--- jsr166/src/jsr166y/Phaser.java 2009/07/22 01:36:51 1.16 +++ jsr166/src/jsr166y/Phaser.java 2010/11/27 16:46:53 1.59 @@ -6,158 +6,199 @@ package jsr166y; -import java.util.concurrent.*; -import java.util.concurrent.atomic.*; +import java.util.concurrent.TimeUnit; +import java.util.concurrent.TimeoutException; +import java.util.concurrent.atomic.AtomicReference; import java.util.concurrent.locks.LockSupport; -import sun.misc.Unsafe; -import java.lang.reflect.*; /** - * A reusable synchronization barrier, similar in functionality to a + * A reusable synchronization barrier, similar in functionality to * {@link java.util.concurrent.CyclicBarrier CyclicBarrier} and * {@link java.util.concurrent.CountDownLatch CountDownLatch} * but supporting more flexible usage. * - * * + *

Termination. A {@code Phaser} may enter a + * termination state in which all synchronization methods + * immediately return without updating phaser state or waiting for + * advance, and indicating (via a negative phase value) that execution + * is complete. Termination is triggered when an invocation of {@code + * onAdvance} returns {@code true}. The default implementation returns + * {@code true} if a deregistration has caused the number of + * registered parties to become zero. As illustrated below, when + * phasers control actions with a fixed number of iterations, it is + * often convenient to override this method to cause termination when + * the current phase number reaches a threshold. Method {@link + * #forceTermination} is also available to abruptly release waiting + * threads and allow them to terminate. + * + *

Tiering. Phasers may be tiered (i.e., + * constructed in tree structures) to reduce contention. Phasers with + * large numbers of parties that would otherwise experience heavy + * synchronization contention costs may instead be set up so that + * groups of sub-phasers share a common parent. This may greatly + * increase throughput even though it incurs greater per-operation + * overhead. + * + *

Monitoring. While synchronization methods may be invoked + * only by registered parties, the current state of a phaser may be + * monitored by any caller. At any given moment there are {@link + * #getRegisteredParties} parties in total, of which {@link + * #getArrivedParties} have arrived at the current phase ({@link + * #getPhase}). When the remaining ({@link #getUnarrivedParties}) + * parties arrive, the phase advances. The values returned by these + * methods may reflect transient states and so are not in general + * useful for synchronization control. Method {@link #toString} + * returns snapshots of these state queries in a form convenient for + * informal monitoring. + * *

Sample usages: * - *

A Phaser may be used instead of a {@code CountDownLatch} to control - * a one-shot action serving a variable number of parties. The typical - * idiom is for the method setting this up to first register, then - * start the actions, then deregister, as in: + *

A {@code Phaser} may be used instead of a {@code CountDownLatch} + * to control a one-shot action serving a variable number of parties. + * The typical idiom is for the method setting this up to first + * register, then start the actions, then deregister, as in: * *

 {@code
- * void runTasks(List list) {
+ * void runTasks(List tasks) {
  *   final Phaser phaser = new Phaser(1); // "1" to register self
- *   for (Runnable r : list) {
+ *   // create and start threads
+ *   for (Runnable task : tasks) {
  *     phaser.register();
  *     new Thread() {
  *       public void run() {
  *         phaser.arriveAndAwaitAdvance(); // await all creation
- *         r.run();
- *         phaser.arriveAndDeregister();   // signal completion
+ *         task.run();
  *       }
  *     }.start();
  *   }
  *
- *   doSomethingOnBehalfOfWorkers();
- *   phaser.arrive(); // allow threads to start
- *   int p = phaser.arriveAndDeregister(); // deregister self  ...
- *   p = phaser.awaitAdvance(p); // ... and await arrival
- *   otherActions(); // do other things while tasks execute
- *   phaser.awaitAdvance(p); // await final completion
+ *   // allow threads to start and deregister self
+ *   phaser.arriveAndDeregister();
  * }}
* *

One way to cause a set of threads to repeatedly perform actions * for a given number of iterations is to override {@code onAdvance}: * *

 {@code
- * void startTasks(List list, final int iterations) {
+ * void startTasks(List tasks, final int iterations) {
  *   final Phaser phaser = new Phaser() {
- *     public boolean onAdvance(int phase, int registeredParties) {
+ *     protected boolean onAdvance(int phase, int registeredParties) {
  *       return phase >= iterations || registeredParties == 0;
  *     }
  *   };
  *   phaser.register();
- *   for (Runnable r : list) {
+ *   for (final Runnable task : tasks) {
  *     phaser.register();
  *     new Thread() {
  *       public void run() {
  *         do {
- *           r.run();
+ *           task.run();
  *           phaser.arriveAndAwaitAdvance();
- *         } while(!phaser.isTerminated();
+ *         } while (!phaser.isTerminated());
  *       }
  *     }.start();
  *   }
  *   phaser.arriveAndDeregister(); // deregister self, don't wait
  * }}
* - *

To create a set of tasks using a tree of Phasers, + * If the main task must later await termination, it + * may re-register and then execute a similar loop: + *

 {@code
+ *   // ...
+ *   phaser.register();
+ *   while (!phaser.isTerminated())
+ *     phaser.arriveAndAwaitAdvance();}
+ * + *

Related constructions may be used to await particular phase numbers + * in contexts where you are sure that the phase will never wrap around + * {@code Integer.MAX_VALUE}. For example: + * + *

 {@code
+ * void awaitPhase(Phaser phaser, int phase) {
+ *   int p = phaser.register(); // assumes caller not already registered
+ *   while (p < phase) {
+ *     if (phaser.isTerminated())
+ *       // ... deal with unexpected termination
+ *     else
+ *       p = phaser.arriveAndAwaitAdvance();
+ *   }
+ *   phaser.arriveAndDeregister();
+ * }}
+ * + * + *

To create a set of tasks using a tree of phasers, * you could use code of the following form, assuming a - * Task class with a constructor accepting a Phaser that - * it registers for upon construction: + * Task class with a constructor accepting a phaser that + * it registers with upon construction: + * *

 {@code
- * void build(Task[] actions, int lo, int hi, Phaser b) {
- *   int step = (hi - lo) / TASKS_PER_PHASER;
- *   if (step > 1) {
- *     int i = lo;
- *     while (i < hi) {
- *       int r = Math.min(i + step, hi);
- *       build(actions, i, r, new Phaser(b));
- *       i = r;
+ * void build(Task[] actions, int lo, int hi, Phaser ph) {
+ *   if (hi - lo > TASKS_PER_PHASER) {
+ *     for (int i = lo; i < hi; i += TASKS_PER_PHASER) {
+ *       int j = Math.min(i + TASKS_PER_PHASER, hi);
+ *       build(actions, i, j, new Phaser(ph));
  *     }
  *   } else {
  *     for (int i = lo; i < hi; ++i)
- *       actions[i] = new Task(b);
- *       // assumes new Task(b) performs b.register()
+ *       actions[i] = new Task(ph);
+ *       // assumes new Task(ph) performs ph.register()
  *   }
  * }
  * // .. initially called, for n tasks via
@@ -168,11 +209,9 @@ import java.lang.reflect.*;
  * be appropriate for extremely small per-barrier task bodies (thus
  * high rates), or up to hundreds for extremely large ones.
  *
- * 
- * *

Implementation notes: This implementation restricts the * maximum number of parties to 65535. Attempts to register additional - * parties result in IllegalStateExceptions. However, you can and + * parties result in {@code IllegalStateException}. However, you can and * should create tiered phasers to accommodate arbitrarily large sets * of participants. * @@ -190,127 +229,215 @@ public class Phaser { * Barrier state representation. Conceptually, a barrier contains * four values: * - * * parties -- the number of parties to wait (16 bits) - * * unarrived -- the number of parties yet to hit barrier (16 bits) - * * phase -- the generation of the barrier (31 bits) - * * terminated -- set if barrier is terminated (1 bit) + * * unarrived -- the number of parties yet to hit barrier (bits 0-15) + * * parties -- the number of parties to wait (bits 16-31) + * * phase -- the generation of the barrier (bits 32-62) + * * terminated -- set if barrier is terminated (bit 63 / sign) * * However, to efficiently maintain atomicity, these values are * packed into a single (atomic) long. Termination uses the sign * bit of 32 bit representation of phase, so phase is set to -1 on * termination. Good performance relies on keeping state decoding * and encoding simple, and keeping race windows short. - * - * Note: there are some cheats in arrive() that rely on unarrived - * count being lowest 16 bits. */ private volatile long state; - private static final int ushortBits = 16; - private static final int ushortMask = 0xffff; - private static final int phaseMask = 0x7fffffff; + private static final int MAX_PARTIES = 0xffff; + private static final int MAX_PHASE = 0x7fffffff; + private static final int PARTIES_SHIFT = 16; + private static final int PHASE_SHIFT = 32; + private static final int UNARRIVED_MASK = 0xffff; // to mask ints + private static final long PARTIES_MASK = 0xffff0000L; // to mask longs + private static final long ONE_ARRIVAL = 1L; + private static final long ONE_PARTY = 1L << PARTIES_SHIFT; + private static final long TERMINATION_BIT = 1L << 63; + + // The following unpacking methods are usually manually inlined private static int unarrivedOf(long s) { - return (int)(s & ushortMask); + return (int)s & UNARRIVED_MASK; } private static int partiesOf(long s) { - return ((int)s) >>> 16; + return (int)s >>> PARTIES_SHIFT; } private static int phaseOf(long s) { - return (int)(s >>> 32); + return (int) (s >>> PHASE_SHIFT); } private static int arrivedOf(long s) { return partiesOf(s) - unarrivedOf(s); } - private static long stateFor(int phase, int parties, int unarrived) { - return ((((long)phase) << 32) | (((long)parties) << 16) | - (long)unarrived); - } - - private static long trippedStateFor(int phase, int parties) { - long lp = (long)parties; - return (((long)phase) << 32) | (lp << 16) | lp; - } - - /** - * Returns message string for bad bounds exceptions. - */ - private static String badBounds(int parties, int unarrived) { - return ("Attempt to set " + unarrived + - " unarrived of " + parties + " parties"); - } - /** * The parent of this phaser, or null if none */ private final Phaser parent; /** - * The root of Phaser tree. Equals this if not in a tree. Used to + * The root of phaser tree. Equals this if not in a tree. Used to * support faster state push-down. */ private final Phaser root; - // Wait queues - /** * Heads of Treiber stacks for waiting threads. To eliminate - * contention while releasing some threads while adding others, we + * contention when releasing some threads while adding others, we * use two of them, alternating across even and odd phases. + * Subphasers share queues with root to speed up releases. */ - private final AtomicReference evenQ = new AtomicReference(); - private final AtomicReference oddQ = new AtomicReference(); + private final AtomicReference evenQ; + private final AtomicReference oddQ; private AtomicReference queueFor(int phase) { - return (phase & 1) == 0? evenQ : oddQ; + return ((phase & 1) == 0) ? evenQ : oddQ; } /** - * Returns current state, first resolving lagged propagation from - * root if necessary. + * Returns message string for bounds exceptions on arrival. */ - private long getReconciledState() { - return parent == null? state : reconcileState(); + private String badArrive(long s) { + return "Attempted arrival of unregistered party for " + + stateToString(s); } /** - * Recursively resolves state. + * Returns message string for bounds exceptions on registration. */ - private long reconcileState() { - Phaser p = parent; - long s = state; - if (p != null) { - while (unarrivedOf(s) == 0 && phaseOf(s) != phaseOf(root.state)) { - long parentState = p.getReconciledState(); - int parentPhase = phaseOf(parentState); - int phase = phaseOf(s = state); - if (phase != parentPhase) { - long next = trippedStateFor(parentPhase, partiesOf(s)); - if (casState(s, next)) { + private String badRegister(long s) { + return "Attempt to register more than " + + MAX_PARTIES + " parties for " + stateToString(s); + } + + /** + * Main implementation for methods arrive and arriveAndDeregister. + * Manually tuned to speed up and minimize race windows for the + * common case of just decrementing unarrived field. + * + * @param adj - adjustment to apply to state -- either + * ONE_ARRIVAL (for arrive) or + * ONE_ARRIVAL|ONE_PARTY (for arriveAndDeregister) + */ + private int doArrive(long adj) { + for (;;) { + long s = state; + int unarrived = (int)s & UNARRIVED_MASK; + int phase = (int)(s >>> PHASE_SHIFT); + if (phase < 0) + return phase; + else if (unarrived == 0) { + if (reconcileState() == s) // recheck + throw new IllegalStateException(badArrive(s)); + } + else if (UNSAFE.compareAndSwapLong(this, stateOffset, s, s-=adj)) { + if (unarrived == 1) { + long p = s & PARTIES_MASK; // unshifted parties field + long lu = p >>> PARTIES_SHIFT; + int u = (int)lu; + int nextPhase = (phase + 1) & MAX_PHASE; + long next = ((long)nextPhase << PHASE_SHIFT) | p | lu; + final Phaser parent = this.parent; + if (parent == null) { + if (onAdvance(phase, u)) + next |= TERMINATION_BIT; + UNSAFE.compareAndSwapLong(this, stateOffset, s, next); releaseWaiters(phase); - s = next; + } + else { + parent.doArrive((u == 0) ? + ONE_ARRIVAL|ONE_PARTY : ONE_ARRIVAL); + if ((int)(parent.state >>> PHASE_SHIFT) != nextPhase || + ((int)(state >>> PHASE_SHIFT) != nextPhase && + !UNSAFE.compareAndSwapLong(this, stateOffset, + s, next))) + reconcileState(); + } + } + return phase; + } + } + } + + /** + * Implementation of register, bulkRegister + * + * @param registrations number to add to both parties and + * unarrived fields. Must be greater than zero. + */ + private int doRegister(int registrations) { + // adjustment to state + long adj = ((long)registrations << PARTIES_SHIFT) | registrations; + final Phaser parent = this.parent; + for (;;) { + long s = (parent == null) ? state : reconcileState(); + int parties = (int)s >>> PARTIES_SHIFT; + int phase = (int)(s >>> PHASE_SHIFT); + if (phase < 0) + return phase; + else if (registrations > MAX_PARTIES - parties) + throw new IllegalStateException(badRegister(s)); + else if ((parties == 0 && parent == null) || // first reg of root + ((int)s & UNARRIVED_MASK) != 0) { // not advancing + if (UNSAFE.compareAndSwapLong(this, stateOffset, s, s + adj)) + return phase; + } + else if (parties != 0) // wait for onAdvance + internalAwaitAdvance(phase, null); + else { // 1st registration of child + synchronized(this) { // register parent first + if (reconcileState() == s) { // recheck under lock + parent.doRegister(1); // OK if throws IllegalState + for (;;) { // simpler form of outer loop + s = reconcileState(); + phase = (int)(s >>> PHASE_SHIFT); + if (phase < 0 || + UNSAFE.compareAndSwapLong(this, stateOffset, + s, s + adj)) + return phase; + } } } } } + } + + /** + * Recursively resolves lagged phase propagation from root if necessary. + */ + private long reconcileState() { + Phaser par = parent; + long s = state; + if (par != null) { + Phaser rt = root; + int phase, rPhase; + while ((phase = (int)(s >>> PHASE_SHIFT)) >= 0 && + (rPhase = (int)(rt.state >>> PHASE_SHIFT)) != phase) { + if ((int)(par.state >>> PHASE_SHIFT) != rPhase) + par.reconcileState(); + else if (rPhase < 0 || ((int)s & UNARRIVED_MASK) == 0) { + long u = s & PARTIES_MASK; // reset unarrived to parties + long next = ((((long) rPhase) << PHASE_SHIFT) | u | + (u >>> PARTIES_SHIFT)); + UNSAFE.compareAndSwapLong(this, stateOffset, s, next); + } + s = state; + } + } return s; } /** - * Creates a new Phaser without any initially registered parties, + * Creates a new phaser without any initially registered parties, * initial phase number 0, and no parent. Any thread using this - * Phaser will need to first register for it. + * phaser will need to first register for it. */ public Phaser() { - this(null); + this(null, 0); } /** - * Creates a new Phaser with the given numbers of registered + * Creates a new phaser with the given number of registered * unarrived parties, initial phase number 0, and no parent. * * @param parties the number of parties required to trip barrier @@ -322,30 +449,25 @@ public class Phaser { } /** - * Creates a new Phaser with the given parent, without any - * initially registered parties. If parent is non-null this phaser - * is registered with the parent and its initial phase number is - * the same as that of parent phaser. + * Creates a new phaser with the given parent, and without any + * initially registered parties. Any thread using this phaser + * will need to first register for it, at which point, if the + * given parent is non-null, this phaser will also be registered + * with the parent. + * + * Equivalent to {@link #Phaser(Phaser, int) Phaser(parent, 0)}. * * @param parent the parent phaser */ public Phaser(Phaser parent) { - int phase = 0; - this.parent = parent; - if (parent != null) { - this.root = parent.root; - phase = parent.register(); - } - else - this.root = this; - this.state = trippedStateFor(phase, 0); + this(parent, 0); } /** - * Creates a new Phaser with the given parent and numbers of - * registered unarrived parties. If parent is non-null, this phaser - * is registered with the parent and its initial phase number is - * the same as that of parent phaser. + * Creates a new phaser with the given parent and number of + * registered unarrived parties. If parent is non-null and + * the number of parties is non-zero, this phaser is registered + * with the parent. * * @param parent the parent phaser * @param parties the number of parties required to trip barrier @@ -353,23 +475,36 @@ public class Phaser { * or greater than the maximum number of parties supported */ public Phaser(Phaser parent, int parties) { - if (parties < 0 || parties > ushortMask) + if (parties >>> PARTIES_SHIFT != 0) throw new IllegalArgumentException("Illegal number of parties"); - int phase = 0; + int phase; this.parent = parent; if (parent != null) { - this.root = parent.root; - phase = parent.register(); + Phaser r = parent.root; + this.root = r; + this.evenQ = r.evenQ; + this.oddQ = r.oddQ; + phase = (parties == 0) ? parent.getPhase() : parent.doRegister(1); } - else + else { this.root = this; - this.state = trippedStateFor(phase, parties); + this.evenQ = new AtomicReference(); + this.oddQ = new AtomicReference(); + phase = 0; + } + long p = (long)parties; + this.state = (((long)phase) << PHASE_SHIFT) | p | (p << PARTIES_SHIFT); } /** - * Adds a new unarrived party to this phaser. + * Adds a new unarrived party to this phaser. If an ongoing + * invocation of {@link #onAdvance} is in progress, this method + * may wait until its completion before registering. If this + * phaser has a parent, and this phaser previously had no + * registered parties, this phaser is also registered with its + * parent. * - * @return the current barrier phase number upon registration + * @return the arrival phase number to which this registration applied * @throws IllegalStateException if attempting to register more * than the maximum supported number of parties */ @@ -379,153 +514,75 @@ public class Phaser { /** * Adds the given number of new unarrived parties to this phaser. + * If an ongoing invocation of {@link #onAdvance} is in progress, + * this method may wait until its completion before registering. + * If this phaser has a parent, and the given number of parities + * is greater than zero, and this phaser previously had no + * registered parties, this phaser is also registered with its + * parent. * - * @param parties the number of parties required to trip barrier - * @return the current barrier phase number upon registration + * @param parties the number of additional parties required to trip barrier + * @return the arrival phase number to which this registration applied * @throws IllegalStateException if attempting to register more * than the maximum supported number of parties + * @throws IllegalArgumentException if {@code parties < 0} */ public int bulkRegister(int parties) { if (parties < 0) throw new IllegalArgumentException(); - if (parties == 0) + else if (parties == 0) return getPhase(); return doRegister(parties); } /** - * Shared code for register, bulkRegister - */ - private int doRegister(int registrations) { - int phase; - for (;;) { - long s = getReconciledState(); - phase = phaseOf(s); - int unarrived = unarrivedOf(s) + registrations; - int parties = partiesOf(s) + registrations; - if (phase < 0) - break; - if (parties > ushortMask || unarrived > ushortMask) - throw new IllegalStateException(badBounds(parties, unarrived)); - if (phase == phaseOf(root.state) && - casState(s, stateFor(phase, parties, unarrived))) - break; - } - return phase; - } - - /** * Arrives at the barrier, but does not wait for others. (You can - * in turn wait for others via {@link #awaitAdvance}). + * in turn wait for others via {@link #awaitAdvance}). It is a + * usage error for an unregistered party to invoke this + * method. However, it is possible that this error will result in + * an {code IllegalStateException} only when some other + * party arrives. * - * @return the barrier phase number upon entry to this method, or a - * negative value if terminated + * @return the arrival phase number, or a negative value if terminated * @throws IllegalStateException if not terminated and the number * of unarrived parties would become negative */ public int arrive() { - int phase; - for (;;) { - long s = state; - phase = phaseOf(s); - if (phase < 0) - break; - int parties = partiesOf(s); - int unarrived = unarrivedOf(s) - 1; - if (unarrived > 0) { // Not the last arrival - if (casState(s, s - 1)) // s-1 adds one arrival - break; - } - else if (unarrived == 0) { // the last arrival - Phaser par = parent; - if (par == null) { // directly trip - if (casState - (s, - trippedStateFor(onAdvance(phase, parties)? -1 : - ((phase + 1) & phaseMask), parties))) { - releaseWaiters(phase); - break; - } - } - else { // cascade to parent - if (casState(s, s - 1)) { // zeroes unarrived - par.arrive(); - reconcileState(); - break; - } - } - } - else if (phase != phaseOf(root.state)) // or if unreconciled - reconcileState(); - else - throw new IllegalStateException(badBounds(parties, unarrived)); - } - return phase; + return doArrive(ONE_ARRIVAL); } /** - * Arrives at the barrier, and deregisters from it, without - * waiting for others. Deregistration reduces number of parties + * Arrives at the barrier and deregisters from it without waiting + * for others. Deregistration reduces the number of parties * required to trip the barrier in future phases. If this phaser * has a parent, and deregistration causes this phaser to have - * zero parties, this phaser is also deregistered from its parent. + * zero parties, this phaser also arrives at and is deregistered + * from its parent. It is a usage error for an unregistered party + * to invoke this method. However, it is possible that this error + * will result in an {code IllegalStateException} only when some + * other party arrives. * - * @return the current barrier phase number upon entry to - * this method, or a negative value if terminated + * @return the arrival phase number, or a negative value if terminated * @throws IllegalStateException if not terminated and the number * of registered or unarrived parties would become negative */ public int arriveAndDeregister() { - // similar code to arrive, but too different to merge - Phaser par = parent; - int phase; - for (;;) { - long s = state; - phase = phaseOf(s); - if (phase < 0) - break; - int parties = partiesOf(s) - 1; - int unarrived = unarrivedOf(s) - 1; - if (parties >= 0) { - if (unarrived > 0 || (unarrived == 0 && par != null)) { - if (casState - (s, - stateFor(phase, parties, unarrived))) { - if (unarrived == 0) { - par.arriveAndDeregister(); - reconcileState(); - } - break; - } - continue; - } - if (unarrived == 0) { - if (casState - (s, - trippedStateFor(onAdvance(phase, parties)? -1 : - ((phase + 1) & phaseMask), parties))) { - releaseWaiters(phase); - break; - } - continue; - } - if (par != null && phase != phaseOf(root.state)) { - reconcileState(); - continue; - } - } - throw new IllegalStateException(badBounds(parties, unarrived)); - } - return phase; + return doArrive(ONE_ARRIVAL|ONE_PARTY); } /** * Arrives at the barrier and awaits others. Equivalent in effect - * to {@code awaitAdvance(arrive())}. If you instead need to - * await with interruption of timeout, and/or deregister upon - * arrival, you can arrange them using analogous constructions. + * to {@code awaitAdvance(arrive())}. If you need to await with + * interruption or timeout, you can arrange this with an analogous + * construction using one of the other forms of the {@code + * awaitAdvance} method. If instead you need to deregister upon + * arrival, use {@link #arriveAndDeregister}. It is a usage error + * for an unregistered party to invoke this method. However, it is + * possible that this error will result in an {code + * IllegalStateException} only when some other party + * arrives. * - * @return the phase on entry to this method + * @return the arrival phase number, or a negative number if terminated * @throws IllegalStateException if not terminated and the number * of unarrived parties would become negative */ @@ -534,91 +591,111 @@ public class Phaser { } /** - * Awaits the phase of the barrier to advance from the given - * value, or returns immediately if argument is negative or this - * barrier is terminated. - * - * @param phase the phase on entry to this method - * @return the phase on exit from this method + * Awaits the phase of the barrier to advance from the given phase + * value, returning immediately if the current phase of the + * barrier is not equal to the given phase value or this barrier + * is terminated. + * + * @param phase an arrival phase number, or negative value if + * terminated; this argument is normally the value returned by a + * previous call to {@code arrive} or its variants + * @return the next arrival phase number, or a negative value + * if terminated or argument is negative */ public int awaitAdvance(int phase) { if (phase < 0) return phase; - long s = getReconciledState(); - int p = phaseOf(s); - if (p != phase) - return p; - if (unarrivedOf(s) == 0 && parent != null) - parent.awaitAdvance(phase); - // Fall here even if parent waited, to reconcile and help release - return untimedWait(phase); + long s = (parent == null) ? state : reconcileState(); + int p = (int)(s >>> PHASE_SHIFT); + return (p != phase) ? p : internalAwaitAdvance(phase, null); } /** - * Awaits the phase of the barrier to advance from the given - * value, or returns immediately if argument is negative or this - * barrier is terminated, or throws InterruptedException if - * interrupted while waiting. + * Awaits the phase of the barrier to advance from the given phase + * value, throwing {@code InterruptedException} if interrupted + * while waiting, or returning immediately if the current phase of + * the barrier is not equal to the given phase value or this + * barrier is terminated. * - * @param phase the phase on entry to this method - * @return the phase on exit from this method + * @param phase an arrival phase number, or negative value if + * terminated; this argument is normally the value returned by a + * previous call to {@code arrive} or its variants + * @return the next arrival phase number, or a negative value + * if terminated or argument is negative * @throws InterruptedException if thread interrupted while waiting */ public int awaitAdvanceInterruptibly(int phase) throws InterruptedException { if (phase < 0) return phase; - long s = getReconciledState(); - int p = phaseOf(s); - if (p != phase) - return p; - if (unarrivedOf(s) == 0 && parent != null) - parent.awaitAdvanceInterruptibly(phase); - return interruptibleWait(phase); + long s = (parent == null) ? state : reconcileState(); + int p = (int)(s >>> PHASE_SHIFT); + if (p == phase) { + QNode node = new QNode(this, phase, true, false, 0L); + p = internalAwaitAdvance(phase, node); + if (node.wasInterrupted) + throw new InterruptedException(); + } + return p; } /** - * Awaits the phase of the barrier to advance from the given value - * or the given timeout elapses, or returns immediately if - * argument is negative or this barrier is terminated. - * - * @param phase the phase on entry to this method - * @return the phase on exit from this method + * Awaits the phase of the barrier to advance from the given phase + * value or the given timeout to elapse, throwing {@code + * InterruptedException} if interrupted while waiting, or + * returning immediately if the current phase of the barrier is + * not equal to the given phase value or this barrier is + * terminated. + * + * @param phase an arrival phase number, or negative value if + * terminated; this argument is normally the value returned by a + * previous call to {@code arrive} or its variants + * @param timeout how long to wait before giving up, in units of + * {@code unit} + * @param unit a {@code TimeUnit} determining how to interpret the + * {@code timeout} parameter + * @return the next arrival phase number, or a negative value + * if terminated or argument is negative * @throws InterruptedException if thread interrupted while waiting * @throws TimeoutException if timed out while waiting */ - public int awaitAdvanceInterruptibly(int phase, long timeout, TimeUnit unit) + public int awaitAdvanceInterruptibly(int phase, + long timeout, TimeUnit unit) throws InterruptedException, TimeoutException { if (phase < 0) return phase; - long s = getReconciledState(); - int p = phaseOf(s); - if (p != phase) - return p; - if (unarrivedOf(s) == 0 && parent != null) - parent.awaitAdvanceInterruptibly(phase, timeout, unit); - return timedWait(phase, unit.toNanos(timeout)); + long s = (parent == null) ? state : reconcileState(); + int p = (int)(s >>> PHASE_SHIFT); + if (p == phase) { + long nanos = unit.toNanos(timeout); + QNode node = new QNode(this, phase, true, true, nanos); + p = internalAwaitAdvance(phase, node); + if (node.wasInterrupted) + throw new InterruptedException(); + else if (p == phase) + throw new TimeoutException(); + } + return p; } /** - * Forces this barrier to enter termination state. Counts of - * arrived and registered parties are unaffected. If this phaser - * has a parent, it too is terminated. This method may be useful - * for coordinating recovery after one or more tasks encounter - * unexpected exceptions. + * Forces this barrier to enter termination state. Counts of + * arrived and registered parties are unaffected. If this phaser + * is a member of a tiered set of phasers, then all of the phasers + * in the set are terminated. If this phaser is already + * terminated, this method has no effect. This method may be + * useful for coordinating recovery after one or more tasks + * encounter unexpected exceptions. */ public void forceTermination() { - for (;;) { - long s = getReconciledState(); - int phase = phaseOf(s); - int parties = partiesOf(s); - int unarrived = unarrivedOf(s); - if (phase < 0 || - casState(s, stateFor(-1, parties, unarrived))) { - releaseWaiters(0); + // Only need to change root state + final Phaser root = this.root; + long s; + while ((s = root.state) >= 0) { + if (UNSAFE.compareAndSwapLong(root, stateOffset, + s, s | TERMINATION_BIT)) { + releaseWaiters(0); // signal all threads releaseWaiters(1); - if (parent != null) - parent.forceTermination(); return; } } @@ -632,17 +709,7 @@ public class Phaser { * @return the phase number, or a negative value if terminated */ public final int getPhase() { - return phaseOf(getReconciledState()); - } - - /** - * Returns {@code true} if the current phase number equals the given phase. - * - * @param phase the phase - * @return {@code true} if the current phase number equals the given phase - */ - public final boolean hasPhase(int phase) { - return phaseOf(getReconciledState()) == phase; + return (int)(root.state >>> PHASE_SHIFT); } /** @@ -655,13 +722,13 @@ public class Phaser { } /** - * Returns the number of parties that have arrived at the current - * phase of this barrier. + * Returns the number of registered parties that have arrived at + * the current phase of this barrier. * * @return the number of arrived parties */ public int getArrivedParties() { - return arrivedOf(state); + return arrivedOf(parent==null? state : reconcileState()); } /** @@ -671,13 +738,13 @@ public class Phaser { * @return the number of unarrived parties */ public int getUnarrivedParties() { - return unarrivedOf(state); + return unarrivedOf(parent==null? state : reconcileState()); } /** - * Returns the parent of this phaser, or null if none. + * Returns the parent of this phaser, or {@code null} if none. * - * @return the parent of this phaser, or null if none + * @return the parent of this phaser, or {@code null} if none */ public Phaser getParent() { return parent; @@ -699,33 +766,43 @@ public class Phaser { * @return {@code true} if this barrier has been terminated */ public boolean isTerminated() { - return getPhase() < 0; + return root.state < 0L; } /** - * Overridable method to perform an action upon phase advance, and - * to control termination. This method is invoked whenever the - * barrier is tripped (and thus all other waiting parties are - * dormant). If it returns true, then, rather than advance the - * phase number, this barrier will be set to a final termination - * state, and subsequent calls to {@code isTerminated} will - * return true. - * - *

The default version returns true when the number of - * registered parties is zero. Normally, overrides that arrange - * termination for other reasons should also preserve this - * property. - * - *

You may override this method to perform an action with side - * effects visible to participating tasks, but it is in general - * only sensible to do so in designs where all parties register - * before any arrive, and all {@code awaitAdvance} at each phase. - * Otherwise, you cannot ensure lack of interference. In - * particular, this method may be invoked more than once per - * transition if other parties successfully register while the - * invocation of this method is in progress, thus postponing the - * transition until those parties also arrive, re-triggering this - * method. + * Overridable method to perform an action upon impending phase + * advance, and to control termination. This method is invoked + * upon arrival of the party tripping the barrier (when all other + * waiting parties are dormant). If this method returns {@code + * true}, then, rather than advance the phase number, this barrier + * will be set to a final termination state, and subsequent calls + * to {@link #isTerminated} will return true. Any (unchecked) + * Exception or Error thrown by an invocation of this method is + * propagated to the party attempting to trip the barrier, in + * which case no advance occurs. + * + *

The arguments to this method provide the state of the phaser + * prevailing for the current transition. The effects of invoking + * arrival, registration, and waiting methods on this Phaser from + * within {@code onAdvance} are unspecified and should not be + * relied on. + * + *

If this Phaser is a member of a tiered set of Phasers, then + * {@code onAdvance} is invoked only for its root Phaser on each + * advance. + * + *

To support the most common use cases, the default + * implementation of this method returns {@code true} when the + * number of registered parties has become zero as the result of a + * party invoking {@code arriveAndDeregister}. You can disable + * this behavior, thus enabling continuation upon future + * registrations, by overriding this method to always return + * {@code false}: + * + *

 {@code
+     * Phaser phaser = new Phaser() {
+     *   protected boolean onAdvance(int phase, int parties) { return false; }
+     * }}
* * @param phase the phase number on entering the barrier * @param registeredParties the current number of registered parties @@ -745,14 +822,119 @@ public class Phaser { * @return a string identifying this barrier, as well as its state */ public String toString() { - long s = getReconciledState(); + return stateToString(reconcileState()); + } + + /** + * Implementation of toString and string-based error messages + */ + private String stateToString(long s) { return super.toString() + "[phase = " + phaseOf(s) + " parties = " + partiesOf(s) + " arrived = " + arrivedOf(s) + "]"; } - // methods for waiting + // Waiting mechanics + + /** + * Removes and signals threads from queue for phase. + */ + private void releaseWaiters(int phase) { + AtomicReference head = queueFor(phase); + QNode q; + int p; + while ((q = head.get()) != null && + ((p = q.phase) == phase || + (int)(root.state >>> PHASE_SHIFT) != p)) { + if (head.compareAndSet(q, q.next)) + q.signal(); + } + } + + /** The number of CPUs, for spin control */ + private static final int NCPU = Runtime.getRuntime().availableProcessors(); + + /** + * The number of times to spin before blocking while waiting for + * advance, per arrival while waiting. On multiprocessors, fully + * blocking and waking up a large number of threads all at once is + * usually a very slow process, so we use rechargeable spins to + * avoid it when threads regularly arrive: When a thread in + * internalAwaitAdvance notices another arrival before blocking, + * and there appear to be enough CPUs available, it spins + * SPINS_PER_ARRIVAL more times before blocking. Plus, even on + * uniprocessors, there is at least one intervening Thread.yield + * before blocking. The value trades off good-citizenship vs big + * unnecessary slowdowns. + */ + static final int SPINS_PER_ARRIVAL = (NCPU < 2) ? 1 : 1 << 8; + + /** + * Possibly blocks and waits for phase to advance unless aborted. + * + * @param phase current phase + * @param node if non-null, the wait node to track interrupt and timeout; + * if null, denotes noninterruptible wait + * @return current phase + */ + private int internalAwaitAdvance(int phase, QNode node) { + Phaser current = this; // to eventually wait at root if tiered + boolean queued = false; // true when node is enqueued + int lastUnarrived = -1; // to increase spins upon change + int spins = SPINS_PER_ARRIVAL; + long s; + int p; + while ((p = (int)((s = current.state) >>> PHASE_SHIFT)) == phase) { + Phaser par; + int unarrived = (int)s & UNARRIVED_MASK; + if (unarrived != lastUnarrived) { + if (lastUnarrived == -1) // ensure old queue clean + releaseWaiters(phase-1); + if ((lastUnarrived = unarrived) < NCPU) + spins += SPINS_PER_ARRIVAL; + } + else if (unarrived == 0 && (par = current.parent) != null) { + current = par; // if all arrived, use parent + par = par.parent; + lastUnarrived = -1; + } + else if (spins > 0) { + if (--spins == (SPINS_PER_ARRIVAL >>> 1)) + Thread.yield(); // yield midway through spin + } + else if (node == null) // must be noninterruptible + node = new QNode(this, phase, false, false, 0L); + else if (node.isReleasable()) { + if ((p = (int)(root.state >>> PHASE_SHIFT)) != phase) + break; + else + return phase; // aborted + } + else if (!queued) { // push onto queue + AtomicReference head = queueFor(phase); + QNode q = head.get(); + if (q == null || q.phase == phase) { + node.next = q; + if ((p = (int)(root.state >>> PHASE_SHIFT)) != phase) + break; // recheck to avoid stale enqueue + else + queued = head.compareAndSet(q, node); + } + } + else { + try { + ForkJoinPool.managedBlock(node); + } catch (InterruptedException ie) { + node.wasInterrupted = true; + } + } + } + releaseWaiters(phase); + if (node != null) + node.onRelease(); + return p; + } /** * Wait nodes for Treiber stack representing wait queue @@ -760,45 +942,62 @@ public class Phaser { static final class QNode implements ForkJoinPool.ManagedBlocker { final Phaser phaser; final int phase; - final long startTime; - final long nanos; - final boolean timed; final boolean interruptible; - volatile boolean wasInterrupted = false; + final boolean timed; + boolean wasInterrupted; + long nanos; + long lastTime; volatile Thread thread; // nulled to cancel wait QNode next; + QNode(Phaser phaser, int phase, boolean interruptible, - boolean timed, long startTime, long nanos) { + boolean timed, long nanos) { this.phaser = phaser; this.phase = phase; - this.timed = timed; this.interruptible = interruptible; - this.startTime = startTime; this.nanos = nanos; + this.timed = timed; + this.lastTime = timed? System.nanoTime() : 0L; thread = Thread.currentThread(); } + public boolean isReleasable() { - return (thread == null || - phaser.getPhase() != phase || - (interruptible && wasInterrupted) || - (timed && (nanos - (System.nanoTime() - startTime)) <= 0)); + Thread t = thread; + if (t != null) { + if (phaser.getPhase() != phase) + t = null; + else { + if (Thread.interrupted()) + wasInterrupted = true; + if (interruptible && wasInterrupted) + t = null; + else if (timed) { + if (nanos > 0) { + long now = System.nanoTime(); + nanos -= now - lastTime; + lastTime = now; + } + if (nanos <= 0) + t = null; + } + } + if (t != null) + return false; + thread = null; + } + return true; } + public boolean block() { - if (Thread.interrupted()) { - wasInterrupted = true; - if (interruptible) - return true; - } - if (!timed) + if (isReleasable()) + return true; + else if (!timed) LockSupport.park(this); - else { - long waitTime = nanos - (System.nanoTime() - startTime); - if (waitTime <= 0) - return true; - LockSupport.parkNanos(this, waitTime); - } + else if (nanos > 0) + LockSupport.parkNanos(this, nanos); return isReleasable(); } + void signal() { Thread t = thread; if (t != null) { @@ -806,173 +1005,58 @@ public class Phaser { LockSupport.unpark(t); } } - boolean doWait() { - if (thread != null) { - try { - ForkJoinPool.managedBlock(this, false); - } catch (InterruptedException ie) { - } - } - return wasInterrupted; - } - } - - /** - * Removes and signals waiting threads from wait queue. - */ - private void releaseWaiters(int phase) { - AtomicReference head = queueFor(phase); - QNode q; - while ((q = head.get()) != null) { - if (head.compareAndSet(q, q.next)) - q.signal(); + void onRelease() { // actions upon return from internalAwaitAdvance + if (!interruptible && wasInterrupted) + Thread.currentThread().interrupt(); + if (thread != null) + thread = null; } - } - /** - * Tries to enqueue given node in the appropriate wait queue. - * - * @return true if successful - */ - private boolean tryEnqueue(QNode node) { - AtomicReference head = queueFor(node.phase); - return head.compareAndSet(node.next = head.get(), node); } - /** - * Enqueues node and waits unless aborted or signalled. - * - * @return current phase - */ - private int untimedWait(int phase) { - QNode node = null; - boolean queued = false; - boolean interrupted = false; - int p; - while ((p = getPhase()) == phase) { - if (Thread.interrupted()) - interrupted = true; - else if (node == null) - node = new QNode(this, phase, false, false, 0, 0); - else if (!queued) - queued = tryEnqueue(node); - else - interrupted = node.doWait(); - } - if (node != null) - node.thread = null; - releaseWaiters(phase); - if (interrupted) - Thread.currentThread().interrupt(); - return p; - } + // Unsafe mechanics - /** - * Interruptible version - * @return current phase - */ - private int interruptibleWait(int phase) throws InterruptedException { - QNode node = null; - boolean queued = false; - boolean interrupted = false; - int p; - while ((p = getPhase()) == phase && !interrupted) { - if (Thread.interrupted()) - interrupted = true; - else if (node == null) - node = new QNode(this, phase, true, false, 0, 0); - else if (!queued) - queued = tryEnqueue(node); - else - interrupted = node.doWait(); + private static final sun.misc.Unsafe UNSAFE = getUnsafe(); + private static final long stateOffset = + objectFieldOffset("state", Phaser.class); + + private static long objectFieldOffset(String field, Class klazz) { + try { + return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field)); + } catch (NoSuchFieldException e) { + // Convert Exception to corresponding Error + NoSuchFieldError error = new NoSuchFieldError(field); + error.initCause(e); + throw error; } - if (node != null) - node.thread = null; - if (p != phase || (p = getPhase()) != phase) - releaseWaiters(phase); - if (interrupted) - throw new InterruptedException(); - return p; } /** - * Timeout version. - * @return current phase + * Returns a sun.misc.Unsafe. Suitable for use in a 3rd party package. + * Replace with a simple call to Unsafe.getUnsafe when integrating + * into a jdk. + * + * @return a sun.misc.Unsafe */ - private int timedWait(int phase, long nanos) - throws InterruptedException, TimeoutException { - long startTime = System.nanoTime(); - QNode node = null; - boolean queued = false; - boolean interrupted = false; - int p; - while ((p = getPhase()) == phase && !interrupted) { - if (Thread.interrupted()) - interrupted = true; - else if (nanos - (System.nanoTime() - startTime) <= 0) - break; - else if (node == null) - node = new QNode(this, phase, true, true, startTime, nanos); - else if (!queued) - queued = tryEnqueue(node); - else - interrupted = node.doWait(); - } - if (node != null) - node.thread = null; - if (p != phase || (p = getPhase()) != phase) - releaseWaiters(phase); - if (interrupted) - throw new InterruptedException(); - if (p == phase) - throw new TimeoutException(); - return p; - } - - // Temporary Unsafe mechanics for preliminary release - private static Unsafe getUnsafe() throws Throwable { + private static sun.misc.Unsafe getUnsafe() { try { - return Unsafe.getUnsafe(); + return sun.misc.Unsafe.getUnsafe(); } catch (SecurityException se) { try { return java.security.AccessController.doPrivileged - (new java.security.PrivilegedExceptionAction() { - public Unsafe run() throws Exception { - return getUnsafePrivileged(); + (new java.security + .PrivilegedExceptionAction() { + public sun.misc.Unsafe run() throws Exception { + java.lang.reflect.Field f = sun.misc + .Unsafe.class.getDeclaredField("theUnsafe"); + f.setAccessible(true); + return (sun.misc.Unsafe) f.get(null); }}); } catch (java.security.PrivilegedActionException e) { - throw e.getCause(); + throw new RuntimeException("Could not initialize intrinsics", + e.getCause()); } } } - - private static Unsafe getUnsafePrivileged() - throws NoSuchFieldException, IllegalAccessException { - Field f = Unsafe.class.getDeclaredField("theUnsafe"); - f.setAccessible(true); - return (Unsafe) f.get(null); - } - - private static long fieldOffset(String fieldName) - throws NoSuchFieldException { - return UNSAFE.objectFieldOffset - (Phaser.class.getDeclaredField(fieldName)); - } - - static final Unsafe UNSAFE; - static final long stateOffset; - - static { - try { - UNSAFE = getUnsafe(); - stateOffset = fieldOffset("state"); - } catch (Throwable e) { - throw new RuntimeException("Could not initialize intrinsics", e); - } - } - - final boolean casState(long cmp, long val) { - return UNSAFE.compareAndSwapLong(this, stateOffset, cmp, val); - } }