ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/Phaser.java
(Generate patch)

Comparing jsr166/src/jsr166y/Phaser.java (file contents):
Revision 1.3 by jsr166, Fri Jul 25 18:11:53 2008 UTC vs.
Revision 1.58 by dl, Wed Nov 24 15:48:01 2010 UTC

# Line 5 | Line 5
5   */
6  
7   package jsr166y;
8 < import jsr166y.forkjoin.*;
9 < import java.util.concurrent.*;
10 < import java.util.concurrent.atomic.*;
8 >
9 > import java.util.concurrent.TimeUnit;
10 > import java.util.concurrent.TimeoutException;
11 > import java.util.concurrent.atomic.AtomicReference;
12   import java.util.concurrent.locks.LockSupport;
13  
14   /**
15 < * A reusable synchronization barrier, similar in functionality to a
16 < * {@link java.util.concurrent.CyclicBarrier}, but supporting more
17 < * flexible usage.
15 > * A reusable synchronization barrier, similar in functionality to
16 > * {@link java.util.concurrent.CyclicBarrier CyclicBarrier} and
17 > * {@link java.util.concurrent.CountDownLatch CountDownLatch}
18 > * but supporting more flexible usage.
19   *
20 < * <ul>
20 > * <p> <b>Registration.</b> Unlike the case for other barriers, the
21 > * number of parties <em>registered</em> to synchronize on a phaser
22 > * may vary over time.  Tasks may be registered at any time (using
23 > * methods {@link #register}, {@link #bulkRegister}, or forms of
24 > * constructors establishing initial numbers of parties), and
25 > * optionally deregistered upon any arrival (using {@link
26 > * #arriveAndDeregister}).  As is the case with most basic
27 > * synchronization constructs, registration and deregistration affect
28 > * only internal counts; they do not establish any further internal
29 > * bookkeeping, so tasks cannot query whether they are registered.
30 > * (However, you can introduce such bookkeeping by subclassing this
31 > * class.)
32   *
33 < * <li> The number of parties synchronizing on the barrier may vary
34 < * over time.  A task may register to be a party in a barrier at any
35 < * time, and may deregister upon arriving at the barrier.  As is the
36 < * case with most basic synchronization constructs, registration
37 < * and deregistration affect only internal counts; they do not
38 < * establish any further internal bookkeeping, so tasks cannot query
39 < * whether they are registered.
40 < *
41 < * <li> Each generation has an associated phase value, starting at
42 < * zero, and advancing when all parties reach the barrier (wrapping
43 < * around to zero after reaching <tt>Integer.MAX_VALUE</tt>).
31 < *
32 < * <li> Like a CyclicBarrier, a Phaser may be repeatedly awaited.
33 < * Method <tt>arriveAndAwaitAdvance</tt> has effect analogous to
34 < * <tt>CyclicBarrier.await</tt>.  However, Phasers separate two
35 < * aspects of coordination, that may be invoked independently:
33 > * <p> <b>Synchronization.</b> Like a {@code CyclicBarrier}, a {@code
34 > * Phaser} may be repeatedly awaited.  Method {@link
35 > * #arriveAndAwaitAdvance} has effect analogous to {@link
36 > * java.util.concurrent.CyclicBarrier#await CyclicBarrier.await}. Each
37 > * generation of a {@code Phaser} has an associated phase number. The
38 > * phase number starts at zero, and advances when all parties arrive
39 > * at the barrier, wrapping around to zero after reaching {@code
40 > * Integer.MAX_VALUE}. The use of phase numbers enables independent
41 > * control of actions upon arrival at a barrier and upon awaiting
42 > * others, via two kinds of methods that may be invoked by any
43 > * registered party:
44   *
45   * <ul>
46   *
47 < *   <li> Arriving at a barrier. Methods <tt>arrive</tt> and
48 < *       <tt>arriveAndDeregister</tt> do not block, but return
49 < *       the phase value on entry to the method.
50 < *
51 < *   <li> Awaiting others. Method <tt>awaitAdvance</tt> requires an
52 < *       argument indicating the entry phase, and returns when the
53 < *       barrier advances to a new phase.
47 > *   <li> <b>Arrival.</b> Methods {@link #arrive} and
48 > *       {@link #arriveAndDeregister} record arrival at a
49 > *       barrier. These methods do not block, but return an associated
50 > *       <em>arrival phase number</em>; that is, the phase number of
51 > *       the barrier to which the arrival applied. When the final
52 > *       party for a given phase arrives, an optional barrier action
53 > *       is performed and the phase advances.  Barrier actions,
54 > *       performed by the party triggering a phase advance, are
55 > *       arranged by overriding method {@link #onAdvance(int, int)},
56 > *       which also controls termination. Overriding this method is
57 > *       similar to, but more flexible than, providing a barrier
58 > *       action to a {@code CyclicBarrier}.
59 > *
60 > *   <li> <b>Waiting.</b> Method {@link #awaitAdvance} requires an
61 > *       argument indicating an arrival phase number, and returns when
62 > *       the barrier advances to (or is already at) a different phase.
63 > *       Unlike similar constructions using {@code CyclicBarrier},
64 > *       method {@code awaitAdvance} continues to wait even if the
65 > *       waiting thread is interrupted. Interruptible and timeout
66 > *       versions are also available, but exceptions encountered while
67 > *       tasks wait interruptibly or with timeout do not change the
68 > *       state of the barrier. If necessary, you can perform any
69 > *       associated recovery within handlers of those exceptions,
70 > *       often after invoking {@code forceTermination}.  Phasers may
71 > *       also be used by tasks executing in a {@link ForkJoinPool},
72 > *       which will ensure sufficient parallelism to execute tasks
73 > *       when others are blocked waiting for a phase to advance.
74 > *
75   * </ul>
76   *
77 + * <p> <b>Termination.</b> A {@code Phaser} may enter a
78 + * <em>termination</em> state in which all synchronization methods
79 + * immediately return without updating phaser state or waiting for
80 + * advance, and indicating (via a negative phase value) that execution
81 + * is complete.  Termination is triggered when an invocation of {@code
82 + * onAdvance} returns {@code true}.  As illustrated below, when
83 + * phasers control actions with a fixed number of iterations, it is
84 + * often convenient to override this method to cause termination when
85 + * the current phase number reaches a threshold. Method {@link
86 + * #forceTermination} is also available to abruptly release waiting
87 + * threads and allow them to terminate.
88   *
89 < * <li> Barrier actions, performed by the task triggering a phase
90 < * advance while others may be waiting, are arranged by overriding
91 < * method <tt>onAdvance</tt>, that also controls termination.
92 < *
93 < * <li> Phasers may enter a <em>termination</em> state in which all
94 < * await actions immediately return, indicating (via a negative phase
95 < * value) that execution is complete.  Termination is triggered by
56 < * executing the overridable <tt>onAdvance</tt> method that is invoked
57 < * each time the barrier is tripped. When a Phaser is controlling an
58 < * action with a fixed number of iterations, it is often convenient to
59 < * override this method to cause termination when the current phase
60 < * number reaches a threshold.  Method <tt>forceTermination</tt> is
61 < * also available to assist recovery actions upon failure.
62 < *
63 < * <li> Unlike most synchronizers, a Phaser may also be used with
64 < * ForkJoinTasks (as well as plain threads).
65 < *
66 < * <li> By default, <tt>awaitAdvance</tt> continues to wait even if
67 < * the current thread is interrupted. And unlike the case in
68 < * CyclicBarriers, exceptions encountered while tasks wait
69 < * interruptibly or with timeout do not change the state of the
70 < * barrier. If necessary, you can perform any associated recovery
71 < * within handlers of those exceptions.
89 > * <p> <b>Tiering.</b> Phasers may be <em>tiered</em> (i.e.,
90 > * constructed in tree structures) to reduce contention. Phasers with
91 > * large numbers of parties that would otherwise experience heavy
92 > * synchronization contention costs may instead be set up so that
93 > * groups of sub-phasers share a common parent.  This may greatly
94 > * increase throughput even though it incurs greater per-operation
95 > * overhead.
96   *
97 < * </ul>
97 > * <p><b>Monitoring.</b> While synchronization methods may be invoked
98 > * only by registered parties, the current state of a phaser may be
99 > * monitored by any caller.  At any given moment there are {@link
100 > * #getRegisteredParties} parties in total, of which {@link
101 > * #getArrivedParties} have arrived at the current phase ({@link
102 > * #getPhase}).  When the remaining ({@link #getUnarrivedParties})
103 > * parties arrive, the phase advances.  The values returned by these
104 > * methods may reflect transient states and so are not in general
105 > * useful for synchronization control.  Method {@link #toString}
106 > * returns snapshots of these state queries in a form convenient for
107 > * informal monitoring.
108 > *
109 > * <p><b>Sample usages:</b>
110 > *
111 > * <p>A {@code Phaser} may be used instead of a {@code CountDownLatch}
112 > * to control a one-shot action serving a variable number of parties.
113 > * The typical idiom is for the method setting this up to first
114 > * register, then start the actions, then deregister, as in:
115 > *
116 > *  <pre> {@code
117 > * void runTasks(List<Runnable> tasks) {
118 > *   final Phaser phaser = new Phaser(1); // "1" to register self
119 > *   // create and start threads
120 > *   for (Runnable task : tasks) {
121 > *     phaser.register();
122 > *     new Thread() {
123 > *       public void run() {
124 > *         phaser.arriveAndAwaitAdvance(); // await all creation
125 > *         task.run();
126 > *       }
127 > *     }.start();
128 > *   }
129 > *
130 > *   // allow threads to start and deregister self
131 > *   phaser.arriveAndDeregister();
132 > * }}</pre>
133 > *
134 > * <p>One way to cause a set of threads to repeatedly perform actions
135 > * for a given number of iterations is to override {@code onAdvance}:
136 > *
137 > *  <pre> {@code
138 > * void startTasks(List<Runnable> tasks, final int iterations) {
139 > *   final Phaser phaser = new Phaser() {
140 > *     protected boolean onAdvance(int phase, int registeredParties) {
141 > *       return phase >= iterations || registeredParties == 0;
142 > *     }
143 > *   };
144 > *   phaser.register();
145 > *   for (final Runnable task : tasks) {
146 > *     phaser.register();
147 > *     new Thread() {
148 > *       public void run() {
149 > *         do {
150 > *           task.run();
151 > *           phaser.arriveAndAwaitAdvance();
152 > *         } while (!phaser.isTerminated());
153 > *       }
154 > *     }.start();
155 > *   }
156 > *   phaser.arriveAndDeregister(); // deregister self, don't wait
157 > * }}</pre>
158   *
159 < * <p><b>Sample usage:</b>
159 > * If the main task must later await termination, it
160 > * may re-register and then execute a similar loop:
161 > *  <pre> {@code
162 > *   // ...
163 > *   phaser.register();
164 > *   while (!phaser.isTerminated())
165 > *     phaser.arriveAndAwaitAdvance();}</pre>
166   *
167 < * <p>[todo: non-FJ example]
167 > * <p>Related constructions may be used to await particular phase numbers
168 > * in contexts where you are sure that the phase will never wrap around
169 > * {@code Integer.MAX_VALUE}. For example:
170   *
171 < * <p> A Phaser may be used to support a style of programming in
172 < * which a task waits for others to complete, without otherwise
173 < * needing to keep track of which tasks it is waiting for. This is
174 < * similar to the "sync" construct in Cilk and "clocks" in X10.
175 < * Special constructions based on such barriers are available using
176 < * the <tt>LinkedAsyncAction</tt> and <tt>CyclicAction</tt> classes,
177 < * but they can be useful in other contexts as well.  For a simple
178 < * (but not very useful) example, here is a variant of Fibonacci:
87 < *
88 < * <pre>
89 < * class BarrierFibonacci extends RecursiveAction {
90 < *   int argument, result;
91 < *   final Phaser parentBarrier;
92 < *   BarrierFibonacci(int n, Phaser parentBarrier) {
93 < *     this.argument = n;
94 < *     this.parentBarrier = parentBarrier;
95 < *     parentBarrier.register();
171 > *  <pre> {@code
172 > * void awaitPhase(Phaser phaser, int phase) {
173 > *   int p = phaser.register(); // assumes caller not already registered
174 > *   while (p < phase) {
175 > *     if (phaser.isTerminated())
176 > *       // ... deal with unexpected termination
177 > *     else
178 > *       p = phaser.arriveAndAwaitAdvance();
179   *   }
180 < *   protected void compute() {
181 < *     int n = argument;
182 < *     if (n &lt;= 1)
183 < *        result = n;
184 < *     else {
185 < *        Phaser childBarrier = new Phaser(1);
186 < *        BarrierFibonacci f1 = new BarrierFibonacci(n - 1, childBarrier);
187 < *        BarrierFibonacci f2 = new BarrierFibonacci(n - 2, childBarrier);
188 < *        f1.fork();
189 < *        f2.fork();
190 < *        childBarrier.arriveAndAwait();
191 < *        result = f1.result + f2.result;
180 > *   phaser.arriveAndDeregister();
181 > * }}</pre>
182 > *
183 > *
184 > * <p>To create a set of tasks using a tree of phasers,
185 > * you could use code of the following form, assuming a
186 > * Task class with a constructor accepting a phaser that
187 > * it registers with upon construction:
188 > *
189 > *  <pre> {@code
190 > * void build(Task[] actions, int lo, int hi, Phaser ph) {
191 > *   if (hi - lo > TASKS_PER_PHASER) {
192 > *     for (int i = lo; i < hi; i += TASKS_PER_PHASER) {
193 > *       int j = Math.min(i + TASKS_PER_PHASER, hi);
194 > *       build(actions, i, j, new Phaser(ph));
195   *     }
196 < *     parentBarrier.arriveAndDeregister();
196 > *   } else {
197 > *     for (int i = lo; i < hi; ++i)
198 > *       actions[i] = new Task(ph);
199 > *       // assumes new Task(ph) performs ph.register()
200   *   }
201   * }
202 < * </pre>
202 > * // .. initially called, for n tasks via
203 > * build(new Task[n], 0, n, new Phaser());}</pre>
204 > *
205 > * The best value of {@code TASKS_PER_PHASER} depends mainly on
206 > * expected barrier synchronization rates. A value as low as four may
207 > * be appropriate for extremely small per-barrier task bodies (thus
208 > * high rates), or up to hundreds for extremely large ones.
209   *
210   * <p><b>Implementation notes</b>: This implementation restricts the
211 < * maximum number of parties to 65535. Attempts to register
212 < * additional parties result in IllegalStateExceptions.
211 > * maximum number of parties to 65535. Attempts to register additional
212 > * parties result in {@code IllegalStateException}. However, you can and
213 > * should create tiered phasers to accommodate arbitrarily large sets
214 > * of participants.
215 > *
216 > * @since 1.7
217 > * @author Doug Lea
218   */
219   public class Phaser {
220      /*
221       * This class implements an extension of X10 "clocks".  Thanks to
222 <     * Vijay Saraswat for the idea of applying it to ForkJoinTasks,
223 <     * and to Vivek Sarkar for enhancements to extend functionality.
222 >     * Vijay Saraswat for the idea, and to Vivek Sarkar for
223 >     * enhancements to extend functionality.
224       */
225  
226      /**
227       * Barrier state representation. Conceptually, a barrier contains
228       * four values:
229       *
230 <     * * parties -- the number of parties to wait (16 bits)
231 <     * * unarrived -- the number of parties yet to hit barrier (16 bits)
232 <     * * phase -- the generation of the barrier (31 bits)
233 <     * * terminated -- set if barrier is terminated (1 bit)
230 >     * * unarrived -- the number of parties yet to hit barrier (bits  0-15)
231 >     * * parties -- the number of parties to wait              (bits 16-31)
232 >     * * phase -- the generation of the barrier                (bits 32-62)
233 >     * * terminated -- set if barrier is terminated            (bit  63 / sign)
234       *
235       * However, to efficiently maintain atomicity, these values are
236 <     * packed into a single AtomicLong. Termination uses the sign bit
237 <     * of 32 bit representation of phase, so phase is set to -1 on
238 <     * termination.
239 <     */
240 <    private final AtomicLong state;
241 <
242 <    /**
243 <     * Head of Treiber stack for waiting nonFJ threads.
244 <     */
245 <    private final AtomicReference<QNode> head = new AtomicReference<QNode>();
236 >     * packed into a single (atomic) long. Termination uses the sign
237 >     * bit of 32 bit representation of phase, so phase is set to -1 on
238 >     * termination. Good performance relies on keeping state decoding
239 >     * and encoding simple, and keeping race windows short.
240 >     */
241 >    private volatile long state;
242 >
243 >    private static final int  MAX_PARTIES    = 0xffff;
244 >    private static final int  MAX_PHASE      = 0x7fffffff;
245 >    private static final int  PARTIES_SHIFT  = 16;
246 >    private static final int  PHASE_SHIFT    = 32;
247 >    private static final int  UNARRIVED_MASK = 0xffff;
248 >    private static final long PARTIES_MASK   = 0xffff0000L; // for masking long
249 >    private static final long ONE_ARRIVAL    = 1L;
250 >    private static final long ONE_PARTY      = 1L << PARTIES_SHIFT;
251 >    private static final long TERMINATION_PHASE  = -1L << PHASE_SHIFT;
252  
253 <    private static final int ushortBits = 16;
148 <    private static final int ushortMask =  (1 << ushortBits) - 1;
149 <    private static final int phaseMask = 0x7fffffff;
253 >    // The following unpacking methods are usually manually inlined
254  
255      private static int unarrivedOf(long s) {
256 <        return (int)(s & ushortMask);
256 >        return (int)s & UNARRIVED_MASK;
257      }
258  
259      private static int partiesOf(long s) {
260 <        return (int)(s & (ushortMask << 16)) >>> 16;
260 >        return (int)s >>> PARTIES_SHIFT;
261      }
262  
263      private static int phaseOf(long s) {
264 <        return (int)(s >>> 32);
264 >        return (int) (s >>> PHASE_SHIFT);
265      }
266  
267      private static int arrivedOf(long s) {
268          return partiesOf(s) - unarrivedOf(s);
269      }
270  
271 <    private static long stateFor(int phase, int parties, int unarrived) {
272 <        return (((long)phase) << 32) | ((parties << 16) | unarrived);
271 >    /**
272 >     * The parent of this phaser, or null if none
273 >     */
274 >    private final Phaser parent;
275 >
276 >    /**
277 >     * The root of phaser tree. Equals this if not in a tree.  Used to
278 >     * support faster state push-down.
279 >     */
280 >    private final Phaser root;
281 >
282 >    /**
283 >     * Heads of Treiber stacks for waiting threads. To eliminate
284 >     * contention when releasing some threads while adding others, we
285 >     * use two of them, alternating across even and odd phases.
286 >     * Subphasers share queues with root to speed up releases.
287 >     */
288 >    private final AtomicReference<QNode> evenQ;
289 >    private final AtomicReference<QNode> oddQ;
290 >
291 >    private AtomicReference<QNode> queueFor(int phase) {
292 >        return ((phase & 1) == 0) ? evenQ : oddQ;
293 >    }
294 >
295 >    /**
296 >     * Main implementation for methods arrive and arriveAndDeregister.
297 >     * Manually tuned to speed up and minimize race windows for the
298 >     * common case of just decrementing unarrived field.
299 >     *
300 >     * @param adj - adjustment to apply to state -- either
301 >     * ONE_ARRIVAL (for arrive) or
302 >     * ONE_ARRIVAL|ONE_PARTY (for arriveAndDeregister)
303 >     */
304 >    private int doArrive(long adj) {
305 >        for (;;) {
306 >            long s = state;
307 >            int phase = (int)(s >>> PHASE_SHIFT);
308 >            if (phase < 0)
309 >                return phase;
310 >            int unarrived = (int)s & UNARRIVED_MASK;
311 >            if (unarrived == 0)
312 >                checkBadArrive(s);
313 >            else if (UNSAFE.compareAndSwapLong(this, stateOffset, s, s-=adj)) {
314 >                if (unarrived == 1) {
315 >                    long p = s & PARTIES_MASK; // unshifted parties field
316 >                    long lu = p >>> PARTIES_SHIFT;
317 >                    int u = (int)lu;
318 >                    int nextPhase = (phase + 1) & MAX_PHASE;
319 >                    long next = ((long)nextPhase << PHASE_SHIFT) | p | lu;
320 >                    final Phaser parent = this.parent;
321 >                    if (parent == null) {
322 >                        if (onAdvance(phase, u))
323 >                            next |= TERMINATION_PHASE; // obliterate phase
324 >                        UNSAFE.compareAndSwapLong(this, stateOffset, s, next);
325 >                        releaseWaiters(phase);
326 >                    }
327 >                    else {
328 >                        parent.doArrive((u == 0) ?
329 >                                        ONE_ARRIVAL|ONE_PARTY : ONE_ARRIVAL);
330 >                        if ((int)(parent.state >>> PHASE_SHIFT) != nextPhase ||
331 >                            ((int)(state >>> PHASE_SHIFT) != nextPhase &&
332 >                             !UNSAFE.compareAndSwapLong(this, stateOffset,
333 >                                                        s, next)))
334 >                            reconcileState();
335 >                    }
336 >                }
337 >                return phase;
338 >            }
339 >        }
340 >    }
341 >
342 >    /**
343 >     * Rechecks state and throws bounds exceptions on arrival -- called
344 >     * only if unarrived is apparently zero.
345 >     */
346 >    private void checkBadArrive(long s) {
347 >        if (reconcileState() == s)
348 >            throw new IllegalStateException
349 >                ("Attempted arrival of unregistered party for " +
350 >                 stateToString(s));
351 >    }
352 >
353 >    /**
354 >     * Implementation of register, bulkRegister
355 >     *
356 >     * @param registrations number to add to both parties and
357 >     * unarrived fields. Must be greater than zero.
358 >     */
359 >    private int doRegister(int registrations) {
360 >        // adjustment to state
361 >        long adj = ((long)registrations << PARTIES_SHIFT) | registrations;
362 >        final Phaser parent = this.parent;
363 >        for (;;) {
364 >            long s = (parent == null) ? state : reconcileState();
365 >            int parties = (int)s >>> PARTIES_SHIFT;
366 >            int phase = (int)(s >>> PHASE_SHIFT);
367 >            if (phase < 0)
368 >                return phase;
369 >            else if (parties != 0 && ((int)s & UNARRIVED_MASK) == 0)
370 >                internalAwaitAdvance(phase, null); // wait for onAdvance
371 >            else if (registrations > MAX_PARTIES - parties)
372 >                throw new IllegalStateException(badRegister(s));
373 >            else if (UNSAFE.compareAndSwapLong(this, stateOffset, s, s + adj))
374 >                return phase;
375 >        }
376 >    }
377 >
378 >    /**
379 >     * Returns message string for out of bounds exceptions on registration.
380 >     */
381 >    private String badRegister(long s) {
382 >        return "Attempt to register more than " +
383 >            MAX_PARTIES + " parties for " + stateToString(s);
384      }
385  
386 <    private static IllegalStateException badBounds(int parties, int unarrived) {
387 <        return new IllegalStateException("Attempt to set " + unarrived +
388 <                                         " unarrived of " + parties + " parties");
386 >    /**
387 >     * Recursively resolves lagged phase propagation from root if necessary.
388 >     */
389 >    private long reconcileState() {
390 >        Phaser par = parent;
391 >        long s = state;
392 >        if (par != null) {
393 >            Phaser rt = root;
394 >            int phase, rPhase;
395 >            while ((phase = (int)(s >>> PHASE_SHIFT)) >= 0 &&
396 >                   (rPhase = (int)(rt.state >>> PHASE_SHIFT)) != phase) {
397 >                if ((int)(par.state >>> PHASE_SHIFT) != rPhase)
398 >                    par.reconcileState();
399 >                else if (rPhase < 0 || ((int)s & UNARRIVED_MASK) == 0) {
400 >                    long u = s & PARTIES_MASK; // reset unarrived to parties
401 >                    long next = ((((long) rPhase) << PHASE_SHIFT) | u |
402 >                                 (u >>> PARTIES_SHIFT));
403 >                    if (state == s &&
404 >                        UNSAFE.compareAndSwapLong(this, stateOffset,
405 >                                                  s, s = next))
406 >                        break;
407 >                }
408 >                s = state;
409 >            }
410 >        }
411 >        return s;
412      }
413  
414      /**
415 <     * Creates a new Phaser without any initially registered parties,
416 <     * and initial phase number 0.
415 >     * Creates a new phaser without any initially registered parties,
416 >     * initial phase number 0, and no parent. Any thread using this
417 >     * phaser will need to first register for it.
418       */
419      public Phaser() {
420 <        state = new AtomicLong(stateFor(0, 0, 0));
420 >        this(null, 0);
421      }
422  
423      /**
424 <     * Creates a new Phaser with the given numbers of registered
425 <     * unarrived parties and initial phase number 0.
426 <     * @param parties the number of parties required to trip barrier.
424 >     * Creates a new phaser with the given number of registered
425 >     * unarrived parties, initial phase number 0, and no parent.
426 >     *
427 >     * @param parties the number of parties required to trip barrier
428       * @throws IllegalArgumentException if parties less than zero
429 <     * or greater than the maximum number of parties supported.
429 >     * or greater than the maximum number of parties supported
430       */
431      public Phaser(int parties) {
432 <        if (parties < 0 || parties > ushortMask)
432 >        this(null, parties);
433 >    }
434 >
435 >    /**
436 >     * Equivalent to {@link #Phaser(Phaser, int) Phaser(parent, 0)}.
437 >     *
438 >     * @param parent the parent phaser
439 >     */
440 >    public Phaser(Phaser parent) {
441 >        this(parent, 0);
442 >    }
443 >
444 >    /**
445 >     * Creates a new phaser with the given parent and number of
446 >     * registered unarrived parties. If parent is non-null, this
447 >     * phaser is registered with the parent and its initial phase
448 >     * number is the same as that of parent phaser.  If the number of
449 >     * parties is zero, the parent phaser will not proceed until this
450 >     * child phaser registers parties and advances, or this child
451 >     * phaser deregisters with its parent, or the parent is otherwise
452 >     * terminated.  This child Phaser will be deregistered from its
453 >     * parent automatically upon any invocation of the child's {@link
454 >     * #arriveAndDeregister} method that results in the child's number
455 >     * of registered parties becoming zero. (Although rarely
456 >     * appropriate, this child may also explicity deregister from its
457 >     * parent using {@code getParent().arriveAndDeregister()}.)  After
458 >     * deregistration, the child cannot re-register. (Instead, you can
459 >     * create a new child Phaser.)
460 >     *
461 >     * @param parent the parent phaser
462 >     * @param parties the number of parties required to trip barrier
463 >     * @throws IllegalArgumentException if parties less than zero
464 >     * or greater than the maximum number of parties supported
465 >     */
466 >    public Phaser(Phaser parent, int parties) {
467 >        if (parties >>> PARTIES_SHIFT != 0)
468              throw new IllegalArgumentException("Illegal number of parties");
469 <        state = new AtomicLong(stateFor(0, parties, parties));
469 >        int phase;
470 >        this.parent = parent;
471 >        if (parent != null) {
472 >            Phaser r = parent.root;
473 >            this.root = r;
474 >            this.evenQ = r.evenQ;
475 >            this.oddQ = r.oddQ;
476 >            phase = parent.doRegister(1);
477 >        }
478 >        else {
479 >            this.root = this;
480 >            this.evenQ = new AtomicReference<QNode>();
481 >            this.oddQ = new AtomicReference<QNode>();
482 >            phase = 0;
483 >        }
484 >        long p = (long)parties;
485 >        this.state = (((long)phase) << PHASE_SHIFT) | p | (p << PARTIES_SHIFT);
486      }
487  
488      /**
489       * Adds a new unarrived party to this phaser.
490 <     * @return the current barrier phase number upon registration
490 >     * If an ongoing invocation of {@link #onAdvance} is in progress,
491 >     * this method may wait until its completion before registering.
492 >     *
493 >     * @return the arrival phase number to which this registration applied
494       * @throws IllegalStateException if attempting to register more
495 <     * than the maximum supported number of parties.
495 >     * than the maximum supported number of parties
496       */
497 <    public int register() { // increment both parties and unarrived
498 <        final AtomicLong state = this.state;
205 <        for (;;) {
206 <            long s = state.get();
207 <            int phase = phaseOf(s);
208 <            int parties = partiesOf(s) + 1;
209 <            int unarrived = unarrivedOf(s) + 1;
210 <            if (parties > ushortMask || unarrived > ushortMask)
211 <                throw badBounds(parties, unarrived);
212 <            if (state.compareAndSet(s, stateFor(phase, parties, unarrived)))
213 <                return phase;
214 <        }
497 >    public int register() {
498 >        return doRegister(1);
499      }
500  
501      /**
502 <     * Arrives at the barrier, but does not wait for others.  (You can
503 <     * in turn wait for others via {@link #awaitAdvance}).
502 >     * Adds the given number of new unarrived parties to this phaser.
503 >     * If an ongoing invocation of {@link #onAdvance} is in progress,
504 >     * this method may wait until its completion before registering.
505       *
506 <     * @return the current barrier phase number upon entry to
507 <     * this method, or a negative value if terminated;
508 <     * @throws IllegalStateException if the number of unarrived
509 <     * parties would become negative.
506 >     * @param parties the number of additional parties required to trip barrier
507 >     * @return the arrival phase number to which this registration applied
508 >     * @throws IllegalStateException if attempting to register more
509 >     * than the maximum supported number of parties
510 >     * @throws IllegalArgumentException if {@code parties < 0}
511       */
512 <    public int arrive() { // decrement unarrived. If zero, trip
513 <        final AtomicLong state = this.state;
514 <        for (;;) {
515 <            long s = state.get();
516 <            int phase = phaseOf(s);
517 <            int parties = partiesOf(s);
232 <            int unarrived = unarrivedOf(s) - 1;
233 <            if (unarrived < 0)
234 <                throw badBounds(parties, unarrived);
235 <            if (unarrived == 0 && phase >= 0) {
236 <                trip(phase, parties);
237 <                return phase;
238 <            }
239 <            if (state.compareAndSet(s, stateFor(phase, parties, unarrived)))
240 <                return phase;
241 <        }
512 >    public int bulkRegister(int parties) {
513 >        if (parties < 0)
514 >            throw new IllegalArgumentException();
515 >        if (parties == 0)
516 >            return getPhase();
517 >        return doRegister(parties);
518      }
519  
520      /**
521 <     * Arrives at the barrier, and deregisters from it, without
522 <     * waiting for others.
521 >     * Arrives at the barrier, but does not wait for others.  (You can
522 >     * in turn wait for others via {@link #awaitAdvance}).  It is an
523 >     * unenforced usage error for an unregistered party to invoke this
524 >     * method.
525       *
526 <     * @return the current barrier phase number upon entry to
527 <     * this method, or a negative value if terminated;
528 <     * @throws IllegalStateException if the number of registered or
529 <     * unarrived parties would become negative.
530 <     */
531 <    public int arriveAndDeregister() { // Same as arrive, plus decrement parties
254 <        final AtomicLong state = this.state;
255 <        for (;;) {
256 <            long s = state.get();
257 <            int phase = phaseOf(s);
258 <            int parties = partiesOf(s) - 1;
259 <            int unarrived = unarrivedOf(s) - 1;
260 <            if (parties < 0 || unarrived < 0)
261 <                throw badBounds(parties, unarrived);
262 <            if (unarrived == 0 && phase >= 0) {
263 <                trip(phase, parties);
264 <                return phase;
265 <            }
266 <            if (state.compareAndSet(s, stateFor(phase, parties, unarrived)))
267 <                return phase;
268 <        }
526 >     * @return the arrival phase number, or a negative value if terminated
527 >     * @throws IllegalStateException if not terminated and the number
528 >     * of unarrived parties would become negative
529 >     */
530 >    public int arrive() {
531 >        return doArrive(ONE_ARRIVAL);
532      }
533  
534      /**
535 <     * Arrives at the barrier and awaits others. Unlike other arrival
536 <     * methods, this method returns the arrival index of the
537 <     * caller. The caller tripping the barrier returns zero, the
538 <     * previous caller 1, and so on.
539 <     * @return the arrival index
540 <     * @throws IllegalStateException if the number of unarrived
541 <     * parties would become negative.
535 >     * Arrives at the barrier and deregisters from it without waiting
536 >     * for others. Deregistration reduces the number of parties
537 >     * required to trip the barrier in future phases.  If this phaser
538 >     * has a parent, and deregistration causes this phaser to have
539 >     * zero parties, this phaser also arrives at and is deregistered
540 >     * from its parent.  It is an unenforced usage error for an
541 >     * unregistered party to invoke this method.
542 >     *
543 >     * @return the arrival phase number, or a negative value if terminated
544 >     * @throws IllegalStateException if not terminated and the number
545 >     * of registered or unarrived parties would become negative
546 >     */
547 >    public int arriveAndDeregister() {
548 >        return doArrive(ONE_ARRIVAL|ONE_PARTY);
549 >    }
550 >
551 >    /**
552 >     * Arrives at the barrier and awaits others. Equivalent in effect
553 >     * to {@code awaitAdvance(arrive())}.  If you need to await with
554 >     * interruption or timeout, you can arrange this with an analogous
555 >     * construction using one of the other forms of the {@code
556 >     * awaitAdvance} method.  If instead you need to deregister upon
557 >     * arrival, use {@link #arriveAndDeregister}. It is an unenforced
558 >     * usage error for an unregistered party to invoke this method.
559 >     *
560 >     * @return the arrival phase number, or a negative number if terminated
561 >     * @throws IllegalStateException if not terminated and the number
562 >     * of unarrived parties would become negative
563       */
564      public int arriveAndAwaitAdvance() {
565 <        final AtomicLong state = this.state;
282 <        for (;;) {
283 <            long s = state.get();
284 <            int phase = phaseOf(s);
285 <            int parties = partiesOf(s);
286 <            int unarrived = unarrivedOf(s) - 1;
287 <            if (unarrived < 0)
288 <                throw badBounds(parties, unarrived);
289 <            if (unarrived == 0 && phase >= 0) {
290 <                trip(phase, parties);
291 <                return 0;
292 <            }
293 <            if (state.compareAndSet(s, stateFor(phase, parties, unarrived))) {
294 <                awaitAdvance(phase);
295 <                return unarrived;
296 <            }
297 <        }
565 >        return awaitAdvance(arrive());
566      }
567  
568      /**
569 <     * Awaits the phase of the barrier to advance from the given
570 <     * value, or returns immediately if this barrier is terminated.
571 <     * @param phase the phase on entry to this method
572 <     * @return the phase on exit from this method
569 >     * Awaits the phase of the barrier to advance from the given phase
570 >     * value, returning immediately if the current phase of the
571 >     * barrier is not equal to the given phase value or this barrier
572 >     * is terminated.
573 >     *
574 >     * @param phase an arrival phase number, or negative value if
575 >     * terminated; this argument is normally the value returned by a
576 >     * previous call to {@code arrive} or its variants
577 >     * @return the next arrival phase number, or a negative value
578 >     * if terminated or argument is negative
579       */
580      public int awaitAdvance(int phase) {
581          if (phase < 0)
582              return phase;
583 <        Thread current = Thread.currentThread();
584 <        if (current instanceof ForkJoinWorkerThread)
585 <            return helpingWait(phase);
312 <        if (untimedWait(current, phase, false))
313 <            current.interrupt();
314 <        return phaseOf(state.get());
583 >        long s = (parent == null) ? state : reconcileState();
584 >        int p = (int)(s >>> PHASE_SHIFT);
585 >        return (p != phase) ? p : internalAwaitAdvance(phase, null);
586      }
587  
588      /**
589 <     * Awaits the phase of the barrier to advance from the given
590 <     * value, or returns immediately if this barrier is terminated, or
591 <     * throws InterruptedException if interrupted while waiting.
592 <     * @param phase the phase on entry to this method
593 <     * @return the phase on exit from this method
589 >     * Awaits the phase of the barrier to advance from the given phase
590 >     * value, throwing {@code InterruptedException} if interrupted
591 >     * while waiting, or returning immediately if the current phase of
592 >     * the barrier is not equal to the given phase value or this
593 >     * barrier is terminated.
594 >     *
595 >     * @param phase an arrival phase number, or negative value if
596 >     * terminated; this argument is normally the value returned by a
597 >     * previous call to {@code arrive} or its variants
598 >     * @return the next arrival phase number, or a negative value
599 >     * if terminated or argument is negative
600       * @throws InterruptedException if thread interrupted while waiting
601       */
602 <    public int awaitAdvanceInterruptibly(int phase) throws InterruptedException {
602 >    public int awaitAdvanceInterruptibly(int phase)
603 >        throws InterruptedException {
604          if (phase < 0)
605              return phase;
606 <        Thread current = Thread.currentThread();
607 <        if (current instanceof ForkJoinWorkerThread)
608 <            return helpingWait(phase);
609 <        else if (Thread.interrupted() || untimedWait(current, phase, true))
610 <            throw new InterruptedException();
611 <        else
612 <            return phaseOf(state.get());
606 >        long s = (parent == null) ? state : reconcileState();
607 >        int p = (int)(s >>> PHASE_SHIFT);
608 >        if (p == phase) {
609 >            QNode node = new QNode(this, phase, true, false, 0L);
610 >            p = internalAwaitAdvance(phase, node);
611 >            if (node.wasInterrupted)
612 >                throw new InterruptedException();
613 >        }
614 >        return p;
615      }
616  
617      /**
618 <     * Awaits the phase of the barrier to advance from the given value
619 <     * or the given timeout elapses, or returns immediately if this
620 <     * barrier is terminated.
621 <     * @param phase the phase on entry to this method
622 <     * @return the phase on exit from this method
618 >     * Awaits the phase of the barrier to advance from the given phase
619 >     * value or the given timeout to elapse, throwing {@code
620 >     * InterruptedException} if interrupted while waiting, or
621 >     * returning immediately if the current phase of the barrier is
622 >     * not equal to the given phase value or this barrier is
623 >     * terminated.
624 >     *
625 >     * @param phase an arrival phase number, or negative value if
626 >     * terminated; this argument is normally the value returned by a
627 >     * previous call to {@code arrive} or its variants
628 >     * @param timeout how long to wait before giving up, in units of
629 >     *        {@code unit}
630 >     * @param unit a {@code TimeUnit} determining how to interpret the
631 >     *        {@code timeout} parameter
632 >     * @return the next arrival phase number, or a negative value
633 >     * if terminated or argument is negative
634       * @throws InterruptedException if thread interrupted while waiting
635       * @throws TimeoutException if timed out while waiting
636       */
637 <    public int awaitAdvanceInterruptibly(int phase, long timeout, TimeUnit unit)
637 >    public int awaitAdvanceInterruptibly(int phase,
638 >                                         long timeout, TimeUnit unit)
639          throws InterruptedException, TimeoutException {
640          if (phase < 0)
641              return phase;
642 <        long nanos = unit.toNanos(timeout);
643 <        Thread current = Thread.currentThread();
644 <        if (current instanceof ForkJoinWorkerThread)
645 <            return timedHelpingWait(phase, nanos);
646 <        timedWait(current, phase, nanos);
647 <        return phaseOf(state.get());
642 >        long s = (parent == null) ? state : reconcileState();
643 >        int p = (int)(s >>> PHASE_SHIFT);
644 >        if (p == phase) {
645 >            long nanos = unit.toNanos(timeout);
646 >            QNode node = new QNode(this, phase, true, true, nanos);
647 >            p = internalAwaitAdvance(phase, node);
648 >            if (node.wasInterrupted)
649 >                throw new InterruptedException();
650 >            else if (p == phase)
651 >                throw new TimeoutException();
652 >        }
653 >        return p;
654      }
655  
656      /**
657 <     * Forces this barrier to enter termination state. Counts of
658 <     * arrived and registered parties are unaffected. This method may
659 <     * be useful for coordinating recovery after one or more tasks
657 >     * Forces this barrier to enter termination state.  Counts of
658 >     * arrived and registered parties are unaffected.  If this phaser
659 >     * is a member of a tiered set of phasers, then all of the phasers
660 >     * in the set are terminated.  If this phaser is already
661 >     * terminated, this method has no effect.  This method may be
662 >     * useful for coordinating recovery after one or more tasks
663       * encounter unexpected exceptions.
664       */
665      public void forceTermination() {
666 <        final AtomicLong state = this.state;
667 <        for (;;) {
668 <            long s = state.get();
669 <            int phase = phaseOf(s);
670 <            int parties = partiesOf(s);
671 <            int unarrived = unarrivedOf(s);
672 <            if (phase < 0 ||
673 <                state.compareAndSet(s, stateFor(-1, parties, unarrived))) {
373 <                if (head.get() != null)
374 <                    releaseWaiters(-1);
666 >        // Only need to change root state
667 >        final Phaser root = this.root;
668 >        long s;
669 >        while ((s = root.state) >= 0) {
670 >            if (UNSAFE.compareAndSwapLong(root, stateOffset,
671 >                                          s, s | TERMINATION_PHASE)) {
672 >                releaseWaiters(0); // signal all threads
673 >                releaseWaiters(1);
674                  return;
675              }
676          }
677      }
678  
679      /**
381     * Resets the barrier with the given numbers of registered unarrived
382     * parties and phase number 0. This method allows repeated reuse
383     * of this barrier, but only if it is somehow known not to be in
384     * use for other purposes.
385     * @param parties the number of parties required to trip barrier.
386     * @throws IllegalArgumentException if parties less than zero
387     * or greater than the maximum number of parties supported.
388     */
389    public void reset(int parties) {
390        if (parties < 0 || parties > ushortMask)
391            throw new IllegalArgumentException("Illegal number of parties");
392        state.set(stateFor(0, parties, parties));
393        if (head.get() != null)
394            releaseWaiters(0);
395    }
396
397    /**
680       * Returns the current phase number. The maximum phase number is
681 <     * <tt>Integer.MAX_VALUE</tt>, after which it restarts at
681 >     * {@code Integer.MAX_VALUE}, after which it restarts at
682       * zero. Upon termination, the phase number is negative.
683 +     *
684       * @return the phase number, or a negative value if terminated
685       */
686 <    public int getPhase() {
687 <        return phaseOf(state.get());
686 >    public final int getPhase() {
687 >        return (int)(root.state >>> PHASE_SHIFT);
688      }
689  
690      /**
691       * Returns the number of parties registered at this barrier.
692 +     *
693       * @return the number of parties
694       */
695      public int getRegisteredParties() {
696 <        return partiesOf(state.get());
696 >        return partiesOf(state);
697      }
698  
699      /**
700 <     * Returns the number of parties that have arrived at the current
701 <     * phase of this barrier.
700 >     * Returns the number of registered parties that have arrived at
701 >     * the current phase of this barrier.
702 >     *
703       * @return the number of arrived parties
704       */
705      public int getArrivedParties() {
706 <        return arrivedOf(state.get());
706 >        return arrivedOf(parent==null? state : reconcileState());
707      }
708  
709      /**
710       * Returns the number of registered parties that have not yet
711       * arrived at the current phase of this barrier.
712 +     *
713       * @return the number of unarrived parties
714       */
715      public int getUnarrivedParties() {
716 <        return unarrivedOf(state.get());
716 >        return unarrivedOf(parent==null? state : reconcileState());
717 >    }
718 >
719 >    /**
720 >     * Returns the parent of this phaser, or {@code null} if none.
721 >     *
722 >     * @return the parent of this phaser, or {@code null} if none
723 >     */
724 >    public Phaser getParent() {
725 >        return parent;
726      }
727  
728      /**
729 <     * Returns true if this barrier has been terminated.
730 <     * @return true if this barrier has been terminated
729 >     * Returns the root ancestor of this phaser, which is the same as
730 >     * this phaser if it has no parent.
731 >     *
732 >     * @return the root ancestor of this phaser
733 >     */
734 >    public Phaser getRoot() {
735 >        return root;
736 >    }
737 >
738 >    /**
739 >     * Returns {@code true} if this barrier has been terminated.
740 >     *
741 >     * @return {@code true} if this barrier has been terminated
742       */
743      public boolean isTerminated() {
744 <        return phaseOf(state.get()) < 0;
744 >        return root.state < 0L;
745      }
746  
747      /**
748 <     * Overridable method to perform an action upon phase advance, and
749 <     * to control termination. This method is invoked whenever the
750 <     * barrier is tripped (and thus all other waiting parties are
751 <     * dormant). If it returns true, then, rather than advance the
752 <     * phase number, this barrier will be set to a final termination
753 <     * state, and subsequent calls to <tt>isTerminated</tt> will
754 <     * return true.
748 >     * Overridable method to perform an action upon impending phase
749 >     * advance, and to control termination. This method is invoked
750 >     * upon arrival of the party tripping the barrier (when all other
751 >     * waiting parties are dormant).  If this method returns {@code
752 >     * true}, then, rather than advance the phase number, this barrier
753 >     * will be set to a final termination state, and subsequent calls
754 >     * to {@link #isTerminated} will return true. Any (unchecked)
755 >     * Exception or Error thrown by an invocation of this method is
756 >     * propagated to the party attempting to trip the barrier, in
757 >     * which case no advance occurs.
758       *
759 <     * <p> The default version returns true when the number of
759 >     * <p>The arguments to this method provide the state of the phaser
760 >     * prevailing for the current transition.  The effects of invoking
761 >     * arrival, registration, and waiting methods on this Phaser from
762 >     * within {@code onAdvance} are unspecified and should not be
763 >     * relied on.
764 >     *
765 >     * <p>If this Phaser is a member of a tiered set of Phasers, then
766 >     * {@code onAdvance} is invoked only for its root Phaser on each
767 >     * advance.
768 >     *
769 >     * <p>The default version returns {@code true} when the number of
770       * registered parties is zero. Normally, overrides that arrange
771       * termination for other reasons should also preserve this
772       * property.
773       *
774       * @param phase the phase number on entering the barrier
775 <     * @param registeredParties the current number of registered
776 <     * parties.
458 <     * @return true if this barrier should terminate
775 >     * @param registeredParties the current number of registered parties
776 >     * @return {@code true} if this barrier should terminate
777       */
778      protected boolean onAdvance(int phase, int registeredParties) {
779          return registeredParties <= 0;
780      }
781  
782      /**
783 <     * Returns a string identifying this barrier, as well as its
783 >     * Returns a string identifying this phaser, as well as its
784       * state.  The state, in brackets, includes the String {@code
785 <     * "phase ="} followed by the phase number, {@code "parties ="}
785 >     * "phase = "} followed by the phase number, {@code "parties = "}
786       * followed by the number of registered parties, and {@code
787 <     * "arrived ="} followed by the number of arrived parties
787 >     * "arrived = "} followed by the number of arrived parties.
788       *
789       * @return a string identifying this barrier, as well as its state
790       */
791      public String toString() {
792 <        long s = state.get();
475 <        return super.toString() + "[phase = " + phaseOf(s) + " parties = " + partiesOf(s) + " arrived = " + arrivedOf(s) + "]";
792 >        return stateToString(reconcileState());
793      }
794  
478    // methods for tripping and waiting
479
795      /**
796 <     * Advance the current phase (or terminate)
796 >     * Implementation of toString and string-based error messages
797       */
798 <    private void trip(int phase, int parties) {
799 <        int next = onAdvance(phase, parties)? -1 : ((phase + 1) & phaseMask);
800 <        state.set(stateFor(next, parties, parties));
801 <        if (head.get() != null)
802 <            releaseWaiters(next);
798 >    private String stateToString(long s) {
799 >        return super.toString() +
800 >            "[phase = " + phaseOf(s) +
801 >            " parties = " + partiesOf(s) +
802 >            " arrived = " + arrivedOf(s) + "]";
803      }
804  
805 <    private int helpingWait(int phase) {
806 <        final AtomicLong state = this.state;
805 >    // Waiting mechanics
806 >
807 >    /**
808 >     * Removes and signals threads from queue for phase.
809 >     */
810 >    private void releaseWaiters(int phase) {
811 >        AtomicReference<QNode> head = queueFor(phase);
812 >        QNode q;
813          int p;
814 <        while ((p = phaseOf(state.get())) == phase) {
815 <            ForkJoinTask<?> t = ForkJoinWorkerThread.pollTask();
816 <            if (t != null) {
817 <                if ((p = phaseOf(state.get())) == phase)
818 <                    t.exec();
498 <                else {   // push task and exit if barrier advanced
499 <                    t.fork();
500 <                    break;
501 <                }
502 <            }
814 >        while ((q = head.get()) != null &&
815 >               ((p = q.phase) == phase ||
816 >                (int)(root.state >>> PHASE_SHIFT) != p)) {
817 >            if (head.compareAndSet(q, q.next))
818 >                q.signal();
819          }
504        return p;
820      }
821  
822 <    private int timedHelpingWait(int phase, long nanos) throws TimeoutException {
823 <        final AtomicLong state = this.state;
824 <        long lastTime = System.nanoTime();
822 >    /** The number of CPUs, for spin control */
823 >    private static final int NCPU = Runtime.getRuntime().availableProcessors();
824 >
825 >    /**
826 >     * The number of times to spin before blocking while waiting for
827 >     * advance, per arrival while waiting. On multiprocessors, fully
828 >     * blocking and waking up a large number of threads all at once is
829 >     * usually a very slow process, so we use rechargeable spins to
830 >     * avoid it when threads regularly arrive: When a thread in
831 >     * internalAwaitAdvance notices another arrival before blocking,
832 >     * and there appear to be enough CPUs available, it spins
833 >     * SPINS_PER_ARRIVAL more times before blocking. Plus, even on
834 >     * uniprocessors, there is at least one intervening Thread.yield
835 >     * before blocking. The value trades off good-citizenship vs big
836 >     * unnecessary slowdowns.
837 >     */
838 >    static final int SPINS_PER_ARRIVAL = (NCPU < 2) ? 1 : 1 << 8;
839 >
840 >    /**
841 >     * Possibly blocks and waits for phase to advance unless aborted.
842 >     *
843 >     * @param phase current phase
844 >     * @param node if non-null, the wait node to track interrupt and timeout;
845 >     * if null, denotes noninterruptible wait
846 >     * @return current phase
847 >     */
848 >    private int internalAwaitAdvance(int phase, QNode node) {
849 >        Phaser current = this;       // to eventually wait at root if tiered
850 >        boolean queued = false;      // true when node is enqueued
851 >        int lastUnarrived = -1;      // to increase spins upon change
852 >        int spins = SPINS_PER_ARRIVAL;
853 >        long s;
854          int p;
855 <        while ((p = phaseOf(state.get())) == phase) {
856 <            long now = System.nanoTime();
857 <            nanos -= now - lastTime;
858 <            lastTime = now;
859 <            if (nanos <= 0) {
860 <                if ((p = phaseOf(state.get())) == phase)
861 <                    throw new TimeoutException();
862 <                else
519 <                    break;
855 >        while ((p = (int)((s = current.state) >>> PHASE_SHIFT)) == phase) {
856 >            Phaser par;
857 >            int unarrived = (int)s & UNARRIVED_MASK;
858 >            if (unarrived != lastUnarrived) {
859 >                if (lastUnarrived == -1) // ensure old queue clean
860 >                    releaseWaiters(phase-1);
861 >                if ((lastUnarrived = unarrived) < NCPU)
862 >                    spins += SPINS_PER_ARRIVAL;
863              }
864 <            ForkJoinTask<?> t = ForkJoinWorkerThread.pollTask();
865 <            if (t != null) {
866 <                if ((p = phaseOf(state.get())) == phase)
867 <                    t.exec();
868 <                else {   // push task and exit if barrier advanced
869 <                    t.fork();
864 >            else if (unarrived == 0 && (par = current.parent) != null) {
865 >                current = par;       // if all arrived, use parent
866 >                par = par.parent;
867 >                lastUnarrived = -1;
868 >            }
869 >            else if (spins > 0) {
870 >                if (--spins == (SPINS_PER_ARRIVAL >>> 1))
871 >                    Thread.yield();  // yield midway through spin
872 >            }
873 >            else if (node == null)   // must be noninterruptible
874 >                node = new QNode(this, phase, false, false, 0L);
875 >            else if (node.isReleasable()) {
876 >                if ((p = (int)(root.state >>> PHASE_SHIFT)) != phase)
877                      break;
878 +                else
879 +                    return phase;    // aborted
880 +            }
881 +            else if (!queued) {      // push onto queue
882 +                AtomicReference<QNode> head = queueFor(phase);
883 +                QNode q = head.get();
884 +                if (q == null || q.phase == phase) {
885 +                    node.next = q;
886 +                    if ((p = (int)(root.state >>> PHASE_SHIFT)) != phase)
887 +                        break;       // recheck to avoid stale enqueue
888 +                    else
889 +                        queued = head.compareAndSet(q, node);
890 +                }
891 +            }
892 +            else {
893 +                try {
894 +                    ForkJoinPool.managedBlock(node);
895 +                } catch (InterruptedException ie) {
896 +                    node.wasInterrupted = true;
897                  }
898              }
899          }
900 +        releaseWaiters(phase);
901 +        if (node != null)
902 +            node.onRelease();
903          return p;
904      }
905  
906      /**
907 <     * Wait nodes for Treiber stack representing wait queue for non-FJ
536 <     * tasks. The waiting scheme is an adaptation of the one used in
537 <     * forkjoin.PoolBarrier.
907 >     * Wait nodes for Treiber stack representing wait queue
908       */
909 <    static final class QNode {
910 <        QNode next;
541 <        volatile Thread thread; // nulled to cancel wait
909 >    static final class QNode implements ForkJoinPool.ManagedBlocker {
910 >        final Phaser phaser;
911          final int phase;
912 <        QNode(Thread t, int c) {
913 <            thread = t;
914 <            phase = c;
912 >        final boolean interruptible;
913 >        final boolean timed;
914 >        boolean wasInterrupted;
915 >        long nanos;
916 >        long lastTime;
917 >        volatile Thread thread; // nulled to cancel wait
918 >        QNode next;
919 >
920 >        QNode(Phaser phaser, int phase, boolean interruptible,
921 >              boolean timed, long nanos) {
922 >            this.phaser = phaser;
923 >            this.phase = phase;
924 >            this.interruptible = interruptible;
925 >            this.nanos = nanos;
926 >            this.timed = timed;
927 >            this.lastTime = timed? System.nanoTime() : 0L;
928 >            thread = Thread.currentThread();
929          }
547    }
930  
931 <    private void releaseWaiters(int currentPhase) {
932 <        final AtomicReference<QNode> head = this.head;
933 <        QNode p;
934 <        while ((p = head.get()) != null && p.phase != currentPhase) {
935 <            if (head.compareAndSet(p, null)) {
936 <                do {
937 <                    Thread t = p.thread;
938 <                    if (t != null) {
939 <                        p.thread = null;
940 <                        LockSupport.unpark(t);
931 >        public boolean isReleasable() {
932 >            Thread t = thread;
933 >            if (t != null) {
934 >                if (phaser.getPhase() != phase)
935 >                    t = null;
936 >                else {
937 >                    if (Thread.interrupted())
938 >                        wasInterrupted = true;
939 >                    if (interruptible && wasInterrupted)
940 >                        t = null;
941 >                    else if (timed) {
942 >                        if (nanos > 0) {
943 >                            long now = System.nanoTime();
944 >                            nanos -= now - lastTime;
945 >                            lastTime = now;
946 >                        }
947 >                        if (nanos <= 0)
948 >                            t = null;
949                      }
950 <                } while ((p = p.next) != null);
950 >                }
951 >                if (t != null)
952 >                    return false;
953 >                thread = null;
954              }
955 +            return true;
956          }
563    }
957  
958 <    /** The number of CPUs, for spin control */
959 <    static final int NCPUS = Runtime.getRuntime().availableProcessors();
958 >        public boolean block() {
959 >            if (isReleasable())
960 >                return true;
961 >            else if (!timed)
962 >                LockSupport.park(this);
963 >            else if (nanos > 0)
964 >                LockSupport.parkNanos(this, nanos);
965 >            return isReleasable();
966 >        }
967  
968 <    /**
969 <     * The number of times to spin before blocking in timed waits.
970 <     * The value is empirically derived.
971 <     */
972 <    static final int maxTimedSpins = (NCPUS < 2)? 0 : 32;
968 >        void signal() {
969 >            Thread t = thread;
970 >            if (t != null) {
971 >                thread = null;
972 >                LockSupport.unpark(t);
973 >            }
974 >        }
975  
976 <    /**
977 <     * The number of times to spin before blocking in untimed waits.
978 <     * This is greater than timed value because untimed waits spin
979 <     * faster since they don't need to check times on each spin.
980 <     */
981 <    static final int maxUntimedSpins = maxTimedSpins * 32;
976 >        void onRelease() { // actions upon return from internalAwaitAdvance
977 >            if (!interruptible && wasInterrupted)
978 >                Thread.currentThread().interrupt();
979 >            if (thread != null)
980 >                thread = null;
981 >        }
982  
983 <    /**
582 <     * The number of nanoseconds for which it is faster to spin
583 <     * rather than to use timed park. A rough estimate suffices.
584 <     */
585 <    static final long spinForTimeoutThreshold = 1000L;
983 >    }
984  
985 <    /**
986 <     * Enqueues node and waits unless aborted or signalled.
987 <     */
988 <    private boolean untimedWait(Thread thread, int currentPhase,
989 <                               boolean abortOnInterrupt) {
990 <        final AtomicReference<QNode> head = this.head;
991 <        final AtomicLong state = this.state;
992 <        boolean wasInterrupted = false;
993 <        QNode node = null;
994 <        boolean queued = false;
995 <        int spins = maxUntimedSpins;
996 <        while (phaseOf(state.get()) == currentPhase) {
997 <            QNode h;
998 <            if (node != null && queued) {
601 <                if (node.thread != null) {
602 <                    LockSupport.park();
603 <                    if (Thread.interrupted()) {
604 <                        wasInterrupted = true;
605 <                        if (abortOnInterrupt)
606 <                            break;
607 <                    }
608 <                }
609 <            }
610 <            else if ((h = head.get()) != null && h.phase != currentPhase) {
611 <                if (phaseOf(state.get()) == currentPhase) { // must recheck
612 <                    if (head.compareAndSet(h, h.next)) {
613 <                        Thread t = h.thread; // help clear out old waiters
614 <                        if (t != null) {
615 <                            h.thread = null;
616 <                            LockSupport.unpark(t);
617 <                        }
618 <                    }
619 <                }
620 <                else
621 <                    break;
622 <            }
623 <            else if (node != null)
624 <                queued = head.compareAndSet(node.next = h, node);
625 <            else if (spins <= 0)
626 <                node = new QNode(thread, currentPhase);
627 <            else
628 <                --spins;
985 >    // Unsafe mechanics
986 >
987 >    private static final sun.misc.Unsafe UNSAFE = getUnsafe();
988 >    private static final long stateOffset =
989 >        objectFieldOffset("state", Phaser.class);
990 >
991 >    private static long objectFieldOffset(String field, Class<?> klazz) {
992 >        try {
993 >            return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
994 >        } catch (NoSuchFieldException e) {
995 >            // Convert Exception to corresponding Error
996 >            NoSuchFieldError error = new NoSuchFieldError(field);
997 >            error.initCause(e);
998 >            throw error;
999          }
630        if (node != null)
631            node.thread = null;
632        return wasInterrupted;
1000      }
1001  
1002      /**
1003 <     * Messier timeout version
1003 >     * Returns a sun.misc.Unsafe.  Suitable for use in a 3rd party package.
1004 >     * Replace with a simple call to Unsafe.getUnsafe when integrating
1005 >     * into a jdk.
1006 >     *
1007 >     * @return a sun.misc.Unsafe
1008       */
1009 <    private void timedWait(Thread thread, int currentPhase, long nanos)
1010 <        throws InterruptedException, TimeoutException {
1011 <        final AtomicReference<QNode> head = this.head;
1012 <        final AtomicLong state = this.state;
1013 <        long lastTime = System.nanoTime();
1014 <        QNode node = null;
1015 <        boolean queued = false;
1016 <        int spins = maxTimedSpins;
1017 <        while (phaseOf(state.get()) == currentPhase) {
1018 <            QNode h;
1019 <            long now = System.nanoTime();
1020 <            nanos -= now - lastTime;
1021 <            lastTime = now;
1022 <            if (nanos <= 0) {
1023 <                if (node != null)
1024 <                    node.thread = null;
1025 <                if (phaseOf(state.get()) == currentPhase)
655 <                    throw new TimeoutException();
656 <                else
657 <                    break;
1009 >    private static sun.misc.Unsafe getUnsafe() {
1010 >        try {
1011 >            return sun.misc.Unsafe.getUnsafe();
1012 >        } catch (SecurityException se) {
1013 >            try {
1014 >                return java.security.AccessController.doPrivileged
1015 >                    (new java.security
1016 >                     .PrivilegedExceptionAction<sun.misc.Unsafe>() {
1017 >                        public sun.misc.Unsafe run() throws Exception {
1018 >                            java.lang.reflect.Field f = sun.misc
1019 >                                .Unsafe.class.getDeclaredField("theUnsafe");
1020 >                            f.setAccessible(true);
1021 >                            return (sun.misc.Unsafe) f.get(null);
1022 >                        }});
1023 >            } catch (java.security.PrivilegedActionException e) {
1024 >                throw new RuntimeException("Could not initialize intrinsics",
1025 >                                           e.getCause());
1026              }
659            else if (node != null && queued) {
660                if (node.thread != null &&
661                    nanos > spinForTimeoutThreshold) {
662                    //                LockSupport.parkNanos(this, nanos);
663                    LockSupport.parkNanos(nanos);
664                    if (Thread.interrupted()) {
665                        node.thread = null;
666                        throw new InterruptedException();
667                    }
668                }
669            }
670            else if ((h = head.get()) != null && h.phase != currentPhase) {
671                if (phaseOf(state.get()) == currentPhase) { // must recheck
672                    if (head.compareAndSet(h, h.next)) {
673                        Thread t = h.thread; // help clear out old waiters
674                        if (t != null) {
675                            h.thread = null;
676                            LockSupport.unpark(t);
677                        }
678                    }
679                }
680                else
681                    break;
682            }
683            else if (node != null)
684                queued = head.compareAndSet(node.next = h, node);
685            else if (spins <= 0)
686                node = new QNode(thread, currentPhase);
687            else
688                --spins;
1027          }
690        if (node != null)
691            node.thread = null;
1028      }
693
1029   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines