s & PARTIES_MASK)) >>> PARTIES_SHIFT;
261      }
262  
263      private static int phaseOf(long s) {
264 <        return (int) (s >>> 32);
264 >        return (int) (s >>> PHASE_SHIFT);
265      }
266  
267      private static int arrivedOf(long s) {
268          return partiesOf(s) - unarrivedOf(s);
269      }
270  
229    private static long stateFor(int phase, int parties, int unarrived) {
230        return ((((long) phase) << 32) | (((long) parties) << 16) |
231                (long) unarrived);
232    }
233
234    private static long trippedStateFor(int phase, int parties) {
235        long lp = (long) parties;
236        return (((long) phase) << 32) | (lp << 16) | lp;
237    }
238
239    /**
240     * Returns message string for bad bounds exceptions.
241     */
242    private static String badBounds(int parties, int unarrived) {
243        return ("Attempt to set " + unarrived +
244                " unarrived of " + parties + " parties");
245    }
246
271      /**
272       * The parent of this phaser, or null if none
273       */
# Line 255 | Line 279 | public class Phaser {
279       */
280      private final Phaser root;
281  
258    // Wait queues
259
282      /**
283       * Heads of Treiber stacks for waiting threads. To eliminate
284 <     * contention while releasing some threads while adding others, we
284 >     * contention when releasing some threads while adding others, we
285       * use two of them, alternating across even and odd phases.
286 +     * Subphasers share queues with root to speed up releases.
287       */
288 <    private final AtomicReference<QNode> evenQ = new AtomicReference<QNode>();
289 <    private final AtomicReference<QNode> oddQ  = new AtomicReference<QNode>();
288 >    private final AtomicReference<QNode> evenQ;
289 >    private final AtomicReference<QNode> oddQ;
290  
291      private AtomicReference<QNode> queueFor(int phase) {
292          return ((phase & 1) == 0) ? evenQ : oddQ;
293      }
294  
295      /**
296 <     * Returns current state, first resolving lagged propagation from
297 <     * root if necessary.
296 >     * Main implementation for methods arrive and arriveAndDeregister.
297 >     * Manually tuned to speed up and minimize race windows for the
298 >     * common case of just decrementing unarrived field.
299 >     *
300 >     * @param adj - adjustment to apply to state -- either
301 >     * ONE_ARRIVAL (for arrive) or
302 >     * ONE_ARRIVAL|ONE_PARTY (for arriveAndDeregister)
303       */
304 <    private long getReconciledState() {
305 <        return (parent == null) ? state : reconcileState();
304 >    private int doArrive(long adj) {
305 >        for (;;) {
306 >            long s;
307 >            int phase, unarrived;
308 >            if ((phase = (int)((s = state) >>> PHASE_SHIFT)) < 0)
309 >                return phase;
310 >            else if ((unarrived = (int)(s & UNARRIVED_MASK)) == 0)
311 >                checkBadArrive(s);
312 >            else if (UNSAFE.compareAndSwapLong(this, stateOffset, s, s -= adj)){
313 >                if (unarrived == 1) {
314 >                    Phaser par;
315 >                    long p = s & PARTIES_MASK; // unshifted parties field
316 >                    long lu = p >>> PARTIES_SHIFT;
317 >                    int u = (int)lu;
318 >                    int nextPhase = (phase + 1) & MAX_PHASE;
319 >                    long next = ((long)nextPhase << PHASE_SHIFT) | p | lu;
320 >                    if ((par = parent) == null) {
321 >                        UNSAFE.compareAndSwapLong
322 >                            (this, stateOffset, s, onAdvance(phase, u)?
323 >                             next | TERMINATION_PHASE : next);
324 >                        releaseWaiters(phase);
325 >                    }
326 >                    else {
327 >                        par.doArrive(u == 0?
328 >                                     ONE_ARRIVAL|ONE_PARTY : ONE_ARRIVAL);
329 >                        if ((int)(par.state >>> PHASE_SHIFT) != nextPhase ||
330 >                            ((int)(state >>> PHASE_SHIFT) != nextPhase &&
331 >                             !UNSAFE.compareAndSwapLong(this, stateOffset,
332 >                                                        s, next)))
333 >                            reconcileState();
334 >                    }
335 >                }
336 >                return phase;
337 >            }
338 >        }
339      }
340  
341      /**
342 <     * Recursively resolves state.
342 >     * Rechecks state and throws bounds exceptions on arrival -- called
343 >     * only if unarrived is apparently zero.
344 >     */
345 >    private void checkBadArrive(long s) {
346 >        if (reconcileState() == s)
347 >            throw new IllegalStateException
348 >                ("Attempted arrival of unregistered party for " +
349 >                 stateToString(s));
350 >    }
351 >
352 >    /**
353 >     * Implementation of register, bulkRegister
354 >     *
355 >     * @param registrations number to add to both parties and unarrived fields
356 >     */
357 >    private int doRegister(int registrations) {
358 >        long adj = (long)registrations; // adjustment to state
359 >        adj |= adj << PARTIES_SHIFT;
360 >        Phaser par = parent;
361 >        for (;;) {
362 >            int phase, parties;
363 >            long s = par == null? state : reconcileState();
364 >            if ((phase = (int)(s >>> PHASE_SHIFT)) < 0)
365 >                return phase;
366 >            if ((parties = ((int)(s & PARTIES_MASK)) >>> PARTIES_SHIFT) != 0 &&
367 >                (s & UNARRIVED_MASK) == 0)
368 >                internalAwaitAdvance(phase, null); // wait for onAdvance
369 >            else if (parties + registrations > MAX_COUNT)
370 >                throw new IllegalStateException(badRegister(s));
371 >            else if (UNSAFE.compareAndSwapLong(this, stateOffset, s, s + adj))
372 >                return phase;
373 >        }
374 >    }
375 >
376 >    /**
377 >     * Returns message string for bounds exceptions on registration
378 >     */
379 >    private String badRegister(long s) {
380 >        return "Attempt to register more than " +
381 >            MAX_COUNT + " parties for " + stateToString(s);
382 >    }
383 >
384 >    /**
385 >     * Recursively resolves lagged phase propagation from root if
386 >     * necessary.
387       */
388      private long reconcileState() {
389 <        Phaser p = parent;
390 <        long s = state;
391 <        if (p != null) {
392 <            while (unarrivedOf(s) == 0 && phaseOf(s) != phaseOf(root.state)) {
393 <                long parentState = p.getReconciledState();
394 <                int parentPhase = phaseOf(parentState);
395 <                int phase = phaseOf(s = state);
396 <                if (phase != parentPhase) {
397 <                    long next = trippedStateFor(parentPhase, partiesOf(s));
398 <                    if (casState(s, next)) {
399 <                        releaseWaiters(phase);
400 <                        s = next;
401 <                    }
402 <                }
389 >        Phaser par = parent;
390 >        if (par == null)
391 >            return state;
392 >        Phaser rt = root;
393 >        for (;;) {
394 >            long s, u;
395 >            int phase, rPhase, pPhase;
396 >            if ((phase = (int)((s = state)>>> PHASE_SHIFT)) < 0 ||
397 >                (rPhase = (int)(rt.state >>> PHASE_SHIFT)) == phase)
398 >                return s;
399 >            long pState = par.parent == null? par.state : par.reconcileState();
400 >            if (state == s) {
401 >                if ((rPhase < 0 || (s & UNARRIVED_MASK) == 0) &&
402 >                    ((pPhase = (int)(pState >>> PHASE_SHIFT)) < 0 ||
403 >                     pPhase == ((phase + 1) & MAX_PHASE)))
404 >                    UNSAFE.compareAndSwapLong
405 >                        (this, stateOffset, s,
406 >                         (((long) pPhase) << PHASE_SHIFT) |
407 >                         (u = s & PARTIES_MASK) |
408 >                         (u >>> PARTIES_SHIFT)); // reset unarrived to parties
409 >                else
410 >                    releaseWaiters(phase); // help release others
411              }
412          }
300        return s;
413      }
414  
415      /**
# Line 306 | Line 418 | public class Phaser {
418       * phaser will need to first register for it.
419       */
420      public Phaser() {
421 <        this(null);
421 >        this(null, 0);
422      }
423  
424      /**
425 <     * Creates a new phaser with the given numbers of registered
425 >     * Creates a new phaser with the given number of registered
426       * unarrived parties, initial phase number 0, and no parent.
427       *
428       * @param parties the number of parties required to trip barrier
# Line 330 | Line 442 | public class Phaser {
442       * @param parent the parent phaser
443       */
444      public Phaser(Phaser parent) {
445 <        int phase = 0;
334 <        this.parent = parent;
335 <        if (parent != null) {
336 <            this.root = parent.root;
337 <            phase = parent.register();
338 <        }
339 <        else
340 <            this.root = this;
341 <        this.state = trippedStateFor(phase, 0);
445 >        this(parent, 0);
446      }
447  
448      /**
449 <     * Creates a new phaser with the given parent and numbers of
449 >     * Creates a new phaser with the given parent and number of
450       * registered unarrived parties. If parent is non-null, this phaser
451       * is registered with the parent and its initial phase number is
452       * the same as that of parent phaser.
# Line 353 | Line 457 | public class Phaser {
457       * or greater than the maximum number of parties supported
458       */
459      public Phaser(Phaser parent, int parties) {
460 <        if (parties < 0 || parties > ushortMask)
460 >        if (parties < 0 || parties > MAX_COUNT)
461              throw new IllegalArgumentException("Illegal number of parties");
462 <        int phase = 0;
462 >        int phase;
463          this.parent = parent;
464          if (parent != null) {
465 <            this.root = parent.root;
465 >            Phaser r = parent.root;
466 >            this.root = r;
467 >            this.evenQ = r.evenQ;
468 >            this.oddQ = r.oddQ;
469              phase = parent.register();
470          }
471 <        else
471 >        else {
472              this.root = this;
473 <        this.state = trippedStateFor(phase, parties);
473 >            this.evenQ = new AtomicReference<QNode>();
474 >            this.oddQ = new AtomicReference<QNode>();
475 >            phase = 0;
476 >        }
477 >        long p = (long)parties;
478 >        this.state = (((long) phase) << PHASE_SHIFT) | p | (p << PARTIES_SHIFT);
479      }
480  
481      /**
482       * Adds a new unarrived party to this phaser.
483 +     * If an ongoing invocation of {@link #onAdvance} is in progress,
484 +     * this method may wait until its completion before registering.
485       *
486 <     * @return the current barrier phase number upon registration
486 >     * @return the arrival phase number to which this registration applied
487       * @throws IllegalStateException if attempting to register more
488       * than the maximum supported number of parties
489       */
# Line 379 | Line 493 | public class Phaser {
493  
494      /**
495       * Adds the given number of new unarrived parties to this phaser.
496 +     * If an ongoing invocation of {@link #onAdvance} is in progress,
497 +     * this method may wait until its completion before registering.
498       *
499 <     * @param parties the number of parties required to trip barrier
500 <     * @return the current barrier phase number upon registration
499 >     * @param parties the number of additional parties required to trip barrier
500 >     * @return the arrival phase number to which this registration applied
501       * @throws IllegalStateException if attempting to register more
502       * than the maximum supported number of parties
503 +     * @throws IllegalArgumentException if {@code parties < 0}
504       */
505      public int bulkRegister(int parties) {
506          if (parties < 0)
507              throw new IllegalArgumentException();
508 +        if (parties > MAX_COUNT)
509 +            throw new IllegalStateException(badRegister(state));
510          if (parties == 0)
511              return getPhase();
512          return doRegister(parties);
513      }
514  
515      /**
397     * Shared code for register, bulkRegister
398     */
399    private int doRegister(int registrations) {
400        int phase;
401        for (;;) {
402            long s = getReconciledState();
403            phase = phaseOf(s);
404            int unarrived = unarrivedOf(s) + registrations;
405            int parties = partiesOf(s) + registrations;
406            if (phase < 0)
407                break;
408            if (parties > ushortMask || unarrived > ushortMask)
409                throw new IllegalStateException(badBounds(parties, unarrived));
410            if (phase == phaseOf(root.state) &&
411                casState(s, stateFor(phase, parties, unarrived)))
412                break;
413        }
414        return phase;
415    }
416
417    /**
516       * Arrives at the barrier, but does not wait for others.  (You can
517 <     * in turn wait for others via {@link #awaitAdvance}).
517 >     * in turn wait for others via {@link #awaitAdvance}).  It is an
518 >     * unenforced usage error for an unregistered party to invoke this
519 >     * method.
520       *
521 <     * @return the barrier phase number upon entry to this method, or a
422 <     * negative value if terminated
521 >     * @return the arrival phase number, or a negative value if terminated
522       * @throws IllegalStateException if not terminated and the number
523       * of unarrived parties would become negative
524       */
525      public int arrive() {
526 <        int phase;
428 <        for (;;) {
429 <            long s = state;
430 <            phase = phaseOf(s);
431 <            if (phase < 0)
432 <                break;
433 <            int parties = partiesOf(s);
434 <            int unarrived = unarrivedOf(s) - 1;
435 <            if (unarrived > 0) {        // Not the last arrival
436 <                if (casState(s, s - 1)) // s-1 adds one arrival
437 <                    break;
438 <            }
439 <            else if (unarrived == 0) {  // the last arrival
440 <                Phaser par = parent;
441 <                if (par == null) {      // directly trip
442 <                    if (casState
443 <                        (s,
444 <                         trippedStateFor(onAdvance(phase, parties) ? -1 :
445 <                                         ((phase + 1) & phaseMask), parties))) {
446 <                        releaseWaiters(phase);
447 <                        break;
448 <                    }
449 <                }
450 <                else {                  // cascade to parent
451 <                    if (casState(s, s - 1)) { // zeroes unarrived
452 <                        par.arrive();
453 <                        reconcileState();
454 <                        break;
455 <                    }
456 <                }
457 <            }
458 <            else if (phase != phaseOf(root.state)) // or if unreconciled
459 <                reconcileState();
460 <            else
461 <                throw new IllegalStateException(badBounds(parties, unarrived));
462 <        }
463 <        return phase;
526 >        return doArrive(ONE_ARRIVAL);
527      }
528  
529      /**
530 <     * Arrives at the barrier, and deregisters from it, without
531 <     * waiting for others. Deregistration reduces number of parties
530 >     * Arrives at the barrier and deregisters from it without waiting
531 >     * for others. Deregistration reduces the number of parties
532       * required to trip the barrier in future phases.  If this phaser
533       * has a parent, and deregistration causes this phaser to have
534 <     * zero parties, this phaser is also deregistered from its parent.
534 >     * zero parties, this phaser also arrives at and is deregistered
535 >     * from its parent.  It is an unenforced usage error for an
536 >     * unregistered party to invoke this method.
537       *
538 <     * @return the current barrier phase number upon entry to
474 <     * this method, or a negative value if terminated
538 >     * @return the arrival phase number, or a negative value if terminated
539       * @throws IllegalStateException if not terminated and the number
540       * of registered or unarrived parties would become negative
541       */
542      public int arriveAndDeregister() {
543 <        // similar code to arrive, but too different to merge
480 <        Phaser par = parent;
481 <        int phase;
482 <        for (;;) {
483 <            long s = state;
484 <            phase = phaseOf(s);
485 <            if (phase < 0)
486 <                break;
487 <            int parties = partiesOf(s) - 1;
488 <            int unarrived = unarrivedOf(s) - 1;
489 <            if (parties >= 0) {
490 <                if (unarrived > 0 || (unarrived == 0 && par != null)) {
491 <                    if (casState
492 <                        (s,
493 <                         stateFor(phase, parties, unarrived))) {
494 <                        if (unarrived == 0) {
495 <                            par.arriveAndDeregister();
496 <                            reconcileState();
497 <                        }
498 <                        break;
499 <                    }
500 <                    continue;
501 <                }
502 <                if (unarrived == 0) {
503 <                    if (casState
504 <                        (s,
505 <                         trippedStateFor(onAdvance(phase, parties) ? -1 :
506 <                                         ((phase + 1) & phaseMask), parties))) {
507 <                        releaseWaiters(phase);
508 <                        break;
509 <                    }
510 <                    continue;
511 <                }
512 <                if (par != null && phase != phaseOf(root.state)) {
513 <                    reconcileState();
514 <                    continue;
515 <                }
516 <            }
517 <            throw new IllegalStateException(badBounds(parties, unarrived));
518 <        }
519 <        return phase;
543 >        return doArrive(ONE_ARRIVAL|ONE_PARTY);
544      }
545  
546      /**
547       * Arrives at the barrier and awaits others. Equivalent in effect
548 <     * to {@code awaitAdvance(arrive())}.  If you instead need to
549 <     * await with interruption of timeout, and/or deregister upon
550 <     * arrival, you can arrange them using analogous constructions.
548 >     * to {@code awaitAdvance(arrive())}.  If you need to await with
549 >     * interruption or timeout, you can arrange this with an analogous
550 >     * construction using one of the other forms of the {@code
551 >     * awaitAdvance} method.  If instead you need to deregister upon
552 >     * arrival, use {@link #arriveAndDeregister}. It is an unenforced
553 >     * usage error for an unregistered party to invoke this method.
554       *
555 <     * @return the phase on entry to this method
555 >     * @return the arrival phase number, or a negative number if terminated
556       * @throws IllegalStateException if not terminated and the number
557       * of unarrived parties would become negative
558       */
# Line 534 | Line 561 | public class Phaser {
561      }
562  
563      /**
564 <     * Awaits the phase of the barrier to advance from the given
565 <     * value, or returns immediately if argument is negative or this
566 <     * barrier is terminated.
567 <     *
568 <     * @param phase the phase on entry to this method
569 <     * @return the phase on exit from this method
564 >     * Awaits the phase of the barrier to advance from the given phase
565 >     * value, returning immediately if the current phase of the
566 >     * barrier is not equal to the given phase value or this barrier
567 >     * is terminated.
568 >     *
569 >     * @param phase an arrival phase number, or negative value if
570 >     * terminated; this argument is normally the value returned by a
571 >     * previous call to {@code arrive} or its variants
572 >     * @return the next arrival phase number, or a negative value
573 >     * if terminated or argument is negative
574       */
575      public int awaitAdvance(int phase) {
576          if (phase < 0)
577              return phase;
578 <        long s = getReconciledState();
548 <        int p = phaseOf(s);
578 >        int p = (int)((parent==null? state : reconcileState()) >>> PHASE_SHIFT);
579          if (p != phase)
580              return p;
581 <        if (unarrivedOf(s) == 0 && parent != null)
552 <            parent.awaitAdvance(phase);
553 <        // Fall here even if parent waited, to reconcile and help release
554 <        return untimedWait(phase);
581 >        return internalAwaitAdvance(phase, null);
582      }
583  
584      /**
585 <     * Awaits the phase of the barrier to advance from the given
586 <     * value, or returns immediately if argument is negative or this
587 <     * barrier is terminated, or throws InterruptedException if
588 <     * interrupted while waiting.
585 >     * Awaits the phase of the barrier to advance from the given phase
586 >     * value, throwing {@code InterruptedException} if interrupted
587 >     * while waiting, or returning immediately if the current phase of
588 >     * the barrier is not equal to the given phase value or this
589 >     * barrier is terminated.
590       *
591 <     * @param phase the phase on entry to this method
592 <     * @return the phase on exit from this method
591 >     * @param phase an arrival phase number, or negative value if
592 >     * terminated; this argument is normally the value returned by a
593 >     * previous call to {@code arrive} or its variants
594 >     * @return the next arrival phase number, or a negative value
595 >     * if terminated or argument is negative
596       * @throws InterruptedException if thread interrupted while waiting
597       */
598      public int awaitAdvanceInterruptibly(int phase)
599          throws InterruptedException {
600          if (phase < 0)
601              return phase;
602 <        long s = getReconciledState();
572 <        int p = phaseOf(s);
602 >        int p = (int)((parent==null? state : reconcileState()) >>> PHASE_SHIFT);
603          if (p != phase)
604              return p;
605 <        if (unarrivedOf(s) == 0 && parent != null)
606 <            parent.awaitAdvanceInterruptibly(phase);
607 <        return interruptibleWait(phase);
605 >        QNode node = new QNode(this, phase, true, false, 0L);
606 >        p = internalAwaitAdvance(phase, node);
607 >        if (node.wasInterrupted)
608 >            throw new InterruptedException();
609 >        else
610 >            return p;
611      }
612  
613      /**
614 <     * Awaits the phase of the barrier to advance from the given value
615 <     * or the given timeout elapses, or returns immediately if
616 <     * argument is negative or this barrier is terminated.
617 <     *
618 <     * @param phase the phase on entry to this method
619 <     * @return the phase on exit from this method
614 >     * Awaits the phase of the barrier to advance from the given phase
615 >     * value or the given timeout to elapse, throwing {@code
616 >     * InterruptedException} if interrupted while waiting, or
617 >     * returning immediately if the current phase of the barrier is
618 >     * not equal to the given phase value or this barrier is
619 >     * terminated.
620 >     *
621 >     * @param phase an arrival phase number, or negative value if
622 >     * terminated; this argument is normally the value returned by a
623 >     * previous call to {@code arrive} or its variants
624 >     * @param timeout how long to wait before giving up, in units of
625 >     *        {@code unit}
626 >     * @param unit a {@code TimeUnit} determining how to interpret the
627 >     *        {@code timeout} parameter
628 >     * @return the next arrival phase number, or a negative value
629 >     * if terminated or argument is negative
630       * @throws InterruptedException if thread interrupted while waiting
631       * @throws TimeoutException if timed out while waiting
632       */
633      public int awaitAdvanceInterruptibly(int phase,
634                                           long timeout, TimeUnit unit)
635          throws InterruptedException, TimeoutException {
636 +        long nanos = unit.toNanos(timeout);
637          if (phase < 0)
638              return phase;
639 <        long s = getReconciledState();
596 <        int p = phaseOf(s);
639 >        int p = (int)((parent==null? state : reconcileState()) >>> PHASE_SHIFT);
640          if (p != phase)
641              return p;
642 <        if (unarrivedOf(s) == 0 && parent != null)
643 <            parent.awaitAdvanceInterruptibly(phase, timeout, unit);
644 <        return timedWait(phase, unit.toNanos(timeout));
642 >        QNode node = new QNode(this, phase, true, true, nanos);
643 >        p = internalAwaitAdvance(phase, node);
644 >        if (node.wasInterrupted)
645 >            throw new InterruptedException();
646 >        else if (p == phase)
647 >            throw new TimeoutException();
648 >        else
649 >            return p;
650      }
651  
652      /**
# Line 609 | Line 657 | public class Phaser {
657       * unexpected exceptions.
658       */
659      public void forceTermination() {
660 <        for (;;) {
661 <            long s = getReconciledState();
662 <            int phase = phaseOf(s);
663 <            int parties = partiesOf(s);
664 <            int unarrived = unarrivedOf(s);
665 <            if (phase < 0 ||
666 <                casState(s, stateFor(-1, parties, unarrived))) {
619 <                releaseWaiters(0);
620 <                releaseWaiters(1);
621 <                if (parent != null)
622 <                    parent.forceTermination();
623 <                return;
624 <            }
625 <        }
660 >        Phaser r = root;    // force at root then reconcile
661 >        long s;
662 >        while ((s = r.state) >= 0)
663 >            UNSAFE.compareAndSwapLong(r, stateOffset, s, s | TERMINATION_PHASE);
664 >        reconcileState();
665 >        releaseWaiters(0); // signal all threads
666 >        releaseWaiters(1);
667      }
668  
669      /**
# Line 633 | Line 674 | public class Phaser {
674       * @return the phase number, or a negative value if terminated
675       */
676      public final int getPhase() {
677 <        return phaseOf(getReconciledState());
637 <    }
638 <
639 <    /**
640 <     * Returns {@code true} if the current phase number equals the given phase.
641 <     *
642 <     * @param phase the phase
643 <     * @return {@code true} if the current phase number equals the given phase
644 <     */
645 <    public final boolean hasPhase(int phase) {
646 <        return phaseOf(getReconciledState()) == phase;
677 >        return (int)((parent==null? state : reconcileState()) >>> PHASE_SHIFT);
678      }
679  
680      /**
# Line 652 | Line 683 | public class Phaser {
683       * @return the number of parties
684       */
685      public int getRegisteredParties() {
686 <        return partiesOf(state);
686 >        return partiesOf(parent==null? state : reconcileState());
687      }
688  
689      /**
690 <     * Returns the number of parties that have arrived at the current
691 <     * phase of this barrier.
690 >     * Returns the number of registered parties that have arrived at
691 >     * the current phase of this barrier.
692       *
693       * @return the number of arrived parties
694       */
695      public int getArrivedParties() {
696 <        return arrivedOf(state);
696 >        return arrivedOf(parent==null? state : reconcileState());
697      }
698  
699      /**
# Line 672 | Line 703 | public class Phaser {
703       * @return the number of unarrived parties
704       */
705      public int getUnarrivedParties() {
706 <        return unarrivedOf(state);
706 >        return unarrivedOf(parent==null? state : reconcileState());
707      }
708  
709      /**
# Line 700 | Line 731 | public class Phaser {
731       * @return {@code true} if this barrier has been terminated
732       */
733      public boolean isTerminated() {
734 <        return getPhase() < 0;
734 >        return (parent == null? state : reconcileState()) < 0;
735      }
736  
737      /**
738 <     * Overridable method to perform an action upon phase advance, and
739 <     * to control termination. This method is invoked whenever the
740 <     * barrier is tripped (and thus all other waiting parties are
741 <     * dormant). If it returns {@code true}, then, rather than advance
742 <     * the phase number, this barrier will be set to a final
743 <     * termination state, and subsequent calls to {@link #isTerminated}
744 <     * will return true.
738 >     * Overridable method to perform an action upon impending phase
739 >     * advance, and to control termination. This method is invoked
740 >     * upon arrival of the party tripping the barrier (when all other
741 >     * waiting parties are dormant).  If this method returns {@code
742 >     * true}, then, rather than advance the phase number, this barrier
743 >     * will be set to a final termination state, and subsequent calls
744 >     * to {@link #isTerminated} will return true. Any (unchecked)
745 >     * Exception or Error thrown by an invocation of this method is
746 >     * propagated to the party attempting to trip the barrier, in
747 >     * which case no advance occurs.
748 >     *
749 >     * <p>The arguments to this method provide the state of the phaser
750 >     * prevailing for the current transition.  The effects of invoking
751 >     * arrival, registration, and waiting methods on this Phaser from
752 >     * within {@code onAdvance} are unspecified and should not be
753 >     * relied on.
754 >     *
755 >     * <p>If this Phaser is a member of a tiered set of Phasers, then
756 >     * {@code onAdvance} is invoked only for its root Phaser on each
757 >     * advance.
758       *
759 <     * <p> The default version returns {@code true} when the number of
759 >     * <p>The default version returns {@code true} when the number of
760       * registered parties is zero. Normally, overrides that arrange
761       * termination for other reasons should also preserve this
762       * property.
763       *
720     * <p> You may override this method to perform an action with side
721     * effects visible to participating tasks, but it is in general
722     * only sensible to do so in designs where all parties register
723     * before any arrive, and all {@link #awaitAdvance} at each phase.
724     * Otherwise, you cannot ensure lack of interference. In
725     * particular, this method may be invoked more than once per
726     * transition if other parties successfully register while the
727     * invocation of this method is in progress, thus postponing the
728     * transition until those parties also arrive, re-triggering this
729     * method.
730     *
764       * @param phase the phase number on entering the barrier
765       * @param registeredParties the current number of registered parties
766       * @return {@code true} if this barrier should terminate
# Line 746 | Line 779 | public class Phaser {
779       * @return a string identifying this barrier, as well as its state
780       */
781      public String toString() {
782 <        long s = getReconciledState();
782 >        return stateToString(reconcileState());
783 >    }
784 >
785 >    /**
786 >     * Implementation of toString and string-based error messages
787 >     */
788 >    private String stateToString(long s) {
789          return super.toString() +
790              "[phase = " + phaseOf(s) +
791              " parties = " + partiesOf(s) +
792              " arrived = " + arrivedOf(s) + "]";
793      }
794  
795 <    // methods for waiting
795 >    // Waiting mechanics
796 >
797 >    /**
798 >     * Removes and signals threads from queue for phase
799 >     */
800 >    private void releaseWaiters(int phase) {
801 >        AtomicReference<QNode> head = queueFor(phase);
802 >        QNode q;
803 >        int p;
804 >        while ((q = head.get()) != null &&
805 >               ((p = q.phase) == phase ||
806 >                (int)(root.state >>> PHASE_SHIFT) != p)) {
807 >            if (head.compareAndSet(q, q.next))
808 >                q.signal();
809 >        }
810 >    }
811 >
812 >    /**
813 >     * Tries to enqueue given node in the appropriate wait queue.
814 >     *
815 >     * @return true if successful
816 >     */
817 >    private boolean tryEnqueue(int phase, QNode node) {
818 >        releaseWaiters(phase-1); // ensure old queue clean
819 >        AtomicReference<QNode> head = queueFor(phase);
820 >        QNode q = head.get();
821 >        return ((q == null || q.phase == phase) &&
822 >                (int)(root.state >>> PHASE_SHIFT) == phase &&
823 >                head.compareAndSet(node.next = q, node));
824 >    }
825 >
826 >    /** The number of CPUs, for spin control */
827 >    private static final int NCPU = Runtime.getRuntime().availableProcessors();
828 >
829 >    /**
830 >     * The number of times to spin before blocking while waiting for
831 >     * advance, per arrival while waiting. On multiprocessors, fully
832 >     * blocking and waking up a large number of threads all at once is
833 >     * usually a very slow process, so we use rechargeable spins to
834 >     * avoid it when threads regularly arrive: When a thread in
835 >     * internalAwaitAdvance notices another arrival before blocking,
836 >     * and there appear to be enough CPUs available, it spins
837 >     * SPINS_PER_ARRIVAL more times before continuing to try to
838 >     * block. The value trades off good-citizenship vs big unnecessary
839 >     * slowdowns.
840 >     */
841 >    static final int SPINS_PER_ARRIVAL = NCPU < 2? 1 : 1 << 8;
842 >
843 >    /**
844 >     * Possibly blocks and waits for phase to advance unless aborted.
845 >     *
846 >     * @param phase current phase
847 >     * @param node if non-null, the wait node to track interrupt and timeout;
848 >     * if null, denotes noninterruptible wait
849 >     * @return current phase
850 >     */
851 >    private int internalAwaitAdvance(int phase, QNode node) {
852 >        Phaser current = this;       // to eventually wait at root if tiered
853 >        boolean queued = false;      // true when node is enqueued
854 >        int lastUnarrived = -1;      // to increase spins upon change
855 >        int spins = SPINS_PER_ARRIVAL;
856 >        for (;;) {
857 >            int p, unarrived;
858 >            Phaser par;
859 >            long s = current.state;
860 >            if ((p = (int)(s >>> PHASE_SHIFT)) != phase) {
861 >                if (node != null)
862 >                    node.onRelease();
863 >                releaseWaiters(phase);
864 >                return p;
865 >            }
866 >            else if ((unarrived = (int)(s & UNARRIVED_MASK)) != lastUnarrived) {
867 >                if ((lastUnarrived = unarrived) < NCPU)
868 >                    spins += SPINS_PER_ARRIVAL;
869 >            }
870 >            else if (unarrived == 0 && (par = current.parent) != null) {
871 >                current = par;       // if all arrived, use parent
872 >                par = par.parent;
873 >                lastUnarrived = -1;
874 >            }
875 >            else if (spins > 0)
876 >                --spins;
877 >            else if (node == null)   // must be noninterruptible
878 >                node = new QNode(this, phase, false, false, 0L);
879 >            else if (node.isReleasable()) {
880 >                if ((int)(reconcileState() >>> PHASE_SHIFT) == phase)
881 >                    return phase;    // aborted
882 >            }
883 >            else if (!queued)
884 >                queued = tryEnqueue(phase, node);
885 >            else {
886 >                try {
887 >                    ForkJoinPool.managedBlock(node);
888 >                } catch (InterruptedException ie) {
889 >                    node.wasInterrupted = true;
890 >                }
891 >            }
892 >        }
893 >    }
894  
895      /**
896       * Wait nodes for Treiber stack representing wait queue
# Line 761 | Line 898 | public class Phaser {
898      static final class QNode implements ForkJoinPool.ManagedBlocker {
899          final Phaser phaser;
900          final int phase;
764        final long startTime;
765        final long nanos;
766        final boolean timed;
901          final boolean interruptible;
902 <        volatile boolean wasInterrupted = false;
902 >        final boolean timed;
903 >        boolean wasInterrupted;
904 >        long nanos;
905 >        long lastTime;
906          volatile Thread thread; // nulled to cancel wait
907          QNode next;
908 +
909          QNode(Phaser phaser, int phase, boolean interruptible,
910 <              boolean timed, long startTime, long nanos) {
910 >              boolean timed, long nanos) {
911              this.phaser = phaser;
912              this.phase = phase;
775            this.timed = timed;
913              this.interruptible = interruptible;
777            this.startTime = startTime;
914              this.nanos = nanos;
915 +            this.timed = timed;
916 +            this.lastTime = timed? System.nanoTime() : 0L;
917              thread = Thread.currentThread();
918          }
919 +
920          public boolean isReleasable() {
921 <            return (thread == null ||
922 <                    phaser.getPhase() != phase ||
923 <                    (interruptible && wasInterrupted) ||
924 <                    (timed && (nanos - (System.nanoTime() - startTime)) <= 0));
921 >            Thread t = thread;
922 >            if (t != null) {
923 >                if (phaser.getPhase() != phase)
924 >                    t = null;
925 >                else {
926 >                    if (Thread.interrupted())
927 >                        wasInterrupted = true;
928 >                    if (interruptible && wasInterrupted)
929 >                        t = null;
930 >                    else if (timed) {
931 >                        if (nanos > 0) {
932 >                            long now = System.nanoTime();
933 >                            nanos -= now - lastTime;
934 >                            lastTime = now;
935 >                        }
936 >                        if (nanos <= 0)
937 >                            t = null;
938 >                    }
939 >                }
940 >                if (t != null)
941 >                    return false;
942 >                thread = null;
943 >            }
944 >            return true;
945          }
946 +
947          public boolean block() {
948 <            if (Thread.interrupted()) {
949 <                wasInterrupted = true;
950 <                if (interruptible)
791 <                    return true;
792 <            }
793 <            if (!timed)
948 >            if (isReleasable())
949 >                return true;
950 >            else if (!timed)
951                  LockSupport.park(this);
952 <            else {
953 <                long waitTime = nanos - (System.nanoTime() - startTime);
797 <                if (waitTime <= 0)
798 <                    return true;
799 <                LockSupport.parkNanos(this, waitTime);
800 <            }
952 >            else if (nanos > 0)
953 >                LockSupport.parkNanos(this, nanos);
954              return isReleasable();
955          }
956 +
957          void signal() {
958              Thread t = thread;
959              if (t != null) {
# Line 807 | Line 961 | public class Phaser {
961                  LockSupport.unpark(t);
962              }
963          }
810        boolean doWait() {
811            if (thread != null) {
812                try {
813                    ForkJoinPool.managedBlock(this, false);
814                } catch (InterruptedException ie) {
815                }
816            }
817            return wasInterrupted;
818        }
819
820    }
821
822    /**
823     * Removes and signals waiting threads from wait queue.
824     */
825    private void releaseWaiters(int phase) {
826        AtomicReference<QNode> head = queueFor(phase);
827        QNode q;
828        while ((q = head.get()) != null) {
829            if (head.compareAndSet(q, q.next))
830                q.signal();
831        }
832    }
964  
965 <    /**
966 <     * Tries to enqueue given node in the appropriate wait queue.
967 <     *
968 <     * @return true if successful
969 <     */
839 <    private boolean tryEnqueue(QNode node) {
840 <        AtomicReference<QNode> head = queueFor(node.phase);
841 <        return head.compareAndSet(node.next = head.get(), node);
842 <    }
843 <
844 <    /**
845 <     * Enqueues node and waits unless aborted or signalled.
846 <     *
847 <     * @return current phase
848 <     */
849 <    private int untimedWait(int phase) {
850 <        QNode node = null;
851 <        boolean queued = false;
852 <        boolean interrupted = false;
853 <        int p;
854 <        while ((p = getPhase()) == phase) {
855 <            if (Thread.interrupted())
856 <                interrupted = true;
857 <            else if (node == null)
858 <                node = new QNode(this, phase, false, false, 0, 0);
859 <            else if (!queued)
860 <                queued = tryEnqueue(node);
861 <            else
862 <                interrupted = node.doWait();
965 >        void onRelease() { // actions upon return from internalAwaitAdvance
966 >            if (!interruptible && wasInterrupted)
967 >                Thread.currentThread().interrupt();
968 >            if (thread != null)
969 >                thread = null;
970          }
864        if (node != null)
865            node.thread = null;
866        releaseWaiters(phase);
867        if (interrupted)
868            Thread.currentThread().interrupt();
869        return p;
870    }
971  
872    /**
873     * Interruptible version
874     * @return current phase
875     */
876    private int interruptibleWait(int phase) throws InterruptedException {
877        QNode node = null;
878        boolean queued = false;
879        boolean interrupted = false;
880        int p;
881        while ((p = getPhase()) == phase && !interrupted) {
882            if (Thread.interrupted())
883                interrupted = true;
884            else if (node == null)
885                node = new QNode(this, phase, true, false, 0, 0);
886            else if (!queued)
887                queued = tryEnqueue(node);
888            else
889                interrupted = node.doWait();
890        }
891        if (node != null)
892            node.thread = null;
893        if (p != phase || (p = getPhase()) != phase)
894            releaseWaiters(phase);
895        if (interrupted)
896            throw new InterruptedException();
897        return p;
898    }
899
900    /**
901     * Timeout version.
902     * @return current phase
903     */
904    private int timedWait(int phase, long nanos)
905        throws InterruptedException, TimeoutException {
906        long startTime = System.nanoTime();
907        QNode node = null;
908        boolean queued = false;
909        boolean interrupted = false;
910        int p;
911        while ((p = getPhase()) == phase && !interrupted) {
912            if (Thread.interrupted())
913                interrupted = true;
914            else if (nanos - (System.nanoTime() - startTime) <= 0)
915                break;
916            else if (node == null)
917                node = new QNode(this, phase, true, true, startTime, nanos);
918            else if (!queued)
919                queued = tryEnqueue(node);
920            else
921                interrupted = node.doWait();
922        }
923        if (node != null)
924            node.thread = null;
925        if (p != phase || (p = getPhase()) != phase)
926            releaseWaiters(phase);
927        if (interrupted)
928            throw new InterruptedException();
929        if (p == phase)
930            throw new TimeoutException();
931        return p;
972      }
973  
974      // Unsafe mechanics
# Line 937 | Line 977 | public class Phaser {
977      private static final long stateOffset =
978          objectFieldOffset("state", Phaser.class);
979  
940    private final boolean casState(long cmp, long val) {
941        return UNSAFE.compareAndSwapLong(this, stateOffset, cmp, val);
942    }
943
980      private static long objectFieldOffset(String field, Class<?> klazz) {
981          try {
982              return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines