ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/Phaser.java
(Generate patch)

Comparing jsr166/src/jsr166y/Phaser.java (file contents):
Revision 1.56 by dl, Wed Nov 17 10:48:59 2010 UTC vs.
Revision 1.63 by dl, Mon Nov 29 15:47:19 2010 UTC

# Line 34 | Line 34 | import java.util.concurrent.locks.LockSu
34   * Phaser} may be repeatedly awaited.  Method {@link
35   * #arriveAndAwaitAdvance} has effect analogous to {@link
36   * java.util.concurrent.CyclicBarrier#await CyclicBarrier.await}. Each
37 < * generation of a {@code Phaser} has an associated phase number. The
38 < * phase number starts at zero, and advances when all parties arrive
39 < * at the barrier, wrapping around to zero after reaching {@code
37 > * generation of a phaser has an associated phase number. The phase
38 > * number starts at zero, and advances when all parties arrive at the
39 > * phaser, wrapping around to zero after reaching {@code
40   * Integer.MAX_VALUE}. The use of phase numbers enables independent
41 < * control of actions upon arrival at a barrier and upon awaiting
41 > * control of actions upon arrival at a phaser and upon awaiting
42   * others, via two kinds of methods that may be invoked by any
43   * registered party:
44   *
45   * <ul>
46   *
47   *   <li> <b>Arrival.</b> Methods {@link #arrive} and
48 < *       {@link #arriveAndDeregister} record arrival at a
49 < *       barrier. These methods do not block, but return an associated
50 < *       <em>arrival phase number</em>; that is, the phase number of
51 < *       the barrier to which the arrival applied. When the final
52 < *       party for a given phase arrives, an optional barrier action
53 < *       is performed and the phase advances.  Barrier actions,
54 < *       performed by the party triggering a phase advance, are
55 < *       arranged by overriding method {@link #onAdvance(int, int)},
56 < *       which also controls termination. Overriding this method is
57 < *       similar to, but more flexible than, providing a barrier
58 < *       action to a {@code CyclicBarrier}.
48 > *       {@link #arriveAndDeregister} record arrival.  These methods
49 > *       do not block, but return an associated <em>arrival phase
50 > *       number</em>; that is, the phase number of the phaser to which
51 > *       the arrival applied. When the final party for a given phase
52 > *       arrives, an optional action is performed and the phase
53 > *       advances.  These actions are performed by the party
54 > *       triggering a phase advance, and are arranged by overriding
55 > *       method {@link #onAdvance(int, int)}, which also controls
56 > *       termination. Overriding this method is similar to, but more
57 > *       flexible than, providing a barrier action to a {@code
58 > *       CyclicBarrier}.
59   *
60   *   <li> <b>Waiting.</b> Method {@link #awaitAdvance} requires an
61   *       argument indicating an arrival phase number, and returns when
62 < *       the barrier advances to (or is already at) a different phase.
62 > *       the phaser advances to (or is already at) a different phase.
63   *       Unlike similar constructions using {@code CyclicBarrier},
64   *       method {@code awaitAdvance} continues to wait even if the
65   *       waiting thread is interrupted. Interruptible and timeout
66   *       versions are also available, but exceptions encountered while
67   *       tasks wait interruptibly or with timeout do not change the
68 < *       state of the barrier. If necessary, you can perform any
68 > *       state of the phaser. If necessary, you can perform any
69   *       associated recovery within handlers of those exceptions,
70   *       often after invoking {@code forceTermination}.  Phasers may
71   *       also be used by tasks executing in a {@link ForkJoinPool},
# Line 74 | Line 74 | import java.util.concurrent.locks.LockSu
74   *
75   * </ul>
76   *
77 < * <p> <b>Termination.</b> A {@code Phaser} may enter a
78 < * <em>termination</em> state in which all synchronization methods
79 < * immediately return without updating phaser state or waiting for
80 < * advance, and indicating (via a negative phase value) that execution
81 < * is complete.  Termination is triggered when an invocation of {@code
82 < * onAdvance} returns {@code true}.  As illustrated below, when
83 < * phasers control actions with a fixed number of iterations, it is
84 < * often convenient to override this method to cause termination when
85 < * the current phase number reaches a threshold. Method {@link
86 < * #forceTermination} is also available to abruptly release waiting
87 < * threads and allow them to terminate.
88 < *
89 < * <p> <b>Tiering.</b> Phasers may be <em>tiered</em> (i.e., arranged
90 < * in tree structures) to reduce contention. Phasers with large
91 < * numbers of parties that would otherwise experience heavy
77 > * <p> <b>Termination.</b> A phaser may enter a <em>termination</em>
78 > * state in which all synchronization methods immediately return
79 > * without updating phaser state or waiting for advance, and
80 > * indicating (via a negative phase value) that execution is complete.
81 > * Termination is triggered when an invocation of {@code onAdvance}
82 > * returns {@code true}. The default implementation returns {@code
83 > * true} if a deregistration has caused the number of registered
84 > * parties to become zero.  As illustrated below, when phasers control
85 > * actions with a fixed number of iterations, it is often convenient
86 > * to override this method to cause termination when the current phase
87 > * number reaches a threshold. Method {@link #forceTermination} is
88 > * also available to abruptly release waiting threads and allow them
89 > * to terminate.
90 > *
91 > * <p> <b>Tiering.</b> Phasers may be <em>tiered</em> (i.e.,
92 > * constructed in tree structures) to reduce contention. Phasers with
93 > * large numbers of parties that would otherwise experience heavy
94   * synchronization contention costs may instead be set up so that
95   * groups of sub-phasers share a common parent.  This may greatly
96   * increase throughput even though it incurs greater per-operation
# Line 183 | Line 185 | import java.util.concurrent.locks.LockSu
185   *
186   * <p>To create a set of tasks using a tree of phasers,
187   * you could use code of the following form, assuming a
188 < * Task class with a constructor accepting a phaser that
188 > * Task class with a constructor accepting a {@code Phaser} that
189   * it registers with upon construction:
190   *
191   *  <pre> {@code
# Line 203 | Line 205 | import java.util.concurrent.locks.LockSu
205   * build(new Task[n], 0, n, new Phaser());}</pre>
206   *
207   * The best value of {@code TASKS_PER_PHASER} depends mainly on
208 < * expected barrier synchronization rates. A value as low as four may
209 < * be appropriate for extremely small per-barrier task bodies (thus
208 > * expected synchronization rates. A value as low as four may
209 > * be appropriate for extremely small per-phase task bodies (thus
210   * high rates), or up to hundreds for extremely large ones.
211   *
212   * <p><b>Implementation notes</b>: This implementation restricts the
# Line 224 | Line 226 | public class Phaser {
226       */
227  
228      /**
229 <     * Barrier state representation. Conceptually, a barrier contains
228 <     * four values:
229 >     * Primary state representation, holding four fields:
230       *
231       * * unarrived -- the number of parties yet to hit barrier (bits  0-15)
232       * * parties -- the number of parties to wait              (bits 16-31)
# Line 240 | Line 241 | public class Phaser {
241       */
242      private volatile long state;
243  
244 <    private static final int  MAX_PARTIES    = 0xffff;
245 <    private static final int  MAX_PHASE      = 0x7fffffff;
246 <    private static final int  PARTIES_SHIFT  = 16;
247 <    private static final int  PHASE_SHIFT    = 32;
248 <    private static final int  UNARRIVED_MASK = 0xffff;
249 <    private static final int  PARTIES_MASK   = 0xffff0000;
250 <    private static final long LPARTIES_MASK  = 0xffff0000L; // long version
251 <    private static final long ONE_ARRIVAL    = 1L;
252 <    private static final long ONE_PARTY      = 1L << PARTIES_SHIFT;
252 <    private static final long TERMINATION_PHASE  = -1L << PHASE_SHIFT;
244 >    private static final int  MAX_PARTIES     = 0xffff;
245 >    private static final int  MAX_PHASE       = 0x7fffffff;
246 >    private static final int  PARTIES_SHIFT   = 16;
247 >    private static final int  PHASE_SHIFT     = 32;
248 >    private static final int  UNARRIVED_MASK  = 0xffff;      // to mask ints
249 >    private static final long PARTIES_MASK    = 0xffff0000L; // to mask longs
250 >    private static final long ONE_ARRIVAL     = 1L;
251 >    private static final long ONE_PARTY       = 1L << PARTIES_SHIFT;
252 >    private static final long TERMINATION_BIT = 1L << 63;
253  
254      // The following unpacking methods are usually manually inlined
255  
# Line 294 | Line 294 | public class Phaser {
294      }
295  
296      /**
297 +     * Returns message string for bounds exceptions on arrival.
298 +     */
299 +    private String badArrive(long s) {
300 +        return "Attempted arrival of unregistered party for " +
301 +            stateToString(s);
302 +    }
303 +
304 +    /**
305 +     * Returns message string for bounds exceptions on registration.
306 +     */
307 +    private String badRegister(long s) {
308 +        return "Attempt to register more than " +
309 +            MAX_PARTIES + " parties for " + stateToString(s);
310 +    }
311 +
312 +    /**
313       * Main implementation for methods arrive and arriveAndDeregister.
314       * Manually tuned to speed up and minimize race windows for the
315       * common case of just decrementing unarrived field.
# Line 304 | Line 320 | public class Phaser {
320       */
321      private int doArrive(long adj) {
322          for (;;) {
323 <            long s;
324 <            int phase, unarrived;
325 <            if ((phase = (int)((s = state) >>> PHASE_SHIFT)) < 0)
323 >            long s = state;
324 >            int unarrived = (int)s & UNARRIVED_MASK;
325 >            int phase = (int)(s >>> PHASE_SHIFT);
326 >            if (phase < 0)
327                  return phase;
328 <            else if ((unarrived = (int)s & UNARRIVED_MASK) == 0)
329 <                checkBadArrive(s);
328 >            else if (unarrived == 0) {
329 >                if (reconcileState() == s)     // recheck
330 >                    throw new IllegalStateException(badArrive(s));
331 >            }
332              else if (UNSAFE.compareAndSwapLong(this, stateOffset, s, s-=adj)) {
333                  if (unarrived == 1) {
334 <                    Phaser par;
316 <                    long p = s & LPARTIES_MASK; // unshifted parties field
334 >                    long p = s & PARTIES_MASK; // unshifted parties field
335                      long lu = p >>> PARTIES_SHIFT;
336                      int u = (int)lu;
337                      int nextPhase = (phase + 1) & MAX_PHASE;
338                      long next = ((long)nextPhase << PHASE_SHIFT) | p | lu;
339 <                    if ((par = parent) == null) {
339 >                    final Phaser parent = this.parent;
340 >                    if (parent == null) {
341                          if (onAdvance(phase, u))
342 <                            next |= TERMINATION_PHASE; // obliterate phase
342 >                            next |= TERMINATION_BIT;
343                          UNSAFE.compareAndSwapLong(this, stateOffset, s, next);
344                          releaseWaiters(phase);
345                      }
346                      else {
347 <                        par.doArrive(u == 0?
348 <                                     ONE_ARRIVAL|ONE_PARTY : ONE_ARRIVAL);
349 <                        if ((int)(par.state >>> PHASE_SHIFT) != nextPhase ||
331 <                            ((int)(state >>> PHASE_SHIFT) != nextPhase &&
332 <                             !UNSAFE.compareAndSwapLong(this, stateOffset,
333 <                                                        s, next)))
347 >                        parent.doArrive((u == 0) ?
348 >                                        ONE_ARRIVAL|ONE_PARTY : ONE_ARRIVAL);
349 >                        if ((int)(parent.state >>> PHASE_SHIFT) != nextPhase)
350                              reconcileState();
351 +                        else if (state == s)
352 +                            UNSAFE.compareAndSwapLong(this, stateOffset, s,
353 +                                                      next);
354                      }
355                  }
356                  return phase;
# Line 340 | Line 359 | public class Phaser {
359      }
360  
361      /**
343     * Rechecks state and throws bounds exceptions on arrival -- called
344     * only if unarrived is apparently zero.
345     */
346    private void checkBadArrive(long s) {
347        if (reconcileState() == s)
348            throw new IllegalStateException
349                ("Attempted arrival of unregistered party for " +
350                 stateToString(s));
351    }
352
353    /**
362       * Implementation of register, bulkRegister
363       *
364 <     * @param registrations number to add to both parties and unarrived fields
364 >     * @param registrations number to add to both parties and
365 >     * unarrived fields. Must be greater than zero.
366       */
367      private int doRegister(int registrations) {
368 <        long adj = (long)registrations; // adjustment to state
369 <        adj |= adj << PARTIES_SHIFT;
370 <        Phaser par = parent;
368 >        // adjustment to state
369 >        long adj = ((long)registrations << PARTIES_SHIFT) | registrations;
370 >        final Phaser parent = this.parent;
371          for (;;) {
372 <            int phase, parties;
373 <            long s = par == null? state : reconcileState();
374 <            if ((phase = (int)(s >>> PHASE_SHIFT)) < 0)
372 >            long s = (parent == null) ? state : reconcileState();
373 >            int parties = (int)s >>> PARTIES_SHIFT;
374 >            int phase = (int)(s >>> PHASE_SHIFT);
375 >            if (phase < 0)
376                  return phase;
377 <            if ((parties = (int)s >>> PARTIES_SHIFT) != 0 &&
368 <                ((int)s & UNARRIVED_MASK) == 0)
369 <                internalAwaitAdvance(phase, null); // wait for onAdvance
370 <            else if (parties + registrations > MAX_PARTIES)
377 >            else if (registrations > MAX_PARTIES - parties)
378                  throw new IllegalStateException(badRegister(s));
379 <            else if (UNSAFE.compareAndSwapLong(this, stateOffset, s, s + adj))
380 <                return phase;
379 >            else if ((parties == 0 && parent == null) || // first reg of root
380 >                     ((int)s & UNARRIVED_MASK) != 0) {   // not advancing
381 >                if (UNSAFE.compareAndSwapLong(this, stateOffset, s, s + adj))
382 >                    return phase;
383 >            }
384 >            else if (parties != 0)               // wait for onAdvance
385 >                root.internalAwaitAdvance(phase, null);
386 >            else {                               // 1st registration of child
387 >                synchronized (this) {            // register parent first
388 >                    if (reconcileState() == s) { // recheck under lock
389 >                        parent.doRegister(1);    // OK if throws IllegalState
390 >                        for (;;) {               // simpler form of outer loop
391 >                            s = reconcileState();
392 >                            phase = (int)(s >>> PHASE_SHIFT);
393 >                            if (phase < 0 ||
394 >                                UNSAFE.compareAndSwapLong(this, stateOffset,
395 >                                                          s, s + adj))
396 >                                return phase;
397 >                        }
398 >                    }
399 >                }
400 >            }
401          }
402      }
403  
404      /**
378     * Returns message string for out of bounds exceptions on registration.
379     */
380    private String badRegister(long s) {
381        return "Attempt to register more than " +
382            MAX_PARTIES + " parties for " + stateToString(s);
383    }
384
385    /**
405       * Recursively resolves lagged phase propagation from root if necessary.
406       */
407      private long reconcileState() {
408          Phaser par = parent;
409 <        if (par == null)
410 <            return state;
411 <        Phaser rt = root;
412 <        for (;;) {
413 <            long s, u;
414 <            int phase, rPhase, pPhase;
415 <            if ((phase = (int)((s = state)>>> PHASE_SHIFT)) < 0 ||
416 <                (rPhase = (int)(rt.state >>> PHASE_SHIFT)) == phase)
417 <                return s;
418 <            long pState = par.parent == null? par.state : par.reconcileState();
419 <            if (state == s) {
420 <                if ((rPhase < 0 || ((int)s & UNARRIVED_MASK) == 0) &&
421 <                    ((pPhase = (int)(pState >>> PHASE_SHIFT)) < 0 ||
422 <                     pPhase == ((phase + 1) & MAX_PHASE)))
423 <                    UNSAFE.compareAndSwapLong
405 <                        (this, stateOffset, s,
406 <                         (((long) pPhase) << PHASE_SHIFT) |
407 <                         (u = s & LPARTIES_MASK) |
408 <                         (u >>> PARTIES_SHIFT)); // reset unarrived to parties
409 <                else
410 <                    releaseWaiters(phase); // help release others
409 >        long s = state;
410 >        if (par != null) {
411 >            Phaser rt = root;
412 >            int phase, rPhase;
413 >            while ((phase = (int)(s >>> PHASE_SHIFT)) >= 0 &&
414 >                   (rPhase = (int)(rt.state >>> PHASE_SHIFT)) != phase) {
415 >                if (par != rt && (int)(par.state >>> PHASE_SHIFT) != rPhase)
416 >                    par.reconcileState();
417 >                else if (rPhase < 0 || ((int)s & UNARRIVED_MASK) == 0) {
418 >                    long u = s & PARTIES_MASK; // reset unarrived to parties
419 >                    long next = ((((long) rPhase) << PHASE_SHIFT) | u |
420 >                                 (u >>> PARTIES_SHIFT));
421 >                    UNSAFE.compareAndSwapLong(this, stateOffset, s, next);
422 >                }
423 >                s = state;
424              }
425          }
426 +        return s;
427      }
428  
429      /**
430 <     * Creates a new phaser without any initially registered parties,
431 <     * initial phase number 0, and no parent. Any thread using this
430 >     * Creates a new phaser with no initially registered parties, no
431 >     * parent, and initial phase number 0. Any thread using this
432       * phaser will need to first register for it.
433       */
434      public Phaser() {
# Line 423 | Line 437 | public class Phaser {
437  
438      /**
439       * Creates a new phaser with the given number of registered
440 <     * unarrived parties, initial phase number 0, and no parent.
440 >     * unarrived parties, no parent, and initial phase number 0.
441       *
442 <     * @param parties the number of parties required to trip barrier
442 >     * @param parties the number of parties required to advance to the
443 >     * next phase
444       * @throws IllegalArgumentException if parties less than zero
445       * or greater than the maximum number of parties supported
446       */
# Line 434 | Line 449 | public class Phaser {
449      }
450  
451      /**
452 <     * Creates a new phaser with the given parent, without any
438 <     * initially registered parties. If parent is non-null this phaser
439 <     * is registered with the parent and its initial phase number is
440 <     * the same as that of parent phaser.
452 >     * Equivalent to {@link #Phaser(Phaser, int) Phaser(parent, 0)}.
453       *
454       * @param parent the parent phaser
455       */
# Line 447 | Line 459 | public class Phaser {
459  
460      /**
461       * Creates a new phaser with the given parent and number of
462 <     * registered unarrived parties. If parent is non-null, this phaser
463 <     * is registered with the parent and its initial phase number is
464 <     * the same as that of parent phaser.
462 >     * registered unarrived parties. Registration and deregistration
463 >     * of this child phaser with its parent are managed automatically.
464 >     * If the given parent is non-null, whenever this child phaser has
465 >     * any registered parties (as established in this constructor,
466 >     * {@link #register}, or {@link #bulkRegister}), this child phaser
467 >     * is registered with its parent. Whenever the number of
468 >     * registered parties becomes zero as the result of an invocation
469 >     * of {@link #arriveAndDeregister}, this child phaser is
470 >     * deregistered from its parent.
471       *
472       * @param parent the parent phaser
473 <     * @param parties the number of parties required to trip barrier
473 >     * @param parties the number of parties required to advance to the
474 >     * next phase
475       * @throws IllegalArgumentException if parties less than zero
476       * or greater than the maximum number of parties supported
477       */
478      public Phaser(Phaser parent, int parties) {
479          if (parties >>> PARTIES_SHIFT != 0)
480              throw new IllegalArgumentException("Illegal number of parties");
481 <        int phase;
481 >        long s = ((long) parties) | (((long) parties) << PARTIES_SHIFT);
482          this.parent = parent;
483          if (parent != null) {
484              Phaser r = parent.root;
485              this.root = r;
486              this.evenQ = r.evenQ;
487              this.oddQ = r.oddQ;
488 <            phase = parent.register();
488 >            if (parties != 0)
489 >                s |= ((long)(parent.doRegister(1))) << PHASE_SHIFT;
490          }
491          else {
492              this.root = this;
493              this.evenQ = new AtomicReference<QNode>();
494              this.oddQ = new AtomicReference<QNode>();
475            phase = 0;
495          }
496 <        long p = (long)parties;
478 <        this.state = (((long)phase) << PHASE_SHIFT) | p | (p << PARTIES_SHIFT);
496 >        this.state = s;
497      }
498  
499      /**
500 <     * Adds a new unarrived party to this phaser.
501 <     * If an ongoing invocation of {@link #onAdvance} is in progress,
502 <     * this method may wait until its completion before registering.
500 >     * Adds a new unarrived party to this phaser.  If an ongoing
501 >     * invocation of {@link #onAdvance} is in progress, this method
502 >     * may await its completion before returning.  If this phaser has
503 >     * a parent, and this phaser previously had no registered parties,
504 >     * this phaser is also registered with its parent.
505       *
506       * @return the arrival phase number to which this registration applied
507       * @throws IllegalStateException if attempting to register more
# Line 494 | Line 514 | public class Phaser {
514      /**
515       * Adds the given number of new unarrived parties to this phaser.
516       * If an ongoing invocation of {@link #onAdvance} is in progress,
517 <     * this method may wait until its completion before registering.
517 >     * this method may await its completion before returning.  If this
518 >     * phaser has a parent, and the given number of parities is
519 >     * greater than zero, and this phaser previously had no registered
520 >     * parties, this phaser is also registered with its parent.
521       *
522 <     * @param parties the number of additional parties required to trip barrier
522 >     * @param parties the number of additional parties required to
523 >     * advance to the next phase
524       * @return the arrival phase number to which this registration applied
525       * @throws IllegalStateException if attempting to register more
526       * than the maximum supported number of parties
# Line 505 | Line 529 | public class Phaser {
529      public int bulkRegister(int parties) {
530          if (parties < 0)
531              throw new IllegalArgumentException();
508        if (parties > MAX_PARTIES)
509            throw new IllegalStateException(badRegister(state));
532          if (parties == 0)
533              return getPhase();
534          return doRegister(parties);
535      }
536  
537      /**
538 <     * Arrives at the barrier, but does not wait for others.  (You can
539 <     * in turn wait for others via {@link #awaitAdvance}).  It is an
540 <     * unenforced usage error for an unregistered party to invoke this
541 <     * method.
538 >     * Arrives at this phaser, without waiting for others to arrive.
539 >     *
540 >     * <p>It is a usage error for an unregistered party to invoke this
541 >     * method.  However, this error may result in an {@code
542 >     * IllegalStateException} only upon some subsequent operation on
543 >     * this phaser, if ever.
544       *
545       * @return the arrival phase number, or a negative value if terminated
546       * @throws IllegalStateException if not terminated and the number
# Line 527 | Line 551 | public class Phaser {
551      }
552  
553      /**
554 <     * Arrives at the barrier and deregisters from it without waiting
555 <     * for others. Deregistration reduces the number of parties
556 <     * required to trip the barrier in future phases.  If this phaser
554 >     * Arrives at this phaser and deregisters from it without waiting
555 >     * for others to arrive. Deregistration reduces the number of
556 >     * parties required to advance in future phases.  If this phaser
557       * has a parent, and deregistration causes this phaser to have
558 <     * zero parties, this phaser also arrives at and is deregistered
559 <     * from its parent.  It is an unenforced usage error for an
560 <     * unregistered party to invoke this method.
558 >     * zero parties, this phaser is also deregistered from its parent.
559 >     *
560 >     * <p>It is a usage error for an unregistered party to invoke this
561 >     * method.  However, this error may result in an {@code
562 >     * IllegalStateException} only upon some subsequent operation on
563 >     * this phaser, if ever.
564       *
565       * @return the arrival phase number, or a negative value if terminated
566       * @throws IllegalStateException if not terminated and the number
# Line 544 | Line 571 | public class Phaser {
571      }
572  
573      /**
574 <     * Arrives at the barrier and awaits others. Equivalent in effect
574 >     * Arrives at this phaser and awaits others. Equivalent in effect
575       * to {@code awaitAdvance(arrive())}.  If you need to await with
576       * interruption or timeout, you can arrange this with an analogous
577       * construction using one of the other forms of the {@code
578       * awaitAdvance} method.  If instead you need to deregister upon
579 <     * arrival, use {@link #arriveAndDeregister}. It is an unenforced
580 <     * usage error for an unregistered party to invoke this method.
579 >     * arrival, use {@code awaitAdvance(arriveAndDeregister())}.
580 >     *
581 >     * <p>It is a usage error for an unregistered party to invoke this
582 >     * method.  However, this error may result in an {@code
583 >     * IllegalStateException} only upon some subsequent operation on
584 >     * this phaser, if ever.
585       *
586       * @return the arrival phase number, or a negative number if terminated
587       * @throws IllegalStateException if not terminated and the number
588       * of unarrived parties would become negative
589       */
590      public int arriveAndAwaitAdvance() {
591 <        return awaitAdvance(arrive());
591 >        return awaitAdvance(doArrive(ONE_ARRIVAL));
592      }
593  
594      /**
595 <     * Awaits the phase of the barrier to advance from the given phase
596 <     * value, returning immediately if the current phase of the
597 <     * barrier is not equal to the given phase value or this barrier
567 <     * is terminated.
595 >     * Awaits the phase of this phaser to advance from the given phase
596 >     * value, returning immediately if the current phase is not equal
597 >     * to the given phase value or this phaser is terminated.
598       *
599       * @param phase an arrival phase number, or negative value if
600       * terminated; this argument is normally the value returned by a
601 <     * previous call to {@code arrive} or its variants
601 >     * previous call to {@code arrive} or {@code arriveAndDeregister}.
602       * @return the next arrival phase number, or a negative value
603       * if terminated or argument is negative
604       */
605      public int awaitAdvance(int phase) {
606 <        int p;
606 >        Phaser rt;
607 >        int p = (int)(state >>> PHASE_SHIFT);
608          if (phase < 0)
609              return phase;
610 <        else if ((p = (int)((parent == null? state : reconcileState())
611 <                            >>> PHASE_SHIFT)) == phase)
612 <            return internalAwaitAdvance(phase, null);
613 <        else
583 <            return p;
610 >        if (p == phase &&
611 >            (p = (int)((rt = root).state >>> PHASE_SHIFT)) == phase)
612 >            return rt.internalAwaitAdvance(phase, null);
613 >        return p;
614      }
615  
616      /**
617 <     * Awaits the phase of the barrier to advance from the given phase
617 >     * Awaits the phase of this phaser to advance from the given phase
618       * value, throwing {@code InterruptedException} if interrupted
619 <     * while waiting, or returning immediately if the current phase of
620 <     * the barrier is not equal to the given phase value or this
621 <     * barrier is terminated.
619 >     * while waiting, or returning immediately if the current phase is
620 >     * not equal to the given phase value or this phaser is
621 >     * terminated.
622       *
623       * @param phase an arrival phase number, or negative value if
624       * terminated; this argument is normally the value returned by a
625 <     * previous call to {@code arrive} or its variants
625 >     * previous call to {@code arrive} or {@code arriveAndDeregister}.
626       * @return the next arrival phase number, or a negative value
627       * if terminated or argument is negative
628       * @throws InterruptedException if thread interrupted while waiting
629       */
630      public int awaitAdvanceInterruptibly(int phase)
631          throws InterruptedException {
632 <        int p;
632 >        Phaser rt;
633 >        int p = (int)(state >>> PHASE_SHIFT);
634          if (phase < 0)
635              return phase;
636 <        if ((p = (int)((parent == null? state : reconcileState())
637 <                       >>> PHASE_SHIFT)) == phase) {
636 >        if (p == phase &&
637 >            (p = (int)((rt = root).state >>> PHASE_SHIFT)) == phase) {
638              QNode node = new QNode(this, phase, true, false, 0L);
639 <            p = internalAwaitAdvance(phase, node);
639 >            p = rt.internalAwaitAdvance(phase, node);
640              if (node.wasInterrupted)
641                  throw new InterruptedException();
642          }
# Line 613 | Line 644 | public class Phaser {
644      }
645  
646      /**
647 <     * Awaits the phase of the barrier to advance from the given phase
647 >     * Awaits the phase of this phaser to advance from the given phase
648       * value or the given timeout to elapse, throwing {@code
649       * InterruptedException} if interrupted while waiting, or
650 <     * returning immediately if the current phase of the barrier is
651 <     * not equal to the given phase value or this barrier is
621 <     * terminated.
650 >     * returning immediately if the current phase is not equal to the
651 >     * given phase value or this phaser is terminated.
652       *
653       * @param phase an arrival phase number, or negative value if
654       * terminated; this argument is normally the value returned by a
655 <     * previous call to {@code arrive} or its variants
655 >     * previous call to {@code arrive} or {@code arriveAndDeregister}.
656       * @param timeout how long to wait before giving up, in units of
657       *        {@code unit}
658       * @param unit a {@code TimeUnit} determining how to interpret the
# Line 636 | Line 666 | public class Phaser {
666                                           long timeout, TimeUnit unit)
667          throws InterruptedException, TimeoutException {
668          long nanos = unit.toNanos(timeout);
669 <        int p;
669 >        Phaser rt;
670 >        int p = (int)(state >>> PHASE_SHIFT);
671          if (phase < 0)
672              return phase;
673 <        if ((p = (int)((parent == null? state : reconcileState())
674 <                       >>> PHASE_SHIFT)) == phase) {
673 >        if (p == phase &&
674 >            (p = (int)((rt = root).state >>> PHASE_SHIFT)) == phase) {
675              QNode node = new QNode(this, phase, true, true, nanos);
676 <            p = internalAwaitAdvance(phase, node);
676 >            p = rt.internalAwaitAdvance(phase, node);
677              if (node.wasInterrupted)
678                  throw new InterruptedException();
679              else if (p == phase)
# Line 652 | Line 683 | public class Phaser {
683      }
684  
685      /**
686 <     * Forces this barrier to enter termination state.  Counts of
686 >     * Forces this phaser to enter termination state.  Counts of
687       * arrived and registered parties are unaffected.  If this phaser
688       * is a member of a tiered set of phasers, then all of the phasers
689       * in the set are terminated.  If this phaser is already
# Line 666 | Line 697 | public class Phaser {
697          long s;
698          while ((s = root.state) >= 0) {
699              if (UNSAFE.compareAndSwapLong(root, stateOffset,
700 <                                          s, s | TERMINATION_PHASE)) {
700 >                                          s, s | TERMINATION_BIT)) {
701                  releaseWaiters(0); // signal all threads
702                  releaseWaiters(1);
703                  return;
# Line 677 | Line 708 | public class Phaser {
708      /**
709       * Returns the current phase number. The maximum phase number is
710       * {@code Integer.MAX_VALUE}, after which it restarts at
711 <     * zero. Upon termination, the phase number is negative.
711 >     * zero. Upon termination, the phase number is negative,
712 >     * in which case the prevailing phase prior to termination
713 >     * may be obtained via {@code getPhase() + Integer.MIN_VALUE}.
714       *
715       * @return the phase number, or a negative value if terminated
716       */
717      public final int getPhase() {
718 <        return (int)((parent==null? state : reconcileState()) >>> PHASE_SHIFT);
718 >        return (int)(root.state >>> PHASE_SHIFT);
719      }
720  
721      /**
722 <     * Returns the number of parties registered at this barrier.
722 >     * Returns the number of parties registered at this phaser.
723       *
724       * @return the number of parties
725       */
726      public int getRegisteredParties() {
727 <        return partiesOf(parent==null? state : reconcileState());
727 >        return partiesOf(state);
728      }
729  
730      /**
731       * Returns the number of registered parties that have arrived at
732 <     * the current phase of this barrier.
732 >     * the current phase of this phaser.
733       *
734       * @return the number of arrived parties
735       */
736      public int getArrivedParties() {
737 <        return arrivedOf(parent==null? state : reconcileState());
737 >        long s = state;
738 >        int u = unarrivedOf(s); // only reconcile if possibly needed
739 >        return (u != 0 || parent == null) ?
740 >            partiesOf(s) - u :
741 >            arrivedOf(reconcileState());
742      }
743  
744      /**
745       * Returns the number of registered parties that have not yet
746 <     * arrived at the current phase of this barrier.
746 >     * arrived at the current phase of this phaser.
747       *
748       * @return the number of unarrived parties
749       */
750      public int getUnarrivedParties() {
751 <        return unarrivedOf(parent==null? state : reconcileState());
751 >        int u = unarrivedOf(state);
752 >        return (u != 0 || parent == null) ? u : unarrivedOf(reconcileState());
753      }
754  
755      /**
# Line 734 | Line 772 | public class Phaser {
772      }
773  
774      /**
775 <     * Returns {@code true} if this barrier has been terminated.
775 >     * Returns {@code true} if this phaser has been terminated.
776       *
777 <     * @return {@code true} if this barrier has been terminated
777 >     * @return {@code true} if this phaser has been terminated
778       */
779      public boolean isTerminated() {
780 <        return (parent == null? state : reconcileState()) < 0;
780 >        return root.state < 0L;
781      }
782  
783      /**
784       * Overridable method to perform an action upon impending phase
785       * advance, and to control termination. This method is invoked
786 <     * upon arrival of the party tripping the barrier (when all other
786 >     * upon arrival of the party advancing this phaser (when all other
787       * waiting parties are dormant).  If this method returns {@code
788 <     * true}, then, rather than advance the phase number, this barrier
788 >     * true}, then, rather than advance the phase number, this phaser
789       * will be set to a final termination state, and subsequent calls
790       * to {@link #isTerminated} will return true. Any (unchecked)
791       * Exception or Error thrown by an invocation of this method is
792 <     * propagated to the party attempting to trip the barrier, in
792 >     * propagated to the party attempting to advance this phaser, in
793       * which case no advance occurs.
794       *
795       * <p>The arguments to this method provide the state of the phaser
796       * prevailing for the current transition.  The effects of invoking
797 <     * arrival, registration, and waiting methods on this Phaser from
797 >     * arrival, registration, and waiting methods on this phaser from
798       * within {@code onAdvance} are unspecified and should not be
799       * relied on.
800       *
801 <     * <p>If this Phaser is a member of a tiered set of Phasers, then
802 <     * {@code onAdvance} is invoked only for its root Phaser on each
801 >     * <p>If this phaser is a member of a tiered set of phasers, then
802 >     * {@code onAdvance} is invoked only for its root phaser on each
803       * advance.
804       *
805 <     * <p>The default version returns {@code true} when the number of
806 <     * registered parties is zero. Normally, overrides that arrange
807 <     * termination for other reasons should also preserve this
808 <     * property.
805 >     * <p>To support the most common use cases, the default
806 >     * implementation of this method returns {@code true} when the
807 >     * number of registered parties has become zero as the result of a
808 >     * party invoking {@code arriveAndDeregister}.  You can disable
809 >     * this behavior, thus enabling continuation upon future
810 >     * registrations, by overriding this method to always return
811 >     * {@code false}:
812 >     *
813 >     * <pre> {@code
814 >     * Phaser phaser = new Phaser() {
815 >     *   protected boolean onAdvance(int phase, int parties) { return false; }
816 >     * }}</pre>
817       *
818 <     * @param phase the phase number on entering the barrier
818 >     * @param phase the current phase number on entry to this method,
819 >     * before this phaser is advanced
820       * @param registeredParties the current number of registered parties
821 <     * @return {@code true} if this barrier should terminate
821 >     * @return {@code true} if this phaser should terminate
822       */
823      protected boolean onAdvance(int phase, int registeredParties) {
824 <        return registeredParties <= 0;
824 >        return registeredParties == 0;
825      }
826  
827      /**
# Line 784 | Line 831 | public class Phaser {
831       * followed by the number of registered parties, and {@code
832       * "arrived = "} followed by the number of arrived parties.
833       *
834 <     * @return a string identifying this barrier, as well as its state
834 >     * @return a string identifying this phaser, as well as its state
835       */
836      public String toString() {
837          return stateToString(reconcileState());
# Line 803 | Line 850 | public class Phaser {
850      // Waiting mechanics
851  
852      /**
853 <     * Removes and signals threads from queue for phase
853 >     * Removes and signals threads from queue for phase.
854       */
855      private void releaseWaiters(int phase) {
856 <        AtomicReference<QNode> head = queueFor(phase);
857 <        QNode q;
858 <        int p;
856 >        QNode q;   // first element of queue
857 >        int p;     // its phase
858 >        Thread t;  // its thread
859 >        AtomicReference<QNode> head = (phase & 1) == 0 ? evenQ : oddQ;
860          while ((q = head.get()) != null &&
861                 ((p = q.phase) == phase ||
862                  (int)(root.state >>> PHASE_SHIFT) != p)) {
863 <            if (head.compareAndSet(q, q.next))
864 <                q.signal();
863 >            if (head.compareAndSet(q, q.next) &&
864 >                (t = q.thread) != null) {
865 >                q.thread = null;
866 >                LockSupport.unpark(t);
867 >            }
868          }
869      }
870  
820    /**
821     * Tries to enqueue given node in the appropriate wait queue.
822     *
823     * @return true if successful
824     */
825    private boolean tryEnqueue(int phase, QNode node) {
826        releaseWaiters(phase-1); // ensure old queue clean
827        AtomicReference<QNode> head = queueFor(phase);
828        QNode q = head.get();
829        return ((q == null || q.phase == phase) &&
830                (int)(root.state >>> PHASE_SHIFT) == phase &&
831                head.compareAndSet(node.next = q, node));
832    }
833
871      /** The number of CPUs, for spin control */
872      private static final int NCPU = Runtime.getRuntime().availableProcessors();
873  
# Line 842 | Line 879 | public class Phaser {
879       * avoid it when threads regularly arrive: When a thread in
880       * internalAwaitAdvance notices another arrival before blocking,
881       * and there appear to be enough CPUs available, it spins
882 <     * SPINS_PER_ARRIVAL more times before blocking. Plus, even on
883 <     * uniprocessors, there is at least one intervening Thread.yield
847 <     * before blocking. The value trades off good-citizenship vs big
848 <     * unnecessary slowdowns.
882 >     * SPINS_PER_ARRIVAL more times before blocking. The value trades
883 >     * off good-citizenship vs big unnecessary slowdowns.
884       */
885      static final int SPINS_PER_ARRIVAL = (NCPU < 2) ? 1 : 1 << 8;
886  
887      /**
888       * Possibly blocks and waits for phase to advance unless aborted.
889 +     * Call only from root node.
890       *
891       * @param phase current phase
892       * @param node if non-null, the wait node to track interrupt and timeout;
# Line 858 | Line 894 | public class Phaser {
894       * @return current phase
895       */
896      private int internalAwaitAdvance(int phase, QNode node) {
897 <        Phaser current = this;       // to eventually wait at root if tiered
898 <        boolean queued = false;      // true when node is enqueued
899 <        int lastUnarrived = -1;      // to increase spins upon change
897 >        releaseWaiters(phase-1);          // ensure old queue clean
898 >        boolean queued = false;           // true when node is enqueued
899 >        int lastUnarrived = 0;            // to increase spins upon change
900          int spins = SPINS_PER_ARRIVAL;
901 <        for (;;) {
902 <            int p, unarrived;
903 <            Phaser par;
904 <            long s = current.state;
905 <            if ((p = (int)(s >>> PHASE_SHIFT)) != phase) {
906 <                if (node != null)
907 <                    node.onRelease();
872 <                releaseWaiters(phase);
873 <                return p;
874 <            }
875 <            else if ((unarrived = (int)s & UNARRIVED_MASK) == 0 &&
876 <                     (par = current.parent) != null) {
877 <                current = par;       // if all arrived, use parent
878 <                par = par.parent;
879 <                lastUnarrived = -1;
880 <            }
881 <            else if (unarrived != lastUnarrived) {
882 <                if ((lastUnarrived = unarrived) < NCPU)
901 >        long s;
902 >        int p;
903 >        while ((p = (int)((s = state) >>> PHASE_SHIFT)) == phase) {
904 >            if (node == null) {           // spinning in noninterruptible mode
905 >                int unarrived = (int)s & UNARRIVED_MASK;
906 >                if (unarrived != lastUnarrived &&
907 >                    (lastUnarrived = unarrived) < NCPU)
908                      spins += SPINS_PER_ARRIVAL;
909 +                boolean interrupted = Thread.interrupted();
910 +                if (interrupted || --spins < 0) { // need node to record intr
911 +                    node = new QNode(this, phase, false, false, 0L);
912 +                    node.wasInterrupted = interrupted;
913 +                }
914              }
915 <            else if (spins > 0) {
916 <                if (--spins == (SPINS_PER_ARRIVAL >>> 1))
917 <                    Thread.yield();  // yield midway through spin
918 <            }
919 <            else if (node == null)   // must be noninterruptible
920 <                node = new QNode(this, phase, false, false, 0L);
921 <            else if (node.isReleasable()) {
922 <                if ((int)(reconcileState() >>> PHASE_SHIFT) == phase)
893 <                    return phase;    // aborted
915 >            else if (node.isReleasable()) // done or aborted
916 >                break;
917 >            else if (!queued) {           // push onto queue
918 >                AtomicReference<QNode> head = (phase & 1) == 0 ? evenQ : oddQ;
919 >                QNode q = node.next = head.get();
920 >                if ((q == null || q.phase == phase) &&
921 >                    (int)(state >>> PHASE_SHIFT) == phase) // avoid stale enq
922 >                    queued = head.compareAndSet(q, node);
923              }
895            else if (!queued)
896                queued = tryEnqueue(phase, node);
924              else {
925                  try {
926                      ForkJoinPool.managedBlock(node);
# Line 902 | Line 929 | public class Phaser {
929                  }
930              }
931          }
932 +
933 +        if (node != null) {
934 +            if (node.thread != null)
935 +                node.thread = null;       // avoid need for unpark()
936 +            if (node.wasInterrupted && !node.interruptible)
937 +                Thread.currentThread().interrupt();
938 +            if ((p = (int)(state >>> PHASE_SHIFT)) == phase)
939 +                return p;                 // recheck abort
940 +        }
941 +        releaseWaiters(phase);
942 +        return p;
943      }
944  
945      /**
# Line 930 | Line 968 | public class Phaser {
968          }
969  
970          public boolean isReleasable() {
971 <            Thread t = thread;
972 <            if (t != null) {
973 <                if (phaser.getPhase() != phase)
974 <                    t = null;
975 <                else {
976 <                    if (Thread.interrupted())
977 <                        wasInterrupted = true;
978 <                    if (interruptible && wasInterrupted)
979 <                        t = null;
942 <                    else if (timed) {
943 <                        if (nanos > 0) {
944 <                            long now = System.nanoTime();
945 <                            nanos -= now - lastTime;
946 <                            lastTime = now;
947 <                        }
948 <                        if (nanos <= 0)
949 <                            t = null;
950 <                    }
951 <                }
952 <                if (t != null)
953 <                    return false;
971 >            if (thread == null)
972 >                return true;
973 >            if (phaser.getPhase() != phase) {
974 >                thread = null;
975 >                return true;
976 >            }
977 >            if (Thread.interrupted())
978 >                wasInterrupted = true;
979 >            if (wasInterrupted && interruptible) {
980                  thread = null;
981 +                return true;
982              }
983 <            return true;
983 >            if (timed) {
984 >                if (nanos > 0L) {
985 >                    long now = System.nanoTime();
986 >                    nanos -= now - lastTime;
987 >                    lastTime = now;
988 >                }
989 >                if (nanos <= 0L) {
990 >                    thread = null;
991 >                    return true;
992 >                }
993 >            }
994 >            return false;
995          }
996  
997          public boolean block() {
# Line 965 | Line 1003 | public class Phaser {
1003                  LockSupport.parkNanos(this, nanos);
1004              return isReleasable();
1005          }
968
969        void signal() {
970            Thread t = thread;
971            if (t != null) {
972                thread = null;
973                LockSupport.unpark(t);
974            }
975        }
976
977        void onRelease() { // actions upon return from internalAwaitAdvance
978            if (!interruptible && wasInterrupted)
979                Thread.currentThread().interrupt();
980            if (thread != null)
981                thread = null;
982        }
983
1006      }
1007  
1008      // Unsafe mechanics

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines