ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/Phaser.java
(Generate patch)

Comparing jsr166/src/jsr166y/Phaser.java (file contents):
Revision 1.6 by dl, Tue Oct 28 23:03:24 2008 UTC vs.
Revision 1.37 by jsr166, Mon Aug 24 00:48:52 2009 UTC

# Line 5 | Line 5
5   */
6  
7   package jsr166y;
8 +
9   import java.util.concurrent.*;
10 < import java.util.concurrent.atomic.*;
10 >
11 > import java.util.concurrent.atomic.AtomicReference;
12   import java.util.concurrent.locks.LockSupport;
11 import sun.misc.Unsafe;
12 import java.lang.reflect.*;
13  
14   /**
15 < * A reusable synchronization barrier, similar in functionality to a
16 < * {@link java.util.concurrent.CyclicBarrier} and {@link
17 < * java.util.concurrent.CountDownLatch} but supporting more flexible
18 < * usage.
15 > * A reusable synchronization barrier, similar in functionality to
16 > * {@link java.util.concurrent.CyclicBarrier CyclicBarrier} and
17 > * {@link java.util.concurrent.CountDownLatch CountDownLatch}
18 > * but supporting more flexible usage.
19   *
20   * <ul>
21   *
22 < * <li> The number of parties synchronizing on a phaser may vary over
23 < * time.  A task may register to be a party at any time, and may
24 < * deregister upon arriving at the barrier.  As is the case with most
25 < * basic synchronization constructs, registration and deregistration
26 < * affect only internal counts; they do not establish any further
27 < * internal bookkeeping, so tasks cannot query whether they are
28 < * registered. (However, you can introduce such bookkeeping in by
29 < * subclassing this class.)
30 < *
31 < * <li> Each generation has an associated phase value, starting at
32 < * zero, and advancing when all parties reach the barrier (wrapping
33 < * around to zero after reaching <tt>Integer.MAX_VALUE</tt>).
34 < *
35 < * <li> Like a CyclicBarrier, a Phaser may be repeatedly awaited.
36 < * Method <tt>arriveAndAwaitAdvance</tt> has effect analogous to
37 < * <tt>CyclicBarrier.await</tt>.  However, Phasers separate two
38 < * aspects of coordination, that may also be invoked independently:
22 > * <li> The number of parties <em>registered</em> to synchronize on a
23 > * phaser may vary over time.  Tasks may be registered at any time
24 > * (using methods {@link #register}, {@link #bulkRegister}, or forms
25 > * of constructors establishing initial numbers of parties), and may
26 > * optionally be deregistered upon any arrival (using {@link
27 > * #arriveAndDeregister}).  As is the case with most basic
28 > * synchronization constructs, registration and deregistration affect
29 > * only internal counts; they do not establish any further internal
30 > * bookkeeping, so tasks cannot query whether they are registered.
31 > * (However, you can introduce such bookkeeping by subclassing this
32 > * class.)
33 > *
34 > * <li> Each generation has an associated phase number. The phase
35 > * number starts at zero, amd advances when all parties arrive at the
36 > * barrier, wrapping around to zero after reaching {@code
37 > * Integer.MAX_VALUE}.
38 > *
39 > * <li> Like a {@code CyclicBarrier}, a phaser may be repeatedly
40 > * awaited.  Method {@link #arriveAndAwaitAdvance} has effect
41 > * analogous to {@link java.util.concurrent.CyclicBarrier#await
42 > * CyclicBarrier.await}.  However, phasers separate two aspects of
43 > * coordination, which may also be invoked independently:
44   *
45   * <ul>
46   *
47 < *   <li> Arriving at a barrier. Methods <tt>arrive</tt> and
48 < *       <tt>arriveAndDeregister</tt> do not block, but return
49 < *       the phase value current upon entry to the method.
50 < *
51 < *   <li> Awaiting others. Method <tt>awaitAdvance</tt> requires an
52 < *       argument indicating the entry phase, and returns when the
53 < *       barrier advances to a new phase.
47 > *   <li> Arriving at a barrier. Methods {@link #arrive} and
48 > *       {@link #arriveAndDeregister} do not block, but return
49 > *       an associated <em>arrival phase number</em>;
50 > *       that is, the phase number of the barrier to which the
51 > *       arrival applied.
52 > *
53 > *   <li> Awaiting others. Method {@link #awaitAdvance} requires an
54 > *       argument indicating an arrival phase number, and returns
55 > *       when the barrier advances to a new phase.
56   * </ul>
57   *
51 *
58   * <li> Barrier actions, performed by the task triggering a phase
59 < * advance while others may be waiting, are arranged by overriding
60 < * method <tt>onAdvance</tt>, that also controls termination.
61 < * Overriding this method may be used to similar but more flexible
62 < * effect as providing a barrier action to a CyclicBarrier.
59 > * advance, are arranged by overriding method {@link #onAdvance(int,
60 > * int)}, which also controls termination. Overriding this method is
61 > * similar to, but more flexible than, providing a barrier action to a
62 > * {@code CyclicBarrier}.
63   *
64   * <li> Phasers may enter a <em>termination</em> state in which all
65 < * await actions immediately return, indicating (via a negative phase
66 < * value) that execution is complete.  Termination is triggered by
67 < * executing the overridable <tt>onAdvance</tt> method that is invoked
68 < * each time the barrier is about to be tripped. When a Phaser is
65 > * actions immediately return without updating phaser state or waiting
66 > * for advance, and indicating (via a negative phase value) that
67 > * execution is complete.  Termination is triggered when an invocation
68 > * of {@code onAdvance} returns {@code true}.  When a phaser is
69   * controlling an action with a fixed number of iterations, it is
70   * often convenient to override this method to cause termination when
71 < * the current phase number reaches a threshold. Method
72 < * <tt>forceTermination</tt> is also available to abruptly release
73 < * waiting threads and allow them to terminate.
71 > * the current phase number reaches a threshold. Method {@link
72 > * #forceTermination} is also available to abruptly release waiting
73 > * threads and allow them to terminate.
74   *
75   * <li> Phasers may be tiered to reduce contention. Phasers with large
76   * numbers of parties that would otherwise experience heavy
# Line 72 | Line 78 | import java.lang.reflect.*;
78   * This will typically greatly increase throughput even though it
79   * incurs somewhat greater per-operation overhead.
80   *
81 < * <li> By default, <tt>awaitAdvance</tt> continues to wait even if
81 > * <li> By default, {@code awaitAdvance} continues to wait even if
82   * the waiting thread is interrupted. And unlike the case in
83 < * CyclicBarriers, exceptions encountered while tasks wait
83 > * {@code CyclicBarrier}, exceptions encountered while tasks wait
84   * interruptibly or with timeout do not change the state of the
85   * barrier. If necessary, you can perform any associated recovery
86   * within handlers of those exceptions, often after invoking
87 < * <tt>forceTermination</tt>.
87 > * {@code forceTermination}.
88 > *
89 > * <li>Phasers may be used to coordinate tasks executing in a {@link
90 > * ForkJoinPool}, which will ensure sufficient parallelism to execute
91 > * tasks when others are blocked waiting for a phase to advance.
92 > *
93 > * <li>The current state of a phaser may be monitored.  At any given
94 > * moment there are {@link #getRegisteredParties}, where {@link
95 > * #getArrivedParties} have arrived at the current phase ({@link
96 > * #getPhase}). When the remaining {@link #getUnarrivedParties})
97 > * arrive, the phase advances. Method {@link #toString} returns
98 > * snapshots of these state queries in a form convenient for
99 > * informal monitoring.
100   *
101   * </ul>
102   *
103   * <p><b>Sample usages:</b>
104   *
105 < * <p>A Phaser may be used instead of a <tt>CountdownLatch</tt> to control
106 < * a one-shot action serving a variable number of parties. The typical
107 < * idiom is for the method setting this up to first register, then
108 < * start the actions, then deregister, as in:
109 < *
110 < * <pre>
111 < *  void runTasks(List&lt;Runnable&gt; list) {
112 < *    final Phaser phaser = new Phaser(1); // "1" to register self
113 < *    for (Runnable r : list) {
114 < *      phaser.register();
115 < *      new Thread() {
116 < *        public void run() {
117 < *          phaser.arriveAndAwaitAdvance(); // await all creation
118 < *          r.run();
119 < *          phaser.arriveAndDeregister();   // signal completion
120 < *        }
121 < *      }.start();
105 > * <p>A {@code Phaser} may be used instead of a {@code CountDownLatch}
106 > * to control a one-shot action serving a variable number of
107 > * parties. The typical idiom is for the method setting this up to
108 > * first register, then start the actions, then deregister, as in:
109 > *
110 > *  <pre> {@code
111 > * void runTasks(List<Runnable> tasks) {
112 > *   final Phaser phaser = new Phaser(1); // "1" to register self
113 > *   // create and start threads
114 > *   for (Runnable task : tasks) {
115 > *     phaser.register();
116 > *     new Thread() {
117 > *       public void run() {
118 > *         phaser.arriveAndAwaitAdvance(); // await all creation
119 > *         task.run();
120 > *       }
121 > *     }.start();
122   *   }
123   *
124 < *   doSomethingOnBehalfOfWorkers();
125 < *   phaser.arrive(); // allow threads to start
126 < *   int p = phaser.arriveAndDeregister(); // deregister self  ...
109 < *   p = phaser.awaitAdvance(p); // ... and await arrival
110 < *   otherActions(); // do other things while tasks execute
111 < *   phaser.awaitAdvance(p); // awit final completion
112 < * }
113 < * </pre>
124 > *   // allow threads to start and deregister self
125 > *   phaser.arriveAndDeregister();
126 > * }}</pre>
127   *
128   * <p>One way to cause a set of threads to repeatedly perform actions
129 < * for a given number of iterations is to override <tt>onAdvance</tt>:
129 > * for a given number of iterations is to override {@code onAdvance}:
130   *
131 < * <pre>
132 < *  void startTasks(List&lt;Runnable&gt; list, final int iterations) {
133 < *    final Phaser phaser = new Phaser() {
134 < *       public boolean onAdvance(int phase, int registeredParties) {
135 < *         return phase &gt;= iterations || registeredParties == 0;
131 > *  <pre> {@code
132 > * void startTasks(List<Runnable> tasks, final int iterations) {
133 > *   final Phaser phaser = new Phaser() {
134 > *     public boolean onAdvance(int phase, int registeredParties) {
135 > *       return phase >= iterations || registeredParties == 0;
136 > *     }
137 > *   };
138 > *   phaser.register();
139 > *   for (Runnable task : tasks) {
140 > *     phaser.register();
141 > *     new Thread() {
142 > *       public void run() {
143 > *         do {
144 > *           task.run();
145 > *           phaser.arriveAndAwaitAdvance();
146 > *         } while(!phaser.isTerminated();
147   *       }
148 < *    };
125 < *    phaser.register();
126 < *    for (Runnable r : list) {
127 < *      phaser.register();
128 < *      new Thread() {
129 < *        public void run() {
130 < *           do {
131 < *             r.run();
132 < *             phaser.arriveAndAwaitAdvance();
133 < *           } while(!phaser.isTerminated();
134 < *        }
135 < *      }.start();
148 > *     }.start();
149   *   }
150   *   phaser.arriveAndDeregister(); // deregister self, don't wait
151 < * }
139 < * </pre>
151 > * }}</pre>
152   *
153 < * <p> To create a set of tasks using a tree of Phasers,
153 > * <p>To create a set of tasks using a tree of phasers,
154   * you could use code of the following form, assuming a
155 < * Task class with a constructor accepting a Phaser that
155 > * Task class with a constructor accepting a phaser that
156   * it registers for upon construction:
157 < * <pre>
158 < *  void build(Task[] actions, int lo, int hi, Phaser b) {
159 < *    int step = (hi - lo) / TASKS_PER_PHASER;
160 < *    if (step &gt; 1) {
161 < *       int i = lo;
162 < *       while (i &lt; hi) {
163 < *         int r = Math.min(i + step, hi);
164 < *         build(actions, i, r, new Phaser(b));
165 < *         i = r;
166 < *       }
167 < *    }
168 < *    else {
169 < *      for (int i = lo; i &lt; hi; ++i)
170 < *        actions[i] = new Task(b);
171 < *        // assumes new Task(b) performs b.register()
172 < *    }
173 < *  }
174 < *  // .. initially called, for n tasks via
163 < *  build(new Task[n], 0, n, new Phaser());
164 < * </pre>
157 > *  <pre> {@code
158 > * void build(Task[] actions, int lo, int hi, Phaser b) {
159 > *   int step = (hi - lo) / TASKS_PER_PHASER;
160 > *   if (step > 1) {
161 > *     int i = lo;
162 > *     while (i < hi) {
163 > *       int r = Math.min(i + step, hi);
164 > *       build(actions, i, r, new Phaser(b));
165 > *       i = r;
166 > *     }
167 > *   } else {
168 > *     for (int i = lo; i < hi; ++i)
169 > *       actions[i] = new Task(b);
170 > *       // assumes new Task(b) performs b.register()
171 > *   }
172 > * }
173 > * // .. initially called, for n tasks via
174 > * build(new Task[n], 0, n, new Phaser());}</pre>
175   *
176 < * The best value of <tt>TASKS_PER_PHASER</tt> depends mainly on
176 > * The best value of {@code TASKS_PER_PHASER} depends mainly on
177   * expected barrier synchronization rates. A value as low as four may
178   * be appropriate for extremely small per-barrier task bodies (thus
179   * high rates), or up to hundreds for extremely large ones.
# Line 172 | Line 182 | import java.lang.reflect.*;
182   *
183   * <p><b>Implementation notes</b>: This implementation restricts the
184   * maximum number of parties to 65535. Attempts to register additional
185 < * parties result in IllegalStateExceptions. However, you can and
185 > * parties result in {@code IllegalStateException}. However, you can and
186   * should create tiered phasers to accommodate arbitrarily large sets
187   * of participants.
188 + *
189 + * @since 1.7
190 + * @author Doug Lea
191   */
192   public class Phaser {
193      /*
# Line 195 | Line 208 | public class Phaser {
208       * However, to efficiently maintain atomicity, these values are
209       * packed into a single (atomic) long. Termination uses the sign
210       * bit of 32 bit representation of phase, so phase is set to -1 on
211 <     * termination. Good performace relies on keeping state decoding
211 >     * termination. Good performance relies on keeping state decoding
212       * and encoding simple, and keeping race windows short.
213       *
214       * Note: there are some cheats in arrive() that rely on unarrived
215 <     * being lowest 16 bits.
215 >     * count being lowest 16 bits.
216       */
217      private volatile long state;
218  
219      private static final int ushortBits = 16;
220 <    private static final int ushortMask =  (1 << ushortBits) - 1;
221 <    private static final int phaseMask = 0x7fffffff;
220 >    private static final int ushortMask = 0xffff;
221 >    private static final int phaseMask  = 0x7fffffff;
222  
223      private static int unarrivedOf(long s) {
224 <        return (int)(s & ushortMask);
224 >        return (int) (s & ushortMask);
225      }
226  
227      private static int partiesOf(long s) {
228 <        return (int)(s & (ushortMask << 16)) >>> 16;
228 >        return ((int) s) >>> 16;
229      }
230  
231      private static int phaseOf(long s) {
232 <        return (int)(s >>> 32);
232 >        return (int) (s >>> 32);
233      }
234  
235      private static int arrivedOf(long s) {
# Line 224 | Line 237 | public class Phaser {
237      }
238  
239      private static long stateFor(int phase, int parties, int unarrived) {
240 <        return (((long)phase) << 32) | ((parties << 16) | unarrived);
240 >        return ((((long) phase) << 32) | (((long) parties) << 16) |
241 >                (long) unarrived);
242      }
243  
244      private static long trippedStateFor(int phase, int parties) {
245 <        return (((long)phase) << 32) | ((parties << 16) | parties);
245 >        long lp = (long) parties;
246 >        return (((long) phase) << 32) | (lp << 16) | lp;
247      }
248  
249 <    private static IllegalStateException badBounds(int parties, int unarrived) {
250 <        return new IllegalStateException
251 <            ("Attempt to set " + unarrived +
252 <             " unarrived of " + parties + " parties");
249 >    /**
250 >     * Returns message string for bad bounds exceptions.
251 >     */
252 >    private static String badBounds(int parties, int unarrived) {
253 >        return ("Attempt to set " + unarrived +
254 >                " unarrived of " + parties + " parties");
255      }
256  
257      /**
# Line 243 | Line 260 | public class Phaser {
260      private final Phaser parent;
261  
262      /**
263 <     * The root of Phaser tree. Equals this if not in a tree.  Used to
263 >     * The root of phaser tree. Equals this if not in a tree.  Used to
264       * support faster state push-down.
265       */
266      private final Phaser root;
# Line 251 | Line 268 | public class Phaser {
268      // Wait queues
269  
270      /**
271 <     * Heads of Treiber stacks waiting for nonFJ threads. To eliminate
271 >     * Heads of Treiber stacks for waiting threads. To eliminate
272       * contention while releasing some threads while adding others, we
273       * use two of them, alternating across even and odd phases.
274       */
# Line 259 | Line 276 | public class Phaser {
276      private final AtomicReference<QNode> oddQ  = new AtomicReference<QNode>();
277  
278      private AtomicReference<QNode> queueFor(int phase) {
279 <        return (phase & 1) == 0? evenQ : oddQ;
279 >        return ((phase & 1) == 0) ? evenQ : oddQ;
280      }
281  
282      /**
# Line 267 | Line 284 | public class Phaser {
284       * root if necessary.
285       */
286      private long getReconciledState() {
287 <        return parent == null? state : reconcileState();
287 >        return (parent == null) ? state : reconcileState();
288      }
289  
290      /**
# Line 294 | Line 311 | public class Phaser {
311      }
312  
313      /**
314 <     * Creates a new Phaser without any initially registered parties,
315 <     * initial phase number 0, and no parent.
314 >     * Creates a new phaser without any initially registered parties,
315 >     * initial phase number 0, and no parent. Any thread using this
316 >     * phaser will need to first register for it.
317       */
318      public Phaser() {
319          this(null);
320      }
321  
322      /**
323 <     * Creates a new Phaser with the given numbers of registered
323 >     * Creates a new phaser with the given numbers of registered
324       * unarrived parties, initial phase number 0, and no parent.
325 <     * @param parties the number of parties required to trip barrier.
325 >     *
326 >     * @param parties the number of parties required to trip barrier
327       * @throws IllegalArgumentException if parties less than zero
328 <     * or greater than the maximum number of parties supported.
328 >     * or greater than the maximum number of parties supported
329       */
330      public Phaser(int parties) {
331          this(null, parties);
332      }
333  
334      /**
335 <     * Creates a new Phaser with the given parent, without any
335 >     * Creates a new phaser with the given parent, without any
336       * initially registered parties. If parent is non-null this phaser
337       * is registered with the parent and its initial phase number is
338       * the same as that of parent phaser.
339 <     * @param parent the parent phaser.
339 >     *
340 >     * @param parent the parent phaser
341       */
342      public Phaser(Phaser parent) {
343          int phase = 0;
# Line 332 | Line 352 | public class Phaser {
352      }
353  
354      /**
355 <     * Creates a new Phaser with the given parent and numbers of
356 <     * registered unarrived parties. If parent is non-null this phaser
355 >     * Creates a new phaser with the given parent and numbers of
356 >     * registered unarrived parties. If parent is non-null, this phaser
357       * is registered with the parent and its initial phase number is
358       * the same as that of parent phaser.
359 <     * @param parent the parent phaser.
360 <     * @param parties the number of parties required to trip barrier.
359 >     *
360 >     * @param parent the parent phaser
361 >     * @param parties the number of parties required to trip barrier
362       * @throws IllegalArgumentException if parties less than zero
363 <     * or greater than the maximum number of parties supported.
363 >     * or greater than the maximum number of parties supported
364       */
365      public Phaser(Phaser parent, int parties) {
366          if (parties < 0 || parties > ushortMask)
# Line 357 | Line 378 | public class Phaser {
378  
379      /**
380       * Adds a new unarrived party to this phaser.
381 <     * @return the current barrier phase number upon registration
381 >     *
382 >     * @return the arrival phase number to which this registration applied
383       * @throws IllegalStateException if attempting to register more
384 <     * than the maximum supported number of parties.
384 >     * than the maximum supported number of parties
385       */
386      public int register() {
387          return doRegister(1);
# Line 367 | Line 389 | public class Phaser {
389  
390      /**
391       * Adds the given number of new unarrived parties to this phaser.
392 <     * @param parties the number of parties required to trip barrier.
393 <     * @return the current barrier phase number upon registration
392 >     *
393 >     * @param parties the number of parties required to trip barrier
394 >     * @return the arrival phase number to which this registration applied
395       * @throws IllegalStateException if attempting to register more
396 <     * than the maximum supported number of parties.
396 >     * than the maximum supported number of parties
397       */
398      public int bulkRegister(int parties) {
399          if (parties < 0)
# Line 393 | Line 416 | public class Phaser {
416              if (phase < 0)
417                  break;
418              if (parties > ushortMask || unarrived > ushortMask)
419 <                throw badBounds(parties, unarrived);
419 >                throw new IllegalStateException(badBounds(parties, unarrived));
420              if (phase == phaseOf(root.state) &&
421                  casState(s, stateFor(phase, parties, unarrived)))
422                  break;
# Line 405 | Line 428 | public class Phaser {
428       * Arrives at the barrier, but does not wait for others.  (You can
429       * in turn wait for others via {@link #awaitAdvance}).
430       *
431 <     * @return the barrier phase number upon entry to this method, or a
409 <     * negative value if terminated;
431 >     * @return the arrival phase number, or a negative value if terminated
432       * @throws IllegalStateException if not terminated and the number
433 <     * of unarrived parties would become negative.
433 >     * of unarrived parties would become negative
434       */
435      public int arrive() {
436          int phase;
437          for (;;) {
438              long s = state;
439              phase = phaseOf(s);
440 +            if (phase < 0)
441 +                break;
442              int parties = partiesOf(s);
443              int unarrived = unarrivedOf(s) - 1;
444              if (unarrived > 0) {        // Not the last arrival
# Line 426 | Line 450 | public class Phaser {
450                  if (par == null) {      // directly trip
451                      if (casState
452                          (s,
453 <                         trippedStateFor(onAdvance(phase, parties)? -1 :
453 >                         trippedStateFor(onAdvance(phase, parties) ? -1 :
454                                           ((phase + 1) & phaseMask), parties))) {
455                          releaseWaiters(phase);
456                          break;
# Line 440 | Line 464 | public class Phaser {
464                      }
465                  }
466              }
443            else if (phase < 0) // Don't throw exception if terminated
444                break;
467              else if (phase != phaseOf(root.state)) // or if unreconciled
468                  reconcileState();
469              else
470 <                throw badBounds(parties, unarrived);
470 >                throw new IllegalStateException(badBounds(parties, unarrived));
471          }
472          return phase;
473      }
474  
475      /**
476 <     * Arrives at the barrier, and deregisters from it, without
477 <     * waiting for others. Deregistration reduces number of parties
476 >     * Arrives at the barrier and deregisters from it without waiting
477 >     * for others. Deregistration reduces the number of parties
478       * required to trip the barrier in future phases.  If this phaser
479       * has a parent, and deregistration causes this phaser to have
480 <     * zero parties, this phaser is also deregistered from its parent.
480 >     * zero parties, this phaser also arrives at and is deregistered
481 >     * from its parent.
482       *
483 <     * @return the current barrier phase number upon entry to
461 <     * this method, or a negative value if terminated;
483 >     * @return the arrival phase number, or a negative value if terminated
484       * @throws IllegalStateException if not terminated and the number
485 <     * of registered or unarrived parties would become negative.
485 >     * of registered or unarrived parties would become negative
486       */
487      public int arriveAndDeregister() {
488          // similar code to arrive, but too different to merge
# Line 469 | Line 491 | public class Phaser {
491          for (;;) {
492              long s = state;
493              phase = phaseOf(s);
494 +            if (phase < 0)
495 +                break;
496              int parties = partiesOf(s) - 1;
497              int unarrived = unarrivedOf(s) - 1;
498              if (parties >= 0) {
# Line 487 | Line 511 | public class Phaser {
511                  if (unarrived == 0) {
512                      if (casState
513                          (s,
514 <                         trippedStateFor(onAdvance(phase, parties)? -1 :
514 >                         trippedStateFor(onAdvance(phase, parties) ? -1 :
515                                           ((phase + 1) & phaseMask), parties))) {
516                          releaseWaiters(phase);
517                          break;
518                      }
519                      continue;
520                  }
497                if (phase < 0)
498                    break;
521                  if (par != null && phase != phaseOf(root.state)) {
522                      reconcileState();
523                      continue;
524                  }
525              }
526 <            throw badBounds(parties, unarrived);
526 >            throw new IllegalStateException(badBounds(parties, unarrived));
527          }
528          return phase;
529      }
530  
531      /**
532       * Arrives at the barrier and awaits others. Equivalent in effect
533 <     * to <tt>awaitAdvance(arrive())</tt>.  If you instead need to
534 <     * await with interruption of timeout, and/or deregister upon
535 <     * arrival, you can arrange them using analogous constructions.
536 <     * @return the phase on entry to this method
533 >     * to {@code awaitAdvance(arrive())}.  If you need to await with
534 >     * interruption or timeout, you can arrange this with an analogous
535 >     * construction using one of the other forms of the awaitAdvance
536 >     * method.  If instead you need to deregister upon arrival use
537 >     * {@code arriveAndDeregister}.
538 >     *
539 >     * @return the arrival phase number, or a negative number if terminated
540       * @throws IllegalStateException if not terminated and the number
541 <     * of unarrived parties would become negative.
541 >     * of unarrived parties would become negative
542       */
543      public int arriveAndAwaitAdvance() {
544          return awaitAdvance(arrive());
545      }
546  
547      /**
548 <     * Awaits the phase of the barrier to advance from the given
549 <     * value, or returns immediately if argument is negative or this
550 <     * barrier is terminated.
551 <     * @param phase the phase on entry to this method
552 <     * @return the phase on exit from this method
548 >     * Awaits the phase of the barrier to advance from the given phase
549 >     * value, returning immediately if the current phase of the
550 >     * barrier is not equal to the given phase value or this barrier
551 >     * is terminated.
552 >     *
553 >     * @param phase an arrival phase number, or negative value if
554 >     * terminated; this argument is normally the value returned by a
555 >     * previous call to {@code arrive} or its variants
556 >     * @return the next arrival phase number, or a negative value
557 >     * if terminated or argument is negative
558       */
559      public int awaitAdvance(int phase) {
560          if (phase < 0)
# Line 533 | Line 563 | public class Phaser {
563          int p = phaseOf(s);
564          if (p != phase)
565              return p;
566 <        if (unarrivedOf(s) == 0)
566 >        if (unarrivedOf(s) == 0 && parent != null)
567              parent.awaitAdvance(phase);
568          // Fall here even if parent waited, to reconcile and help release
569          return untimedWait(phase);
570      }
571  
572      /**
573 <     * Awaits the phase of the barrier to advance from the given
574 <     * value, or returns immediately if argumet is negative or this
575 <     * barrier is terminated, or throws InterruptedException if
576 <     * interrupted while waiting.
577 <     * @param phase the phase on entry to this method
578 <     * @return the phase on exit from this method
573 >     * Awaits the phase of the barrier to advance from the given phase
574 >     * value, throwing {@code InterruptedException} if interrupted while
575 >     * waiting, or returning immediately if the current phase of the
576 >     * barrier is not equal to the given phase value or this barrier
577 >     * is terminated.
578 >     *
579 >     * @param phase an arrival phase number, or negative value if
580 >     * terminated; this argument is normally the value returned by a
581 >     * previous call to {@code arrive} or its variants
582 >     * @return the next arrival phase number, or a negative value
583 >     * if terminated or argument is negative
584       * @throws InterruptedException if thread interrupted while waiting
585       */
586 <    public int awaitAdvanceInterruptibly(int phase) throws InterruptedException {
586 >    public int awaitAdvanceInterruptibly(int phase)
587 >        throws InterruptedException {
588          if (phase < 0)
589              return phase;
590          long s = getReconciledState();
591          int p = phaseOf(s);
592          if (p != phase)
593              return p;
594 <        if (unarrivedOf(s) != 0)
594 >        if (unarrivedOf(s) == 0 && parent != null)
595              parent.awaitAdvanceInterruptibly(phase);
596          return interruptibleWait(phase);
597      }
598  
599      /**
600 <     * Awaits the phase of the barrier to advance from the given value
601 <     * or the given timeout elapses, or returns immediately if
602 <     * argument is negative or this barrier is terminated.
603 <     * @param phase the phase on entry to this method
604 <     * @return the phase on exit from this method
600 >     * Awaits the phase of the barrier to advance from the given phase
601 >     * value or the given timeout to elapse, throwing
602 >     * {@code InterruptedException} if interrupted while waiting, or
603 >     * returning immediately if the current phase of the barrier is not
604 >     * equal to the given phase value or this barrier is terminated.
605 >     *
606 >     * @param phase an arrival phase number, or negative value if
607 >     * terminated; this argument is normally the value returned by a
608 >     * previous call to {@code arrive} or its variants
609 >     * @param timeout how long to wait before giving up, in units of
610 >     *        {@code unit}
611 >     * @param unit a {@code TimeUnit} determining how to interpret the
612 >     *        {@code timeout} parameter
613 >     * @return the next arrival phase number, or a negative value
614 >     * if terminated or argument is negative
615       * @throws InterruptedException if thread interrupted while waiting
616       * @throws TimeoutException if timed out while waiting
617       */
618 <    public int awaitAdvanceInterruptibly(int phase, long timeout, TimeUnit unit)
618 >    public int awaitAdvanceInterruptibly(int phase,
619 >                                         long timeout, TimeUnit unit)
620          throws InterruptedException, TimeoutException {
621          if (phase < 0)
622              return phase;
# Line 577 | Line 624 | public class Phaser {
624          int p = phaseOf(s);
625          if (p != phase)
626              return p;
627 <        if (unarrivedOf(s) == 0)
627 >        if (unarrivedOf(s) == 0 && parent != null)
628              parent.awaitAdvanceInterruptibly(phase, timeout, unit);
629          return timedWait(phase, unit.toNanos(timeout));
630      }
# Line 608 | Line 655 | public class Phaser {
655  
656      /**
657       * Returns the current phase number. The maximum phase number is
658 <     * <tt>Integer.MAX_VALUE</tt>, after which it restarts at
658 >     * {@code Integer.MAX_VALUE}, after which it restarts at
659       * zero. Upon termination, the phase number is negative.
660 +     *
661       * @return the phase number, or a negative value if terminated
662       */
663      public final int getPhase() {
# Line 617 | Line 665 | public class Phaser {
665      }
666  
667      /**
620     * Returns true if the current phase number equals the given phase.
621     * @param phase the phase
622     * @return true if the current phase number equals the given phase.
623     */
624    public final boolean hasPhase(int phase) {
625        return phaseOf(getReconciledState()) == phase;
626    }
627
628    /**
668       * Returns the number of parties registered at this barrier.
669 +     *
670       * @return the number of parties
671       */
672      public int getRegisteredParties() {
# Line 634 | Line 674 | public class Phaser {
674      }
675  
676      /**
677 <     * Returns the number of parties that have arrived at the current
678 <     * phase of this barrier.
677 >     * Returns the number of registered parties that have arrived at
678 >     * the current phase of this barrier.
679 >     *
680       * @return the number of arrived parties
681       */
682      public int getArrivedParties() {
# Line 645 | Line 686 | public class Phaser {
686      /**
687       * Returns the number of registered parties that have not yet
688       * arrived at the current phase of this barrier.
689 +     *
690       * @return the number of unarrived parties
691       */
692      public int getUnarrivedParties() {
# Line 652 | Line 694 | public class Phaser {
694      }
695  
696      /**
697 <     * Returns the parent of this phaser, or null if none.
698 <     * @return the parent of this phaser, or null if none.
697 >     * Returns the parent of this phaser, or {@code null} if none.
698 >     *
699 >     * @return the parent of this phaser, or {@code null} if none
700       */
701      public Phaser getParent() {
702          return parent;
# Line 662 | Line 705 | public class Phaser {
705      /**
706       * Returns the root ancestor of this phaser, which is the same as
707       * this phaser if it has no parent.
708 <     * @return the root ancestor of this phaser.
708 >     *
709 >     * @return the root ancestor of this phaser
710       */
711      public Phaser getRoot() {
712          return root;
713      }
714  
715      /**
716 <     * Returns true if this barrier has been terminated.
717 <     * @return true if this barrier has been terminated
716 >     * Returns {@code true} if this barrier has been terminated.
717 >     *
718 >     * @return {@code true} if this barrier has been terminated
719       */
720      public boolean isTerminated() {
721          return getPhase() < 0;
# Line 680 | Line 725 | public class Phaser {
725       * Overridable method to perform an action upon phase advance, and
726       * to control termination. This method is invoked whenever the
727       * barrier is tripped (and thus all other waiting parties are
728 <     * dormant). If it returns true, then, rather than advance the
729 <     * phase number, this barrier will be set to a final termination
730 <     * state, and subsequent calls to <tt>isTerminated</tt> will
731 <     * return true.
728 >     * dormant). If it returns {@code true}, then, rather than advance
729 >     * the phase number, this barrier will be set to a final
730 >     * termination state, and subsequent calls to {@link #isTerminated}
731 >     * will return true.
732       *
733 <     * <p> The default version returns true when the number of
733 >     * <p>The default version returns {@code true} when the number of
734       * registered parties is zero. Normally, overrides that arrange
735       * termination for other reasons should also preserve this
736       * property.
737       *
738 <     * <p> You may override this method to perform an action with side
738 >     * <p>You may override this method to perform an action with side
739       * effects visible to participating tasks, but it is in general
740       * only sensible to do so in designs where all parties register
741 <     * before any arrive, and all <tt>awaitAdvance</tt> at each phase.
742 <     * Otherwise, you cannot ensure lack of interference. In
743 <     * particular, this method may be invoked more than once per
699 <     * transition if other parties successfully register while the
700 <     * invocation of this method is in progress, thus postponing the
701 <     * transition until those parties also arrive, re-triggering this
702 <     * method.
741 >     * before any arrive, and all {@link #awaitAdvance} at each phase.
742 >     * Otherwise, you cannot ensure lack of interference from other
743 >     * parties during the invocation of this method.
744       *
745       * @param phase the phase number on entering the barrier
746 <     * @param registeredParties the current number of registered
747 <     * parties.
707 <     * @return true if this barrier should terminate
746 >     * @param registeredParties the current number of registered parties
747 >     * @return {@code true} if this barrier should terminate
748       */
749      protected boolean onAdvance(int phase, int registeredParties) {
750          return registeredParties <= 0;
# Line 713 | Line 753 | public class Phaser {
753      /**
754       * Returns a string identifying this phaser, as well as its
755       * state.  The state, in brackets, includes the String {@code
756 <     * "phase ="} followed by the phase number, {@code "parties ="}
756 >     * "phase = "} followed by the phase number, {@code "parties = "}
757       * followed by the number of registered parties, and {@code
758 <     * "arrived ="} followed by the number of arrived parties
758 >     * "arrived = "} followed by the number of arrived parties.
759       *
760       * @return a string identifying this barrier, as well as its state
761       */
762      public String toString() {
763          long s = getReconciledState();
764 <        return super.toString() + "[phase = " + phaseOf(s) + " parties = " + partiesOf(s) + " arrived = " + arrivedOf(s) + "]";
764 >        return super.toString() +
765 >            "[phase = " + phaseOf(s) +
766 >            " parties = " + partiesOf(s) +
767 >            " arrived = " + arrivedOf(s) + "]";
768      }
769  
770      // methods for waiting
771  
729    /** The number of CPUs, for spin control */
730    static final int NCPUS = Runtime.getRuntime().availableProcessors();
731
732    /**
733     * The number of times to spin before blocking in timed waits.
734     * The value is empirically derived.
735     */
736    static final int maxTimedSpins = (NCPUS < 2)? 0 : 32;
737
738    /**
739     * The number of times to spin before blocking in untimed waits.
740     * This is greater than timed value because untimed waits spin
741     * faster since they don't need to check times on each spin.
742     */
743    static final int maxUntimedSpins = maxTimedSpins * 32;
744
745    /**
746     * The number of nanoseconds for which it is faster to spin
747     * rather than to use timed park. A rough estimate suffices.
748     */
749    static final long spinForTimeoutThreshold = 1000L;
750
772      /**
773 <     * Wait nodes for Treiber stack representing wait queue for non-FJ
753 <     * tasks.
773 >     * Wait nodes for Treiber stack representing wait queue
774       */
775 <    static final class QNode {
776 <        QNode next;
775 >    static final class QNode implements ForkJoinPool.ManagedBlocker {
776 >        final Phaser phaser;
777 >        final int phase;
778 >        final long startTime;
779 >        final long nanos;
780 >        final boolean timed;
781 >        final boolean interruptible;
782 >        volatile boolean wasInterrupted = false;
783          volatile Thread thread; // nulled to cancel wait
784 <        QNode() {
784 >        QNode next;
785 >        QNode(Phaser phaser, int phase, boolean interruptible,
786 >              boolean timed, long startTime, long nanos) {
787 >            this.phaser = phaser;
788 >            this.phase = phase;
789 >            this.timed = timed;
790 >            this.interruptible = interruptible;
791 >            this.startTime = startTime;
792 >            this.nanos = nanos;
793              thread = Thread.currentThread();
794          }
795 +        public boolean isReleasable() {
796 +            return (thread == null ||
797 +                    phaser.getPhase() != phase ||
798 +                    (interruptible && wasInterrupted) ||
799 +                    (timed && (nanos - (System.nanoTime() - startTime)) <= 0));
800 +        }
801 +        public boolean block() {
802 +            if (Thread.interrupted()) {
803 +                wasInterrupted = true;
804 +                if (interruptible)
805 +                    return true;
806 +            }
807 +            if (!timed)
808 +                LockSupport.park(this);
809 +            else {
810 +                long waitTime = nanos - (System.nanoTime() - startTime);
811 +                if (waitTime <= 0)
812 +                    return true;
813 +                LockSupport.parkNanos(this, waitTime);
814 +            }
815 +            return isReleasable();
816 +        }
817          void signal() {
818              Thread t = thread;
819              if (t != null) {
# Line 765 | Line 821 | public class Phaser {
821                  LockSupport.unpark(t);
822              }
823          }
824 +        boolean doWait() {
825 +            if (thread != null) {
826 +                try {
827 +                    ForkJoinPool.managedBlock(this, false);
828 +                } catch (InterruptedException ie) {
829 +                }
830 +            }
831 +            return wasInterrupted;
832 +        }
833 +
834      }
835  
836      /**
837 <     * Removes and signals waiting threads from wait queue
837 >     * Removes and signals waiting threads from wait queue.
838       */
839      private void releaseWaiters(int phase) {
840          AtomicReference<QNode> head = queueFor(phase);
# Line 780 | Line 846 | public class Phaser {
846      }
847  
848      /**
849 +     * Tries to enqueue given node in the appropriate wait queue.
850 +     *
851 +     * @return true if successful
852 +     */
853 +    private boolean tryEnqueue(QNode node) {
854 +        AtomicReference<QNode> head = queueFor(node.phase);
855 +        return head.compareAndSet(node.next = head.get(), node);
856 +    }
857 +
858 +    /**
859       * Enqueues node and waits unless aborted or signalled.
860 +     *
861 +     * @return current phase
862       */
863      private int untimedWait(int phase) {
786        int spins = maxUntimedSpins;
864          QNode node = null;
788        boolean interrupted = false;
865          boolean queued = false;
866 +        boolean interrupted = false;
867          int p;
868          while ((p = getPhase()) == phase) {
869 <            interrupted = Thread.interrupted();
870 <            if (node != null) {
871 <                if (!queued) {
872 <                    AtomicReference<QNode> head = queueFor(phase);
873 <                    queued = head.compareAndSet(node.next = head.get(), node);
874 <                }
798 <                else if (node.thread != null)
799 <                    LockSupport.park(this);
800 <            }
801 <            else if (spins <= 0)
802 <                node = new QNode();
869 >            if (Thread.interrupted())
870 >                interrupted = true;
871 >            else if (node == null)
872 >                node = new QNode(this, phase, false, false, 0, 0);
873 >            else if (!queued)
874 >                queued = tryEnqueue(node);
875              else
876 <                --spins;
876 >                interrupted = node.doWait();
877          }
878          if (node != null)
879              node.thread = null;
880 +        releaseWaiters(phase);
881          if (interrupted)
882              Thread.currentThread().interrupt();
810        releaseWaiters(phase);
883          return p;
884      }
885  
886      /**
887 <     * Messier interruptible version
887 >     * Interruptible version
888 >     * @return current phase
889       */
890      private int interruptibleWait(int phase) throws InterruptedException {
818        int spins = maxUntimedSpins;
891          QNode node = null;
892          boolean queued = false;
893          boolean interrupted = false;
894          int p;
895 <        while ((p = getPhase()) == phase) {
896 <            if (interrupted = Thread.interrupted())
897 <                break;
898 <            if (node != null) {
899 <                if (!queued) {
900 <                    AtomicReference<QNode> head = queueFor(phase);
901 <                    queued = head.compareAndSet(node.next = head.get(), node);
830 <                }
831 <                else if (node.thread != null)
832 <                    LockSupport.park(this);
833 <            }
834 <            else if (spins <= 0)
835 <                node = new QNode();
895 >        while ((p = getPhase()) == phase && !interrupted) {
896 >            if (Thread.interrupted())
897 >                interrupted = true;
898 >            else if (node == null)
899 >                node = new QNode(this, phase, true, false, 0, 0);
900 >            else if (!queued)
901 >                queued = tryEnqueue(node);
902              else
903 <                --spins;
903 >                interrupted = node.doWait();
904          }
905          if (node != null)
906              node.thread = null;
907 +        if (p != phase || (p = getPhase()) != phase)
908 +            releaseWaiters(phase);
909          if (interrupted)
910              throw new InterruptedException();
843        releaseWaiters(phase);
911          return p;
912      }
913  
914      /**
915 <     * Even messier timeout version.
915 >     * Timeout version.
916 >     * @return current phase
917       */
918      private int timedWait(int phase, long nanos)
919          throws InterruptedException, TimeoutException {
920 +        long startTime = System.nanoTime();
921 +        QNode node = null;
922 +        boolean queued = false;
923 +        boolean interrupted = false;
924          int p;
925 <        if ((p = getPhase()) == phase) {
926 <            long lastTime = System.nanoTime();
927 <            int spins = maxTimedSpins;
928 <            QNode node = null;
929 <            boolean queued = false;
930 <            boolean interrupted = false;
931 <            while ((p = getPhase()) == phase) {
932 <                if (interrupted = Thread.interrupted())
933 <                    break;
934 <                long now = System.nanoTime();
935 <                if ((nanos -= now - lastTime) <= 0)
864 <                    break;
865 <                lastTime = now;
866 <                if (node != null) {
867 <                    if (!queued) {
868 <                        AtomicReference<QNode> head = queueFor(phase);
869 <                        queued = head.compareAndSet(node.next = head.get(), node);
870 <                    }
871 <                    else if (node.thread != null &&
872 <                             nanos > spinForTimeoutThreshold) {
873 <                        LockSupport.parkNanos(this, nanos);
874 <                    }
875 <                }
876 <                else if (spins <= 0)
877 <                    node = new QNode();
878 <                else
879 <                    --spins;
880 <            }
881 <            if (node != null)
882 <                node.thread = null;
883 <            if (interrupted)
884 <                throw new InterruptedException();
885 <            if (p == phase && (p = getPhase()) == phase)
886 <                throw new TimeoutException();
925 >        while ((p = getPhase()) == phase && !interrupted) {
926 >            if (Thread.interrupted())
927 >                interrupted = true;
928 >            else if (nanos - (System.nanoTime() - startTime) <= 0)
929 >                break;
930 >            else if (node == null)
931 >                node = new QNode(this, phase, true, true, startTime, nanos);
932 >            else if (!queued)
933 >                queued = tryEnqueue(node);
934 >            else
935 >                interrupted = node.doWait();
936          }
937 <        releaseWaiters(phase);
937 >        if (node != null)
938 >            node.thread = null;
939 >        if (p != phase || (p = getPhase()) != phase)
940 >            releaseWaiters(phase);
941 >        if (interrupted)
942 >            throw new InterruptedException();
943 >        if (p == phase)
944 >            throw new TimeoutException();
945          return p;
946      }
947  
948 <    // Temporary Unsafe mechanics for preliminary release
948 >    // Unsafe mechanics
949  
950 <    static final Unsafe _unsafe;
951 <    static final long stateOffset;
950 >    private static final sun.misc.Unsafe UNSAFE = getUnsafe();
951 >    private static final long stateOffset =
952 >        objectFieldOffset("state", Phaser.class);
953  
954 <    static {
954 >    private final boolean casState(long cmp, long val) {
955 >        return UNSAFE.compareAndSwapLong(this, stateOffset, cmp, val);
956 >    }
957 >
958 >    private static long objectFieldOffset(String field, Class<?> klazz) {
959          try {
960 <            if (Phaser.class.getClassLoader() != null) {
961 <                Field f = Unsafe.class.getDeclaredField("theUnsafe");
962 <                f.setAccessible(true);
963 <                _unsafe = (Unsafe)f.get(null);
964 <            }
965 <            else
905 <                _unsafe = Unsafe.getUnsafe();
906 <            stateOffset = _unsafe.objectFieldOffset
907 <                (Phaser.class.getDeclaredField("state"));
908 <        } catch (Exception e) {
909 <            throw new RuntimeException("Could not initialize intrinsics", e);
960 >            return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
961 >        } catch (NoSuchFieldException e) {
962 >            // Convert Exception to corresponding Error
963 >            NoSuchFieldError error = new NoSuchFieldError(field);
964 >            error.initCause(e);
965 >            throw error;
966          }
967      }
968  
969 <    final boolean casState(long cmp, long val) {
970 <        return _unsafe.compareAndSwapLong(this, stateOffset, cmp, val);
969 >    /**
970 >     * Returns a sun.misc.Unsafe.  Suitable for use in a 3rd party package.
971 >     * Replace with a simple call to Unsafe.getUnsafe when integrating
972 >     * into a jdk.
973 >     *
974 >     * @return a sun.misc.Unsafe
975 >     */
976 >    private static sun.misc.Unsafe getUnsafe() {
977 >        try {
978 >            return sun.misc.Unsafe.getUnsafe();
979 >        } catch (SecurityException se) {
980 >            try {
981 >                return java.security.AccessController.doPrivileged
982 >                    (new java.security
983 >                     .PrivilegedExceptionAction<sun.misc.Unsafe>() {
984 >                        public sun.misc.Unsafe run() throws Exception {
985 >                            java.lang.reflect.Field f = sun.misc
986 >                                .Unsafe.class.getDeclaredField("theUnsafe");
987 >                            f.setAccessible(true);
988 >                            return (sun.misc.Unsafe) f.get(null);
989 >                        }});
990 >            } catch (java.security.PrivilegedActionException e) {
991 >                throw new RuntimeException("Could not initialize intrinsics",
992 >                                           e.getCause());
993 >            }
994 >        }
995      }
996   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines