ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/Phaser.java
(Generate patch)

Comparing jsr166/src/jsr166y/Phaser.java (file contents):
Revision 1.6 by dl, Tue Oct 28 23:03:24 2008 UTC vs.
Revision 1.29 by jsr166, Wed Aug 12 04:02:45 2009 UTC

# Line 5 | Line 5
5   */
6  
7   package jsr166y;
8 +
9   import java.util.concurrent.*;
10 < import java.util.concurrent.atomic.*;
10 >
11 > import java.util.concurrent.atomic.AtomicReference;
12   import java.util.concurrent.locks.LockSupport;
11 import sun.misc.Unsafe;
12 import java.lang.reflect.*;
13  
14   /**
15   * A reusable synchronization barrier, similar in functionality to a
16 < * {@link java.util.concurrent.CyclicBarrier} and {@link
17 < * java.util.concurrent.CountDownLatch} but supporting more flexible
18 < * usage.
16 > * {@link java.util.concurrent.CyclicBarrier CyclicBarrier} and
17 > * {@link java.util.concurrent.CountDownLatch CountDownLatch}
18 > * but supporting more flexible usage.
19   *
20   * <ul>
21   *
# Line 25 | Line 25 | import java.lang.reflect.*;
25   * basic synchronization constructs, registration and deregistration
26   * affect only internal counts; they do not establish any further
27   * internal bookkeeping, so tasks cannot query whether they are
28 < * registered. (However, you can introduce such bookkeeping in by
28 > * registered. (However, you can introduce such bookkeeping by
29   * subclassing this class.)
30   *
31   * <li> Each generation has an associated phase value, starting at
32   * zero, and advancing when all parties reach the barrier (wrapping
33 < * around to zero after reaching <tt>Integer.MAX_VALUE</tt>).
33 > * around to zero after reaching {@code Integer.MAX_VALUE}).
34   *
35 < * <li> Like a CyclicBarrier, a Phaser may be repeatedly awaited.
36 < * Method <tt>arriveAndAwaitAdvance</tt> has effect analogous to
37 < * <tt>CyclicBarrier.await</tt>.  However, Phasers separate two
38 < * aspects of coordination, that may also be invoked independently:
35 > * <li> Like a {@code CyclicBarrier}, a phaser may be repeatedly
36 > * awaited.  Method {@link #arriveAndAwaitAdvance} has effect
37 > * analogous to {@link java.util.concurrent.CyclicBarrier#await
38 > * CyclicBarrier.await}.  However, phasers separate two aspects of
39 > * coordination, which may also be invoked independently:
40   *
41   * <ul>
42   *
43 < *   <li> Arriving at a barrier. Methods <tt>arrive</tt> and
44 < *       <tt>arriveAndDeregister</tt> do not block, but return
43 > *   <li> Arriving at a barrier. Methods {@link #arrive} and
44 > *       {@link #arriveAndDeregister} do not block, but return
45   *       the phase value current upon entry to the method.
46   *
47 < *   <li> Awaiting others. Method <tt>awaitAdvance</tt> requires an
47 > *   <li> Awaiting others. Method {@link #awaitAdvance} requires an
48   *       argument indicating the entry phase, and returns when the
49   *       barrier advances to a new phase.
50   * </ul>
51   *
52   *
53   * <li> Barrier actions, performed by the task triggering a phase
54 < * advance while others may be waiting, are arranged by overriding
55 < * method <tt>onAdvance</tt>, that also controls termination.
56 < * Overriding this method may be used to similar but more flexible
57 < * effect as providing a barrier action to a CyclicBarrier.
54 > * advance, are arranged by overriding method {@link #onAdvance(int,
55 > * int)}, which also controls termination. Overriding this method is
56 > * similar to, but more flexible than, providing a barrier action to a
57 > * {@code CyclicBarrier}.
58   *
59   * <li> Phasers may enter a <em>termination</em> state in which all
60 < * await actions immediately return, indicating (via a negative phase
61 < * value) that execution is complete.  Termination is triggered by
62 < * executing the overridable <tt>onAdvance</tt> method that is invoked
63 < * each time the barrier is about to be tripped. When a Phaser is
60 > * actions immediately return without updating phaser state or waiting
61 > * for advance, and indicating (via a negative phase value) that
62 > * execution is complete.  Termination is triggered when an invocation
63 > * of {@code onAdvance} returns {@code true}.  When a phaser is
64   * controlling an action with a fixed number of iterations, it is
65   * often convenient to override this method to cause termination when
66 < * the current phase number reaches a threshold. Method
67 < * <tt>forceTermination</tt> is also available to abruptly release
68 < * waiting threads and allow them to terminate.
66 > * the current phase number reaches a threshold. Method {@link
67 > * #forceTermination} is also available to abruptly release waiting
68 > * threads and allow them to terminate.
69   *
70   * <li> Phasers may be tiered to reduce contention. Phasers with large
71   * numbers of parties that would otherwise experience heavy
# Line 72 | Line 73 | import java.lang.reflect.*;
73   * This will typically greatly increase throughput even though it
74   * incurs somewhat greater per-operation overhead.
75   *
76 < * <li> By default, <tt>awaitAdvance</tt> continues to wait even if
76 > * <li> By default, {@code awaitAdvance} continues to wait even if
77   * the waiting thread is interrupted. And unlike the case in
78 < * CyclicBarriers, exceptions encountered while tasks wait
78 > * {@code CyclicBarrier}, exceptions encountered while tasks wait
79   * interruptibly or with timeout do not change the state of the
80   * barrier. If necessary, you can perform any associated recovery
81   * within handlers of those exceptions, often after invoking
82 < * <tt>forceTermination</tt>.
82 > * {@code forceTermination}.
83 > *
84 > * <li>Phasers may be used to coordinate tasks executing in a {@link
85 > * ForkJoinPool}, which will ensure sufficient parallelism to execute
86 > * tasks when others are blocked waiting for a phase to advance.
87   *
88   * </ul>
89   *
90   * <p><b>Sample usages:</b>
91   *
92 < * <p>A Phaser may be used instead of a <tt>CountdownLatch</tt> to control
93 < * a one-shot action serving a variable number of parties. The typical
94 < * idiom is for the method setting this up to first register, then
95 < * start the actions, then deregister, as in:
96 < *
97 < * <pre>
98 < *  void runTasks(List&lt;Runnable&gt; list) {
99 < *    final Phaser phaser = new Phaser(1); // "1" to register self
100 < *    for (Runnable r : list) {
101 < *      phaser.register();
102 < *      new Thread() {
103 < *        public void run() {
104 < *          phaser.arriveAndAwaitAdvance(); // await all creation
105 < *          r.run();
106 < *          phaser.arriveAndDeregister();   // signal completion
107 < *        }
108 < *      }.start();
92 > * <p>A {@code Phaser} may be used instead of a {@code CountDownLatch}
93 > * to control a one-shot action serving a variable number of
94 > * parties. The typical idiom is for the method setting this up to
95 > * first register, then start the actions, then deregister, as in:
96 > *
97 > *  <pre> {@code
98 > * void runTasks(List<Runnable> list) {
99 > *   final Phaser phaser = new Phaser(1); // "1" to register self
100 > *   // create and start threads
101 > *   for (Runnable r : list) {
102 > *     phaser.register();
103 > *     new Thread() {
104 > *       public void run() {
105 > *         phaser.arriveAndAwaitAdvance(); // await all creation
106 > *         r.run();
107 > *       }
108 > *     }.start();
109   *   }
110   *
111 < *   doSomethingOnBehalfOfWorkers();
112 < *   phaser.arrive(); // allow threads to start
113 < *   int p = phaser.arriveAndDeregister(); // deregister self  ...
109 < *   p = phaser.awaitAdvance(p); // ... and await arrival
110 < *   otherActions(); // do other things while tasks execute
111 < *   phaser.awaitAdvance(p); // awit final completion
112 < * }
113 < * </pre>
111 > *   // allow threads to start and deregister self
112 > *   phaser.arriveAndDeregister();
113 > * }}</pre>
114   *
115   * <p>One way to cause a set of threads to repeatedly perform actions
116 < * for a given number of iterations is to override <tt>onAdvance</tt>:
116 > * for a given number of iterations is to override {@code onAdvance}:
117   *
118 < * <pre>
119 < *  void startTasks(List&lt;Runnable&gt; list, final int iterations) {
120 < *    final Phaser phaser = new Phaser() {
121 < *       public boolean onAdvance(int phase, int registeredParties) {
122 < *         return phase &gt;= iterations || registeredParties == 0;
118 > *  <pre> {@code
119 > * void startTasks(List<Runnable> list, final int iterations) {
120 > *   final Phaser phaser = new Phaser() {
121 > *     public boolean onAdvance(int phase, int registeredParties) {
122 > *       return phase >= iterations || registeredParties == 0;
123 > *     }
124 > *   };
125 > *   phaser.register();
126 > *   for (Runnable r : list) {
127 > *     phaser.register();
128 > *     new Thread() {
129 > *       public void run() {
130 > *         do {
131 > *           r.run();
132 > *           phaser.arriveAndAwaitAdvance();
133 > *         } while(!phaser.isTerminated();
134   *       }
135 < *    };
125 < *    phaser.register();
126 < *    for (Runnable r : list) {
127 < *      phaser.register();
128 < *      new Thread() {
129 < *        public void run() {
130 < *           do {
131 < *             r.run();
132 < *             phaser.arriveAndAwaitAdvance();
133 < *           } while(!phaser.isTerminated();
134 < *        }
135 < *      }.start();
135 > *     }.start();
136   *   }
137   *   phaser.arriveAndDeregister(); // deregister self, don't wait
138 < * }
139 < * </pre>
138 > * }}</pre>
139   *
140 < * <p> To create a set of tasks using a tree of Phasers,
140 > * <p>To create a set of tasks using a tree of phasers,
141   * you could use code of the following form, assuming a
142 < * Task class with a constructor accepting a Phaser that
142 > * Task class with a constructor accepting a phaser that
143   * it registers for upon construction:
144 < * <pre>
145 < *  void build(Task[] actions, int lo, int hi, Phaser b) {
146 < *    int step = (hi - lo) / TASKS_PER_PHASER;
147 < *    if (step &gt; 1) {
148 < *       int i = lo;
149 < *       while (i &lt; hi) {
150 < *         int r = Math.min(i + step, hi);
151 < *         build(actions, i, r, new Phaser(b));
152 < *         i = r;
153 < *       }
154 < *    }
155 < *    else {
156 < *      for (int i = lo; i &lt; hi; ++i)
157 < *        actions[i] = new Task(b);
158 < *        // assumes new Task(b) performs b.register()
159 < *    }
160 < *  }
161 < *  // .. initially called, for n tasks via
163 < *  build(new Task[n], 0, n, new Phaser());
164 < * </pre>
144 > *  <pre> {@code
145 > * void build(Task[] actions, int lo, int hi, Phaser b) {
146 > *   int step = (hi - lo) / TASKS_PER_PHASER;
147 > *   if (step > 1) {
148 > *     int i = lo;
149 > *     while (i < hi) {
150 > *       int r = Math.min(i + step, hi);
151 > *       build(actions, i, r, new Phaser(b));
152 > *       i = r;
153 > *     }
154 > *   } else {
155 > *     for (int i = lo; i < hi; ++i)
156 > *       actions[i] = new Task(b);
157 > *       // assumes new Task(b) performs b.register()
158 > *   }
159 > * }
160 > * // .. initially called, for n tasks via
161 > * build(new Task[n], 0, n, new Phaser());}</pre>
162   *
163 < * The best value of <tt>TASKS_PER_PHASER</tt> depends mainly on
163 > * The best value of {@code TASKS_PER_PHASER} depends mainly on
164   * expected barrier synchronization rates. A value as low as four may
165   * be appropriate for extremely small per-barrier task bodies (thus
166   * high rates), or up to hundreds for extremely large ones.
# Line 175 | Line 172 | import java.lang.reflect.*;
172   * parties result in IllegalStateExceptions. However, you can and
173   * should create tiered phasers to accommodate arbitrarily large sets
174   * of participants.
175 + *
176 + * @since 1.7
177 + * @author Doug Lea
178   */
179   public class Phaser {
180      /*
# Line 195 | Line 195 | public class Phaser {
195       * However, to efficiently maintain atomicity, these values are
196       * packed into a single (atomic) long. Termination uses the sign
197       * bit of 32 bit representation of phase, so phase is set to -1 on
198 <     * termination. Good performace relies on keeping state decoding
198 >     * termination. Good performance relies on keeping state decoding
199       * and encoding simple, and keeping race windows short.
200       *
201       * Note: there are some cheats in arrive() that rely on unarrived
202 <     * being lowest 16 bits.
202 >     * count being lowest 16 bits.
203       */
204      private volatile long state;
205  
206      private static final int ushortBits = 16;
207 <    private static final int ushortMask =  (1 << ushortBits) - 1;
208 <    private static final int phaseMask = 0x7fffffff;
207 >    private static final int ushortMask = 0xffff;
208 >    private static final int phaseMask  = 0x7fffffff;
209  
210      private static int unarrivedOf(long s) {
211 <        return (int)(s & ushortMask);
211 >        return (int) (s & ushortMask);
212      }
213  
214      private static int partiesOf(long s) {
215 <        return (int)(s & (ushortMask << 16)) >>> 16;
215 >        return ((int) s) >>> 16;
216      }
217  
218      private static int phaseOf(long s) {
219 <        return (int)(s >>> 32);
219 >        return (int) (s >>> 32);
220      }
221  
222      private static int arrivedOf(long s) {
# Line 224 | Line 224 | public class Phaser {
224      }
225  
226      private static long stateFor(int phase, int parties, int unarrived) {
227 <        return (((long)phase) << 32) | ((parties << 16) | unarrived);
227 >        return ((((long) phase) << 32) | (((long) parties) << 16) |
228 >                (long) unarrived);
229      }
230  
231      private static long trippedStateFor(int phase, int parties) {
232 <        return (((long)phase) << 32) | ((parties << 16) | parties);
232 >        long lp = (long) parties;
233 >        return (((long) phase) << 32) | (lp << 16) | lp;
234      }
235  
236 <    private static IllegalStateException badBounds(int parties, int unarrived) {
237 <        return new IllegalStateException
238 <            ("Attempt to set " + unarrived +
239 <             " unarrived of " + parties + " parties");
236 >    /**
237 >     * Returns message string for bad bounds exceptions.
238 >     */
239 >    private static String badBounds(int parties, int unarrived) {
240 >        return ("Attempt to set " + unarrived +
241 >                " unarrived of " + parties + " parties");
242      }
243  
244      /**
# Line 243 | Line 247 | public class Phaser {
247      private final Phaser parent;
248  
249      /**
250 <     * The root of Phaser tree. Equals this if not in a tree.  Used to
250 >     * The root of phaser tree. Equals this if not in a tree.  Used to
251       * support faster state push-down.
252       */
253      private final Phaser root;
# Line 251 | Line 255 | public class Phaser {
255      // Wait queues
256  
257      /**
258 <     * Heads of Treiber stacks waiting for nonFJ threads. To eliminate
258 >     * Heads of Treiber stacks for waiting threads. To eliminate
259       * contention while releasing some threads while adding others, we
260       * use two of them, alternating across even and odd phases.
261       */
# Line 259 | Line 263 | public class Phaser {
263      private final AtomicReference<QNode> oddQ  = new AtomicReference<QNode>();
264  
265      private AtomicReference<QNode> queueFor(int phase) {
266 <        return (phase & 1) == 0? evenQ : oddQ;
266 >        return ((phase & 1) == 0) ? evenQ : oddQ;
267      }
268  
269      /**
# Line 267 | Line 271 | public class Phaser {
271       * root if necessary.
272       */
273      private long getReconciledState() {
274 <        return parent == null? state : reconcileState();
274 >        return (parent == null) ? state : reconcileState();
275      }
276  
277      /**
# Line 294 | Line 298 | public class Phaser {
298      }
299  
300      /**
301 <     * Creates a new Phaser without any initially registered parties,
302 <     * initial phase number 0, and no parent.
301 >     * Creates a new phaser without any initially registered parties,
302 >     * initial phase number 0, and no parent. Any thread using this
303 >     * phaser will need to first register for it.
304       */
305      public Phaser() {
306          this(null);
307      }
308  
309      /**
310 <     * Creates a new Phaser with the given numbers of registered
310 >     * Creates a new phaser with the given numbers of registered
311       * unarrived parties, initial phase number 0, and no parent.
312 <     * @param parties the number of parties required to trip barrier.
312 >     *
313 >     * @param parties the number of parties required to trip barrier
314       * @throws IllegalArgumentException if parties less than zero
315 <     * or greater than the maximum number of parties supported.
315 >     * or greater than the maximum number of parties supported
316       */
317      public Phaser(int parties) {
318          this(null, parties);
319      }
320  
321      /**
322 <     * Creates a new Phaser with the given parent, without any
322 >     * Creates a new phaser with the given parent, without any
323       * initially registered parties. If parent is non-null this phaser
324       * is registered with the parent and its initial phase number is
325       * the same as that of parent phaser.
326 <     * @param parent the parent phaser.
326 >     *
327 >     * @param parent the parent phaser
328       */
329      public Phaser(Phaser parent) {
330          int phase = 0;
# Line 332 | Line 339 | public class Phaser {
339      }
340  
341      /**
342 <     * Creates a new Phaser with the given parent and numbers of
343 <     * registered unarrived parties. If parent is non-null this phaser
342 >     * Creates a new phaser with the given parent and numbers of
343 >     * registered unarrived parties. If parent is non-null, this phaser
344       * is registered with the parent and its initial phase number is
345       * the same as that of parent phaser.
346 <     * @param parent the parent phaser.
347 <     * @param parties the number of parties required to trip barrier.
346 >     *
347 >     * @param parent the parent phaser
348 >     * @param parties the number of parties required to trip barrier
349       * @throws IllegalArgumentException if parties less than zero
350 <     * or greater than the maximum number of parties supported.
350 >     * or greater than the maximum number of parties supported
351       */
352      public Phaser(Phaser parent, int parties) {
353          if (parties < 0 || parties > ushortMask)
# Line 357 | Line 365 | public class Phaser {
365  
366      /**
367       * Adds a new unarrived party to this phaser.
368 +     *
369       * @return the current barrier phase number upon registration
370       * @throws IllegalStateException if attempting to register more
371 <     * than the maximum supported number of parties.
371 >     * than the maximum supported number of parties
372       */
373      public int register() {
374          return doRegister(1);
# Line 367 | Line 376 | public class Phaser {
376  
377      /**
378       * Adds the given number of new unarrived parties to this phaser.
379 <     * @param parties the number of parties required to trip barrier.
379 >     *
380 >     * @param parties the number of parties required to trip barrier
381       * @return the current barrier phase number upon registration
382       * @throws IllegalStateException if attempting to register more
383 <     * than the maximum supported number of parties.
383 >     * than the maximum supported number of parties
384       */
385      public int bulkRegister(int parties) {
386          if (parties < 0)
# Line 393 | Line 403 | public class Phaser {
403              if (phase < 0)
404                  break;
405              if (parties > ushortMask || unarrived > ushortMask)
406 <                throw badBounds(parties, unarrived);
406 >                throw new IllegalStateException(badBounds(parties, unarrived));
407              if (phase == phaseOf(root.state) &&
408                  casState(s, stateFor(phase, parties, unarrived)))
409                  break;
# Line 406 | Line 416 | public class Phaser {
416       * in turn wait for others via {@link #awaitAdvance}).
417       *
418       * @return the barrier phase number upon entry to this method, or a
419 <     * negative value if terminated;
419 >     * negative value if terminated
420       * @throws IllegalStateException if not terminated and the number
421 <     * of unarrived parties would become negative.
421 >     * of unarrived parties would become negative
422       */
423      public int arrive() {
424          int phase;
425          for (;;) {
426              long s = state;
427              phase = phaseOf(s);
428 +            if (phase < 0)
429 +                break;
430              int parties = partiesOf(s);
431              int unarrived = unarrivedOf(s) - 1;
432              if (unarrived > 0) {        // Not the last arrival
# Line 426 | Line 438 | public class Phaser {
438                  if (par == null) {      // directly trip
439                      if (casState
440                          (s,
441 <                         trippedStateFor(onAdvance(phase, parties)? -1 :
441 >                         trippedStateFor(onAdvance(phase, parties) ? -1 :
442                                           ((phase + 1) & phaseMask), parties))) {
443                          releaseWaiters(phase);
444                          break;
# Line 440 | Line 452 | public class Phaser {
452                      }
453                  }
454              }
443            else if (phase < 0) // Don't throw exception if terminated
444                break;
455              else if (phase != phaseOf(root.state)) // or if unreconciled
456                  reconcileState();
457              else
458 <                throw badBounds(parties, unarrived);
458 >                throw new IllegalStateException(badBounds(parties, unarrived));
459          }
460          return phase;
461      }
462  
463      /**
464 <     * Arrives at the barrier, and deregisters from it, without
465 <     * waiting for others. Deregistration reduces number of parties
464 >     * Arrives at the barrier and deregisters from it without waiting
465 >     * for others. Deregistration reduces the number of parties
466       * required to trip the barrier in future phases.  If this phaser
467       * has a parent, and deregistration causes this phaser to have
468 <     * zero parties, this phaser is also deregistered from its parent.
468 >     * zero parties, this phaser also arrives at and is deregistered
469 >     * from its parent.
470       *
471       * @return the current barrier phase number upon entry to
472 <     * this method, or a negative value if terminated;
472 >     * this method, or a negative value if terminated
473       * @throws IllegalStateException if not terminated and the number
474 <     * of registered or unarrived parties would become negative.
474 >     * of registered or unarrived parties would become negative
475       */
476      public int arriveAndDeregister() {
477          // similar code to arrive, but too different to merge
# Line 469 | Line 480 | public class Phaser {
480          for (;;) {
481              long s = state;
482              phase = phaseOf(s);
483 +            if (phase < 0)
484 +                break;
485              int parties = partiesOf(s) - 1;
486              int unarrived = unarrivedOf(s) - 1;
487              if (parties >= 0) {
# Line 487 | Line 500 | public class Phaser {
500                  if (unarrived == 0) {
501                      if (casState
502                          (s,
503 <                         trippedStateFor(onAdvance(phase, parties)? -1 :
503 >                         trippedStateFor(onAdvance(phase, parties) ? -1 :
504                                           ((phase + 1) & phaseMask), parties))) {
505                          releaseWaiters(phase);
506                          break;
507                      }
508                      continue;
509                  }
497                if (phase < 0)
498                    break;
510                  if (par != null && phase != phaseOf(root.state)) {
511                      reconcileState();
512                      continue;
513                  }
514              }
515 <            throw badBounds(parties, unarrived);
515 >            throw new IllegalStateException(badBounds(parties, unarrived));
516          }
517          return phase;
518      }
519  
520      /**
521       * Arrives at the barrier and awaits others. Equivalent in effect
522 <     * to <tt>awaitAdvance(arrive())</tt>.  If you instead need to
523 <     * await with interruption of timeout, and/or deregister upon
524 <     * arrival, you can arrange them using analogous constructions.
522 >     * to {@code awaitAdvance(arrive())}.  If you need to await with
523 >     * interruption or timeout, you can arrange this with an analogous
524 >     * construction using one of the other forms of the awaitAdvance
525 >     * method.  If instead you need to deregister upon arrival use
526 >     * {@code arriveAndDeregister}.
527 >     *
528       * @return the phase on entry to this method
529       * @throws IllegalStateException if not terminated and the number
530 <     * of unarrived parties would become negative.
530 >     * of unarrived parties would become negative
531       */
532      public int arriveAndAwaitAdvance() {
533          return awaitAdvance(arrive());
534      }
535  
536      /**
537 <     * Awaits the phase of the barrier to advance from the given
538 <     * value, or returns immediately if argument is negative or this
539 <     * barrier is terminated.
537 >     * Awaits the phase of the barrier to advance from the given phase
538 >     * value, or returns immediately if the current phase of the barrier
539 >     * is not equal to the given phase value or this barrier is
540 >     * terminated.
541 >     *
542       * @param phase the phase on entry to this method
543       * @return the phase on exit from this method
544       */
# Line 533 | Line 549 | public class Phaser {
549          int p = phaseOf(s);
550          if (p != phase)
551              return p;
552 <        if (unarrivedOf(s) == 0)
552 >        if (unarrivedOf(s) == 0 && parent != null)
553              parent.awaitAdvance(phase);
554          // Fall here even if parent waited, to reconcile and help release
555          return untimedWait(phase);
# Line 541 | Line 557 | public class Phaser {
557  
558      /**
559       * Awaits the phase of the barrier to advance from the given
560 <     * value, or returns immediately if argumet is negative or this
560 >     * value, or returns immediately if argument is negative or this
561       * barrier is terminated, or throws InterruptedException if
562       * interrupted while waiting.
563 +     *
564       * @param phase the phase on entry to this method
565       * @return the phase on exit from this method
566       * @throws InterruptedException if thread interrupted while waiting
567       */
568 <    public int awaitAdvanceInterruptibly(int phase) throws InterruptedException {
568 >    public int awaitAdvanceInterruptibly(int phase)
569 >        throws InterruptedException {
570          if (phase < 0)
571              return phase;
572          long s = getReconciledState();
573          int p = phaseOf(s);
574          if (p != phase)
575              return p;
576 <        if (unarrivedOf(s) != 0)
576 >        if (unarrivedOf(s) == 0 && parent != null)
577              parent.awaitAdvanceInterruptibly(phase);
578          return interruptibleWait(phase);
579      }
# Line 564 | Line 582 | public class Phaser {
582       * Awaits the phase of the barrier to advance from the given value
583       * or the given timeout elapses, or returns immediately if
584       * argument is negative or this barrier is terminated.
585 +     *
586       * @param phase the phase on entry to this method
587       * @return the phase on exit from this method
588       * @throws InterruptedException if thread interrupted while waiting
589       * @throws TimeoutException if timed out while waiting
590       */
591 <    public int awaitAdvanceInterruptibly(int phase, long timeout, TimeUnit unit)
591 >    public int awaitAdvanceInterruptibly(int phase,
592 >                                         long timeout, TimeUnit unit)
593          throws InterruptedException, TimeoutException {
594          if (phase < 0)
595              return phase;
# Line 577 | Line 597 | public class Phaser {
597          int p = phaseOf(s);
598          if (p != phase)
599              return p;
600 <        if (unarrivedOf(s) == 0)
600 >        if (unarrivedOf(s) == 0 && parent != null)
601              parent.awaitAdvanceInterruptibly(phase, timeout, unit);
602          return timedWait(phase, unit.toNanos(timeout));
603      }
# Line 608 | Line 628 | public class Phaser {
628  
629      /**
630       * Returns the current phase number. The maximum phase number is
631 <     * <tt>Integer.MAX_VALUE</tt>, after which it restarts at
631 >     * {@code Integer.MAX_VALUE}, after which it restarts at
632       * zero. Upon termination, the phase number is negative.
633 +     *
634       * @return the phase number, or a negative value if terminated
635       */
636      public final int getPhase() {
# Line 617 | Line 638 | public class Phaser {
638      }
639  
640      /**
620     * Returns true if the current phase number equals the given phase.
621     * @param phase the phase
622     * @return true if the current phase number equals the given phase.
623     */
624    public final boolean hasPhase(int phase) {
625        return phaseOf(getReconciledState()) == phase;
626    }
627
628    /**
641       * Returns the number of parties registered at this barrier.
642 +     *
643       * @return the number of parties
644       */
645      public int getRegisteredParties() {
# Line 636 | Line 649 | public class Phaser {
649      /**
650       * Returns the number of parties that have arrived at the current
651       * phase of this barrier.
652 +     *
653       * @return the number of arrived parties
654       */
655      public int getArrivedParties() {
# Line 645 | Line 659 | public class Phaser {
659      /**
660       * Returns the number of registered parties that have not yet
661       * arrived at the current phase of this barrier.
662 +     *
663       * @return the number of unarrived parties
664       */
665      public int getUnarrivedParties() {
# Line 652 | Line 667 | public class Phaser {
667      }
668  
669      /**
670 <     * Returns the parent of this phaser, or null if none.
671 <     * @return the parent of this phaser, or null if none.
670 >     * Returns the parent of this phaser, or {@code null} if none.
671 >     *
672 >     * @return the parent of this phaser, or {@code null} if none
673       */
674      public Phaser getParent() {
675          return parent;
# Line 662 | Line 678 | public class Phaser {
678      /**
679       * Returns the root ancestor of this phaser, which is the same as
680       * this phaser if it has no parent.
681 <     * @return the root ancestor of this phaser.
681 >     *
682 >     * @return the root ancestor of this phaser
683       */
684      public Phaser getRoot() {
685          return root;
686      }
687  
688      /**
689 <     * Returns true if this barrier has been terminated.
690 <     * @return true if this barrier has been terminated
689 >     * Returns {@code true} if this barrier has been terminated.
690 >     *
691 >     * @return {@code true} if this barrier has been terminated
692       */
693      public boolean isTerminated() {
694          return getPhase() < 0;
# Line 680 | Line 698 | public class Phaser {
698       * Overridable method to perform an action upon phase advance, and
699       * to control termination. This method is invoked whenever the
700       * barrier is tripped (and thus all other waiting parties are
701 <     * dormant). If it returns true, then, rather than advance the
702 <     * phase number, this barrier will be set to a final termination
703 <     * state, and subsequent calls to <tt>isTerminated</tt> will
704 <     * return true.
701 >     * dormant). If it returns {@code true}, then, rather than advance
702 >     * the phase number, this barrier will be set to a final
703 >     * termination state, and subsequent calls to {@link #isTerminated}
704 >     * will return true.
705       *
706 <     * <p> The default version returns true when the number of
706 >     * <p>The default version returns {@code true} when the number of
707       * registered parties is zero. Normally, overrides that arrange
708       * termination for other reasons should also preserve this
709       * property.
710       *
711 <     * <p> You may override this method to perform an action with side
711 >     * <p>You may override this method to perform an action with side
712       * effects visible to participating tasks, but it is in general
713       * only sensible to do so in designs where all parties register
714 <     * before any arrive, and all <tt>awaitAdvance</tt> at each phase.
715 <     * Otherwise, you cannot ensure lack of interference. In
716 <     * particular, this method may be invoked more than once per
699 <     * transition if other parties successfully register while the
700 <     * invocation of this method is in progress, thus postponing the
701 <     * transition until those parties also arrive, re-triggering this
702 <     * method.
714 >     * before any arrive, and all {@link #awaitAdvance} at each phase.
715 >     * Otherwise, you cannot ensure lack of interference from other
716 >     * parties during the invocation of this method.
717       *
718       * @param phase the phase number on entering the barrier
719 <     * @param registeredParties the current number of registered
720 <     * parties.
707 <     * @return true if this barrier should terminate
719 >     * @param registeredParties the current number of registered parties
720 >     * @return {@code true} if this barrier should terminate
721       */
722      protected boolean onAdvance(int phase, int registeredParties) {
723          return registeredParties <= 0;
# Line 713 | Line 726 | public class Phaser {
726      /**
727       * Returns a string identifying this phaser, as well as its
728       * state.  The state, in brackets, includes the String {@code
729 <     * "phase ="} followed by the phase number, {@code "parties ="}
729 >     * "phase = "} followed by the phase number, {@code "parties = "}
730       * followed by the number of registered parties, and {@code
731 <     * "arrived ="} followed by the number of arrived parties
731 >     * "arrived = "} followed by the number of arrived parties.
732       *
733       * @return a string identifying this barrier, as well as its state
734       */
735      public String toString() {
736          long s = getReconciledState();
737 <        return super.toString() + "[phase = " + phaseOf(s) + " parties = " + partiesOf(s) + " arrived = " + arrivedOf(s) + "]";
737 >        return super.toString() +
738 >            "[phase = " + phaseOf(s) +
739 >            " parties = " + partiesOf(s) +
740 >            " arrived = " + arrivedOf(s) + "]";
741      }
742  
743      // methods for waiting
744  
729    /** The number of CPUs, for spin control */
730    static final int NCPUS = Runtime.getRuntime().availableProcessors();
731
732    /**
733     * The number of times to spin before blocking in timed waits.
734     * The value is empirically derived.
735     */
736    static final int maxTimedSpins = (NCPUS < 2)? 0 : 32;
737
738    /**
739     * The number of times to spin before blocking in untimed waits.
740     * This is greater than timed value because untimed waits spin
741     * faster since they don't need to check times on each spin.
742     */
743    static final int maxUntimedSpins = maxTimedSpins * 32;
744
745    /**
746     * The number of nanoseconds for which it is faster to spin
747     * rather than to use timed park. A rough estimate suffices.
748     */
749    static final long spinForTimeoutThreshold = 1000L;
750
745      /**
746 <     * Wait nodes for Treiber stack representing wait queue for non-FJ
753 <     * tasks.
746 >     * Wait nodes for Treiber stack representing wait queue
747       */
748 <    static final class QNode {
749 <        QNode next;
748 >    static final class QNode implements ForkJoinPool.ManagedBlocker {
749 >        final Phaser phaser;
750 >        final int phase;
751 >        final long startTime;
752 >        final long nanos;
753 >        final boolean timed;
754 >        final boolean interruptible;
755 >        volatile boolean wasInterrupted = false;
756          volatile Thread thread; // nulled to cancel wait
757 <        QNode() {
757 >        QNode next;
758 >        QNode(Phaser phaser, int phase, boolean interruptible,
759 >              boolean timed, long startTime, long nanos) {
760 >            this.phaser = phaser;
761 >            this.phase = phase;
762 >            this.timed = timed;
763 >            this.interruptible = interruptible;
764 >            this.startTime = startTime;
765 >            this.nanos = nanos;
766              thread = Thread.currentThread();
767          }
768 +        public boolean isReleasable() {
769 +            return (thread == null ||
770 +                    phaser.getPhase() != phase ||
771 +                    (interruptible && wasInterrupted) ||
772 +                    (timed && (nanos - (System.nanoTime() - startTime)) <= 0));
773 +        }
774 +        public boolean block() {
775 +            if (Thread.interrupted()) {
776 +                wasInterrupted = true;
777 +                if (interruptible)
778 +                    return true;
779 +            }
780 +            if (!timed)
781 +                LockSupport.park(this);
782 +            else {
783 +                long waitTime = nanos - (System.nanoTime() - startTime);
784 +                if (waitTime <= 0)
785 +                    return true;
786 +                LockSupport.parkNanos(this, waitTime);
787 +            }
788 +            return isReleasable();
789 +        }
790          void signal() {
791              Thread t = thread;
792              if (t != null) {
# Line 765 | Line 794 | public class Phaser {
794                  LockSupport.unpark(t);
795              }
796          }
797 +        boolean doWait() {
798 +            if (thread != null) {
799 +                try {
800 +                    ForkJoinPool.managedBlock(this, false);
801 +                } catch (InterruptedException ie) {
802 +                }
803 +            }
804 +            return wasInterrupted;
805 +        }
806 +
807      }
808  
809      /**
810 <     * Removes and signals waiting threads from wait queue
810 >     * Removes and signals waiting threads from wait queue.
811       */
812      private void releaseWaiters(int phase) {
813          AtomicReference<QNode> head = queueFor(phase);
# Line 780 | Line 819 | public class Phaser {
819      }
820  
821      /**
822 +     * Tries to enqueue given node in the appropriate wait queue.
823 +     *
824 +     * @return true if successful
825 +     */
826 +    private boolean tryEnqueue(QNode node) {
827 +        AtomicReference<QNode> head = queueFor(node.phase);
828 +        return head.compareAndSet(node.next = head.get(), node);
829 +    }
830 +
831 +    /**
832       * Enqueues node and waits unless aborted or signalled.
833 +     *
834 +     * @return current phase
835       */
836      private int untimedWait(int phase) {
786        int spins = maxUntimedSpins;
837          QNode node = null;
788        boolean interrupted = false;
838          boolean queued = false;
839 +        boolean interrupted = false;
840          int p;
841          while ((p = getPhase()) == phase) {
842 <            interrupted = Thread.interrupted();
843 <            if (node != null) {
844 <                if (!queued) {
845 <                    AtomicReference<QNode> head = queueFor(phase);
846 <                    queued = head.compareAndSet(node.next = head.get(), node);
847 <                }
798 <                else if (node.thread != null)
799 <                    LockSupport.park(this);
800 <            }
801 <            else if (spins <= 0)
802 <                node = new QNode();
842 >            if (Thread.interrupted())
843 >                interrupted = true;
844 >            else if (node == null)
845 >                node = new QNode(this, phase, false, false, 0, 0);
846 >            else if (!queued)
847 >                queued = tryEnqueue(node);
848              else
849 <                --spins;
849 >                interrupted = node.doWait();
850          }
851          if (node != null)
852              node.thread = null;
853 +        releaseWaiters(phase);
854          if (interrupted)
855              Thread.currentThread().interrupt();
810        releaseWaiters(phase);
856          return p;
857      }
858  
859      /**
860 <     * Messier interruptible version
860 >     * Interruptible version
861 >     * @return current phase
862       */
863      private int interruptibleWait(int phase) throws InterruptedException {
818        int spins = maxUntimedSpins;
864          QNode node = null;
865          boolean queued = false;
866          boolean interrupted = false;
867          int p;
868 <        while ((p = getPhase()) == phase) {
869 <            if (interrupted = Thread.interrupted())
870 <                break;
871 <            if (node != null) {
872 <                if (!queued) {
873 <                    AtomicReference<QNode> head = queueFor(phase);
874 <                    queued = head.compareAndSet(node.next = head.get(), node);
830 <                }
831 <                else if (node.thread != null)
832 <                    LockSupport.park(this);
833 <            }
834 <            else if (spins <= 0)
835 <                node = new QNode();
868 >        while ((p = getPhase()) == phase && !interrupted) {
869 >            if (Thread.interrupted())
870 >                interrupted = true;
871 >            else if (node == null)
872 >                node = new QNode(this, phase, true, false, 0, 0);
873 >            else if (!queued)
874 >                queued = tryEnqueue(node);
875              else
876 <                --spins;
876 >                interrupted = node.doWait();
877          }
878          if (node != null)
879              node.thread = null;
880 +        if (p != phase || (p = getPhase()) != phase)
881 +            releaseWaiters(phase);
882          if (interrupted)
883              throw new InterruptedException();
843        releaseWaiters(phase);
884          return p;
885      }
886  
887      /**
888 <     * Even messier timeout version.
888 >     * Timeout version.
889 >     * @return current phase
890       */
891      private int timedWait(int phase, long nanos)
892          throws InterruptedException, TimeoutException {
893 +        long startTime = System.nanoTime();
894 +        QNode node = null;
895 +        boolean queued = false;
896 +        boolean interrupted = false;
897          int p;
898 <        if ((p = getPhase()) == phase) {
899 <            long lastTime = System.nanoTime();
900 <            int spins = maxTimedSpins;
901 <            QNode node = null;
902 <            boolean queued = false;
903 <            boolean interrupted = false;
904 <            while ((p = getPhase()) == phase) {
905 <                if (interrupted = Thread.interrupted())
906 <                    break;
907 <                long now = System.nanoTime();
908 <                if ((nanos -= now - lastTime) <= 0)
864 <                    break;
865 <                lastTime = now;
866 <                if (node != null) {
867 <                    if (!queued) {
868 <                        AtomicReference<QNode> head = queueFor(phase);
869 <                        queued = head.compareAndSet(node.next = head.get(), node);
870 <                    }
871 <                    else if (node.thread != null &&
872 <                             nanos > spinForTimeoutThreshold) {
873 <                        LockSupport.parkNanos(this, nanos);
874 <                    }
875 <                }
876 <                else if (spins <= 0)
877 <                    node = new QNode();
878 <                else
879 <                    --spins;
880 <            }
881 <            if (node != null)
882 <                node.thread = null;
883 <            if (interrupted)
884 <                throw new InterruptedException();
885 <            if (p == phase && (p = getPhase()) == phase)
886 <                throw new TimeoutException();
898 >        while ((p = getPhase()) == phase && !interrupted) {
899 >            if (Thread.interrupted())
900 >                interrupted = true;
901 >            else if (nanos - (System.nanoTime() - startTime) <= 0)
902 >                break;
903 >            else if (node == null)
904 >                node = new QNode(this, phase, true, true, startTime, nanos);
905 >            else if (!queued)
906 >                queued = tryEnqueue(node);
907 >            else
908 >                interrupted = node.doWait();
909          }
910 <        releaseWaiters(phase);
910 >        if (node != null)
911 >            node.thread = null;
912 >        if (p != phase || (p = getPhase()) != phase)
913 >            releaseWaiters(phase);
914 >        if (interrupted)
915 >            throw new InterruptedException();
916 >        if (p == phase)
917 >            throw new TimeoutException();
918          return p;
919      }
920  
921 <    // Temporary Unsafe mechanics for preliminary release
921 >    // Unsafe mechanics
922  
923 <    static final Unsafe _unsafe;
924 <    static final long stateOffset;
923 >    private static final sun.misc.Unsafe UNSAFE = getUnsafe();
924 >    private static final long stateOffset =
925 >        objectFieldOffset("state", Phaser.class);
926  
927 <    static {
927 >    private final boolean casState(long cmp, long val) {
928 >        return UNSAFE.compareAndSwapLong(this, stateOffset, cmp, val);
929 >    }
930 >
931 >    private static long objectFieldOffset(String field, Class<?> klazz) {
932          try {
933 <            if (Phaser.class.getClassLoader() != null) {
934 <                Field f = Unsafe.class.getDeclaredField("theUnsafe");
935 <                f.setAccessible(true);
936 <                _unsafe = (Unsafe)f.get(null);
937 <            }
938 <            else
905 <                _unsafe = Unsafe.getUnsafe();
906 <            stateOffset = _unsafe.objectFieldOffset
907 <                (Phaser.class.getDeclaredField("state"));
908 <        } catch (Exception e) {
909 <            throw new RuntimeException("Could not initialize intrinsics", e);
933 >            return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
934 >        } catch (NoSuchFieldException e) {
935 >            // Convert Exception to corresponding Error
936 >            NoSuchFieldError error = new NoSuchFieldError(field);
937 >            error.initCause(e);
938 >            throw error;
939          }
940      }
941  
942 <    final boolean casState(long cmp, long val) {
943 <        return _unsafe.compareAndSwapLong(this, stateOffset, cmp, val);
942 >    /**
943 >     * Returns a sun.misc.Unsafe.  Suitable for use in a 3rd party package.
944 >     * Replace with a simple call to Unsafe.getUnsafe when integrating
945 >     * into a jdk.
946 >     *
947 >     * @return a sun.misc.Unsafe
948 >     */
949 >    private static sun.misc.Unsafe getUnsafe() {
950 >        try {
951 >            return sun.misc.Unsafe.getUnsafe();
952 >        } catch (SecurityException se) {
953 >            try {
954 >                return java.security.AccessController.doPrivileged
955 >                    (new java.security
956 >                     .PrivilegedExceptionAction<sun.misc.Unsafe>() {
957 >                        public sun.misc.Unsafe run() throws Exception {
958 >                            java.lang.reflect.Field f = sun.misc
959 >                                .Unsafe.class.getDeclaredField("theUnsafe");
960 >                            f.setAccessible(true);
961 >                            return (sun.misc.Unsafe) f.get(null);
962 >                        }});
963 >            } catch (java.security.PrivilegedActionException e) {
964 >                throw new RuntimeException("Could not initialize intrinsics",
965 >                                           e.getCause());
966 >            }
967 >        }
968      }
969   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines