ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/Phaser.java
(Generate patch)

Comparing jsr166/src/jsr166y/Phaser.java (file contents):
Revision 1.44 by dl, Tue Aug 25 16:32:28 2009 UTC vs.
Revision 1.61 by jsr166, Sun Nov 28 21:21:03 2010 UTC

# Line 6 | Line 6
6  
7   package jsr166y;
8  
9 < import java.util.concurrent.*;
10 <
9 > import java.util.concurrent.TimeUnit;
10 > import java.util.concurrent.TimeoutException;
11   import java.util.concurrent.atomic.AtomicReference;
12   import java.util.concurrent.locks.LockSupport;
13  
# Line 18 | Line 18 | import java.util.concurrent.locks.LockSu
18   * but supporting more flexible usage.
19   *
20   * <p> <b>Registration.</b> Unlike the case for other barriers, the
21 < * number of parties <em>registered</em> to synchronize on a phaser
21 > * number of parties <em>registered</em> to synchronize on a Phaser
22   * may vary over time.  Tasks may be registered at any time (using
23   * methods {@link #register}, {@link #bulkRegister}, or forms of
24   * constructors establishing initial numbers of parties), and
# Line 76 | Line 76 | import java.util.concurrent.locks.LockSu
76   *
77   * <p> <b>Termination.</b> A {@code Phaser} may enter a
78   * <em>termination</em> state in which all synchronization methods
79 < * immediately return without updating phaser state or waiting for
79 > * immediately return without updating Phaser state or waiting for
80   * advance, and indicating (via a negative phase value) that execution
81   * is complete.  Termination is triggered when an invocation of {@code
82 < * onAdvance} returns {@code true}.  As illustrated below, when
83 < * phasers control actions with a fixed number of iterations, it is
82 > * onAdvance} returns {@code true}. The default implementation returns
83 > * {@code true} if a deregistration has caused the number of
84 > * registered parties to become zero.  As illustrated below, when
85 > * Phasers control actions with a fixed number of iterations, it is
86   * often convenient to override this method to cause termination when
87   * the current phase number reaches a threshold. Method {@link
88   * #forceTermination} is also available to abruptly release waiting
89   * threads and allow them to terminate.
90   *
91 < * <p> <b>Tiering.</b> Phasers may be <em>tiered</em> (i.e., arranged
92 < * in tree structures) to reduce contention. Phasers with large
93 < * numbers of parties that would otherwise experience heavy
91 > * <p> <b>Tiering.</b> Phasers may be <em>tiered</em> (i.e.,
92 > * constructed in tree structures) to reduce contention. Phasers with
93 > * large numbers of parties that would otherwise experience heavy
94   * synchronization contention costs may instead be set up so that
95   * groups of sub-phasers share a common parent.  This may greatly
96   * increase throughput even though it incurs greater per-operation
97   * overhead.
98   *
99   * <p><b>Monitoring.</b> While synchronization methods may be invoked
100 < * only by registered parties, the current state of a phaser may be
100 > * only by registered parties, the current state of a Phaser may be
101   * monitored by any caller.  At any given moment there are {@link
102   * #getRegisteredParties} parties in total, of which {@link
103   * #getArrivedParties} have arrived at the current phase ({@link
# Line 109 | Line 111 | import java.util.concurrent.locks.LockSu
111   * <p><b>Sample usages:</b>
112   *
113   * <p>A {@code Phaser} may be used instead of a {@code CountDownLatch}
114 < * to control a one-shot action serving a variable number of
115 < * parties. The typical idiom is for the method setting this up to
116 < * first register, then start the actions, then deregister, as in:
114 > * to control a one-shot action serving a variable number of parties.
115 > * The typical idiom is for the method setting this up to first
116 > * register, then start the actions, then deregister, as in:
117   *
118   *  <pre> {@code
119   * void runTasks(List<Runnable> tasks) {
# Line 142 | Line 144 | import java.util.concurrent.locks.LockSu
144   *     }
145   *   };
146   *   phaser.register();
147 < *   for (Runnable task : tasks) {
147 > *   for (final Runnable task : tasks) {
148   *     phaser.register();
149   *     new Thread() {
150   *       public void run() {
151   *         do {
152   *           task.run();
153   *           phaser.arriveAndAwaitAdvance();
154 < *         } while(!phaser.isTerminated();
154 > *         } while (!phaser.isTerminated());
155   *       }
156   *     }.start();
157   *   }
# Line 158 | Line 160 | import java.util.concurrent.locks.LockSu
160   *
161   * If the main task must later await termination, it
162   * may re-register and then execute a similar loop:
163 < * <pre> {@code
163 > *  <pre> {@code
164   *   // ...
165   *   phaser.register();
166   *   while (!phaser.isTerminated())
167 < *     phaser.arriveAndAwaitAdvance();
166 < * }</pre>
167 > *     phaser.arriveAndAwaitAdvance();}</pre>
168   *
169 < * Related constructions may be used to await particular phase numbers
169 > * <p>Related constructions may be used to await particular phase numbers
170   * in contexts where you are sure that the phase will never wrap around
171   * {@code Integer.MAX_VALUE}. For example:
172   *
173 < * <pre> {@code
174 < *   void awaitPhase(Phaser phaser, int phase) {
175 < *     int p = phaser.register(); // assumes caller not already registered
176 < *     while (p < phase) {
177 < *       if (phaser.isTerminated())
178 < *         // ... deal with unexpected termination
179 < *       else
180 < *         p = phaser.arriveAndAwaitAdvance();
180 < *     }
181 < *     phaser.arriveAndDeregister();
173 > *  <pre> {@code
174 > * void awaitPhase(Phaser phaser, int phase) {
175 > *   int p = phaser.register(); // assumes caller not already registered
176 > *   while (p < phase) {
177 > *     if (phaser.isTerminated())
178 > *       // ... deal with unexpected termination
179 > *     else
180 > *       p = phaser.arriveAndAwaitAdvance();
181   *   }
182 < * }</pre>
182 > *   phaser.arriveAndDeregister();
183 > * }}</pre>
184   *
185   *
186 < * <p>To create a set of tasks using a tree of phasers,
186 > * <p>To create a set of tasks using a tree of Phasers,
187   * you could use code of the following form, assuming a
188 < * Task class with a constructor accepting a phaser that
189 < * it registers for upon construction:
188 > * Task class with a constructor accepting a Phaser that
189 > * it registers with upon construction:
190 > *
191   *  <pre> {@code
192   * void build(Task[] actions, int lo, int hi, Phaser ph) {
193   *   if (hi - lo > TASKS_PER_PHASER) {
# Line 208 | Line 209 | import java.util.concurrent.locks.LockSu
209   * be appropriate for extremely small per-barrier task bodies (thus
210   * high rates), or up to hundreds for extremely large ones.
211   *
211 * </pre>
212 *
212   * <p><b>Implementation notes</b>: This implementation restricts the
213   * maximum number of parties to 65535. Attempts to register additional
214   * parties result in {@code IllegalStateException}. However, you can and
215 < * should create tiered phasers to accommodate arbitrarily large sets
215 > * should create tiered Phasers to accommodate arbitrarily large sets
216   * of participants.
217   *
218   * @since 1.7
# Line 230 | Line 229 | public class Phaser {
229       * Barrier state representation. Conceptually, a barrier contains
230       * four values:
231       *
232 <     * * parties -- the number of parties to wait (16 bits)
233 <     * * unarrived -- the number of parties yet to hit barrier (16 bits)
234 <     * * phase -- the generation of the barrier (31 bits)
235 <     * * terminated -- set if barrier is terminated (1 bit)
232 >     * * unarrived -- the number of parties yet to hit barrier (bits  0-15)
233 >     * * parties -- the number of parties to wait              (bits 16-31)
234 >     * * phase -- the generation of the barrier                (bits 32-62)
235 >     * * terminated -- set if barrier is terminated            (bit  63 / sign)
236       *
237       * However, to efficiently maintain atomicity, these values are
238       * packed into a single (atomic) long. Termination uses the sign
239       * bit of 32 bit representation of phase, so phase is set to -1 on
240       * termination. Good performance relies on keeping state decoding
241       * and encoding simple, and keeping race windows short.
243     *
244     * Note: there are some cheats in arrive() that rely on unarrived
245     * count being lowest 16 bits.
242       */
243      private volatile long state;
244  
245 <    private static final int ushortMask = 0xffff;
246 <    private static final int phaseMask  = 0x7fffffff;
245 >    private static final int  MAX_PARTIES     = 0xffff;
246 >    private static final int  MAX_PHASE       = 0x7fffffff;
247 >    private static final int  PARTIES_SHIFT   = 16;
248 >    private static final int  PHASE_SHIFT     = 32;
249 >    private static final int  UNARRIVED_MASK  = 0xffff;      // to mask ints
250 >    private static final long PARTIES_MASK    = 0xffff0000L; // to mask longs
251 >    private static final long ONE_ARRIVAL     = 1L;
252 >    private static final long ONE_PARTY       = 1L << PARTIES_SHIFT;
253 >    private static final long TERMINATION_BIT = 1L << 63;
254 >
255 >    // The following unpacking methods are usually manually inlined
256  
257      private static int unarrivedOf(long s) {
258 <        return (int) (s & ushortMask);
258 >        return (int)s & UNARRIVED_MASK;
259      }
260  
261      private static int partiesOf(long s) {
262 <        return ((int) s) >>> 16;
262 >        return (int)s >>> PARTIES_SHIFT;
263      }
264  
265      private static int phaseOf(long s) {
266 <        return (int) (s >>> 32);
266 >        return (int) (s >>> PHASE_SHIFT);
267      }
268  
269      private static int arrivedOf(long s) {
270          return partiesOf(s) - unarrivedOf(s);
271      }
272  
268    private static long stateFor(int phase, int parties, int unarrived) {
269        return ((((long) phase) << 32) | (((long) parties) << 16) |
270                (long) unarrived);
271    }
272
273    private static long trippedStateFor(int phase, int parties) {
274        long lp = (long) parties;
275        return (((long) phase) << 32) | (lp << 16) | lp;
276    }
277
278    /**
279     * Returns message string for bad bounds exceptions.
280     */
281    private static String badBounds(int parties, int unarrived) {
282        return ("Attempt to set " + unarrived +
283                " unarrived of " + parties + " parties");
284    }
285
273      /**
274       * The parent of this phaser, or null if none
275       */
# Line 294 | Line 281 | public class Phaser {
281       */
282      private final Phaser root;
283  
297    // Wait queues
298
284      /**
285       * Heads of Treiber stacks for waiting threads. To eliminate
286 <     * contention while releasing some threads while adding others, we
286 >     * contention when releasing some threads while adding others, we
287       * use two of them, alternating across even and odd phases.
288 +     * Subphasers share queues with root to speed up releases.
289       */
290 <    private final AtomicReference<QNode> evenQ = new AtomicReference<QNode>();
291 <    private final AtomicReference<QNode> oddQ  = new AtomicReference<QNode>();
290 >    private final AtomicReference<QNode> evenQ;
291 >    private final AtomicReference<QNode> oddQ;
292  
293      private AtomicReference<QNode> queueFor(int phase) {
294          return ((phase & 1) == 0) ? evenQ : oddQ;
295      }
296  
297      /**
298 <     * Returns current state, first resolving lagged propagation from
313 <     * root if necessary.
298 >     * Returns message string for bounds exceptions on arrival.
299       */
300 <    private long getReconciledState() {
301 <        return (parent == null) ? state : reconcileState();
300 >    private String badArrive(long s) {
301 >        return "Attempted arrival of unregistered party for " +
302 >            stateToString(s);
303      }
304  
305      /**
306 <     * Recursively resolves state.
306 >     * Returns message string for bounds exceptions on registration.
307       */
308 <    private long reconcileState() {
309 <        Phaser p = parent;
310 <        long s = state;
311 <        if (p != null) {
312 <            while (unarrivedOf(s) == 0 && phaseOf(s) != phaseOf(root.state)) {
313 <                long parentState = p.getReconciledState();
314 <                int parentPhase = phaseOf(parentState);
315 <                int phase = phaseOf(s = state);
316 <                if (phase != parentPhase) {
317 <                    long next = trippedStateFor(parentPhase, partiesOf(s));
318 <                    if (casState(s, next)) {
308 >    private String badRegister(long s) {
309 >        return "Attempt to register more than " +
310 >            MAX_PARTIES + " parties for " + stateToString(s);
311 >    }
312 >
313 >    /**
314 >     * Main implementation for methods arrive and arriveAndDeregister.
315 >     * Manually tuned to speed up and minimize race windows for the
316 >     * common case of just decrementing unarrived field.
317 >     *
318 >     * @param adj - adjustment to apply to state -- either
319 >     * ONE_ARRIVAL (for arrive) or
320 >     * ONE_ARRIVAL|ONE_PARTY (for arriveAndDeregister)
321 >     */
322 >    private int doArrive(long adj) {
323 >        for (;;) {
324 >            long s = state;
325 >            int unarrived = (int)s & UNARRIVED_MASK;
326 >            int phase = (int)(s >>> PHASE_SHIFT);
327 >            if (phase < 0)
328 >                return phase;
329 >            else if (unarrived == 0) {
330 >                if (reconcileState() == s)     // recheck
331 >                    throw new IllegalStateException(badArrive(s));
332 >            }
333 >            else if (UNSAFE.compareAndSwapLong(this, stateOffset, s, s-=adj)) {
334 >                if (unarrived == 1) {
335 >                    long p = s & PARTIES_MASK; // unshifted parties field
336 >                    long lu = p >>> PARTIES_SHIFT;
337 >                    int u = (int)lu;
338 >                    int nextPhase = (phase + 1) & MAX_PHASE;
339 >                    long next = ((long)nextPhase << PHASE_SHIFT) | p | lu;
340 >                    final Phaser parent = this.parent;
341 >                    if (parent == null) {
342 >                        if (onAdvance(phase, u))
343 >                            next |= TERMINATION_BIT;
344 >                        UNSAFE.compareAndSwapLong(this, stateOffset, s, next);
345                          releaseWaiters(phase);
346 <                        s = next;
346 >                    }
347 >                    else {
348 >                        parent.doArrive((u == 0) ?
349 >                                        ONE_ARRIVAL|ONE_PARTY : ONE_ARRIVAL);
350 >                        if ((int)(parent.state >>> PHASE_SHIFT) != nextPhase ||
351 >                            ((int)(state >>> PHASE_SHIFT) != nextPhase &&
352 >                             !UNSAFE.compareAndSwapLong(this, stateOffset,
353 >                                                        s, next)))
354 >                            reconcileState();
355 >                    }
356 >                }
357 >                return phase;
358 >            }
359 >        }
360 >    }
361 >
362 >    /**
363 >     * Implementation of register, bulkRegister
364 >     *
365 >     * @param registrations number to add to both parties and
366 >     * unarrived fields. Must be greater than zero.
367 >     */
368 >    private int doRegister(int registrations) {
369 >        // adjustment to state
370 >        long adj = ((long)registrations << PARTIES_SHIFT) | registrations;
371 >        final Phaser parent = this.parent;
372 >        for (;;) {
373 >            long s = (parent == null) ? state : reconcileState();
374 >            int parties = (int)s >>> PARTIES_SHIFT;
375 >            int phase = (int)(s >>> PHASE_SHIFT);
376 >            if (phase < 0)
377 >                return phase;
378 >            else if (registrations > MAX_PARTIES - parties)
379 >                throw new IllegalStateException(badRegister(s));
380 >            else if ((parties == 0 && parent == null) || // first reg of root
381 >                     ((int)s & UNARRIVED_MASK) != 0) {   // not advancing
382 >                if (UNSAFE.compareAndSwapLong(this, stateOffset, s, s + adj))
383 >                    return phase;
384 >            }
385 >            else if (parties != 0)               // wait for onAdvance
386 >                root.internalAwaitAdvance(phase, null);
387 >            else {                               // 1st registration of child
388 >                synchronized (this) {            // register parent first
389 >                    if (reconcileState() == s) { // recheck under lock
390 >                        parent.doRegister(1);    // OK if throws IllegalState
391 >                        for (;;) {               // simpler form of outer loop
392 >                            s = reconcileState();
393 >                            phase = (int)(s >>> PHASE_SHIFT);
394 >                            if (phase < 0 ||
395 >                                UNSAFE.compareAndSwapLong(this, stateOffset,
396 >                                                          s, s + adj))
397 >                                return phase;
398 >                        }
399                      }
400                  }
401              }
402          }
403 +    }
404 +
405 +    /**
406 +     * Recursively resolves lagged phase propagation from root if necessary.
407 +     */
408 +    private long reconcileState() {
409 +        Phaser par = parent;
410 +        long s = state;
411 +        if (par != null) {
412 +            Phaser rt = root;
413 +            int phase, rPhase;
414 +            while ((phase = (int)(s >>> PHASE_SHIFT)) >= 0 &&
415 +                   (rPhase = (int)(rt.state >>> PHASE_SHIFT)) != phase) {
416 +                if ((int)(par.state >>> PHASE_SHIFT) != rPhase)
417 +                    par.reconcileState();
418 +                else if (rPhase < 0 || ((int)s & UNARRIVED_MASK) == 0) {
419 +                    long u = s & PARTIES_MASK; // reset unarrived to parties
420 +                    long next = ((((long) rPhase) << PHASE_SHIFT) | u |
421 +                                 (u >>> PARTIES_SHIFT));
422 +                    UNSAFE.compareAndSwapLong(this, stateOffset, s, next);
423 +                }
424 +                s = state;
425 +            }
426 +        }
427          return s;
428      }
429  
430      /**
431 <     * Creates a new phaser without any initially registered parties,
431 >     * Creates a new Phaser without any initially registered parties,
432       * initial phase number 0, and no parent. Any thread using this
433 <     * phaser will need to first register for it.
433 >     * Phaser will need to first register for it.
434       */
435      public Phaser() {
436 <        this(null);
436 >        this(null, 0);
437      }
438  
439      /**
440 <     * Creates a new phaser with the given numbers of registered
440 >     * Creates a new Phaser with the given number of registered
441       * unarrived parties, initial phase number 0, and no parent.
442       *
443       * @param parties the number of parties required to trip barrier
# Line 361 | Line 449 | public class Phaser {
449      }
450  
451      /**
452 <     * Creates a new phaser with the given parent, without any
365 <     * initially registered parties. If parent is non-null this phaser
366 <     * is registered with the parent and its initial phase number is
367 <     * the same as that of parent phaser.
452 >     * Equivalent to {@link #Phaser(Phaser, int) Phaser(parent, 0)}.
453       *
454 <     * @param parent the parent phaser
454 >     * @param parent the parent Phaser
455       */
456      public Phaser(Phaser parent) {
457 <        int phase = 0;
373 <        this.parent = parent;
374 <        if (parent != null) {
375 <            this.root = parent.root;
376 <            phase = parent.register();
377 <        }
378 <        else
379 <            this.root = this;
380 <        this.state = trippedStateFor(phase, 0);
457 >        this(parent, 0);
458      }
459  
460      /**
461 <     * Creates a new phaser with the given parent and numbers of
462 <     * registered unarrived parties. If parent is non-null, this phaser
463 <     * is registered with the parent and its initial phase number is
464 <     * the same as that of parent phaser.
461 >     * Creates a new Phaser with the given parent and number of
462 >     * registered unarrived parties. Registration and deregistration
463 >     * of this child Phaser with its parent are managed automatically.
464 >     * If the given parent is non-null, whenever this child Phaser has
465 >     * any registered parties (as established in this constructor,
466 >     * {@link #register}, or {@link #bulkRegister}), this child Phaser
467 >     * is registered with its parent. Whenever the number of
468 >     * registered parties becomes zero as the result of an invocation
469 >     * of {@link #arriveAndDeregister}, this child Phaser is
470 >     * deregistered from its parent.
471       *
472 <     * @param parent the parent phaser
472 >     * @param parent the parent Phaser
473       * @param parties the number of parties required to trip barrier
474       * @throws IllegalArgumentException if parties less than zero
475       * or greater than the maximum number of parties supported
476       */
477      public Phaser(Phaser parent, int parties) {
478 <        if (parties < 0 || parties > ushortMask)
478 >        if (parties >>> PARTIES_SHIFT != 0)
479              throw new IllegalArgumentException("Illegal number of parties");
480 <        int phase = 0;
480 >        long s = ((long) parties) | (((long) parties) << PARTIES_SHIFT);
481          this.parent = parent;
482          if (parent != null) {
483 <            this.root = parent.root;
484 <            phase = parent.register();
483 >            Phaser r = parent.root;
484 >            this.root = r;
485 >            this.evenQ = r.evenQ;
486 >            this.oddQ = r.oddQ;
487 >            if (parties != 0)
488 >                s |= ((long)(parent.doRegister(1))) << PHASE_SHIFT;
489          }
490 <        else
490 >        else {
491              this.root = this;
492 <        this.state = trippedStateFor(phase, parties);
492 >            this.evenQ = new AtomicReference<QNode>();
493 >            this.oddQ = new AtomicReference<QNode>();
494 >        }
495 >        this.state = s;
496      }
497  
498      /**
499 <     * Adds a new unarrived party to this phaser.
499 >     * Adds a new unarrived party to this Phaser.  If an ongoing
500 >     * invocation of {@link #onAdvance} is in progress, this method
501 >     * may await its completion before returning.  If this Phaser has
502 >     * a parent, and this Phaser previously had no registered parties,
503 >     * this Phaser is also registered with its parent.
504       *
505       * @return the arrival phase number to which this registration applied
506       * @throws IllegalStateException if attempting to register more
# Line 417 | Line 511 | public class Phaser {
511      }
512  
513      /**
514 <     * Adds the given number of new unarrived parties to this phaser.
514 >     * Adds the given number of new unarrived parties to this Phaser.
515 >     * If an ongoing invocation of {@link #onAdvance} is in progress,
516 >     * this method may await its completion before returning.  If this
517 >     * Phaser has a parent, and the given number of parities is
518 >     * greater than zero, and this Phaser previously had no registered
519 >     * parties, this Phaser is also registered with its parent.
520       *
521 <     * @param parties the number of parties required to trip barrier
521 >     * @param parties the number of additional parties required to trip barrier
522       * @return the arrival phase number to which this registration applied
523       * @throws IllegalStateException if attempting to register more
524       * than the maximum supported number of parties
525 +     * @throws IllegalArgumentException if {@code parties < 0}
526       */
527      public int bulkRegister(int parties) {
528          if (parties < 0)
# Line 433 | Line 533 | public class Phaser {
533      }
534  
535      /**
536 <     * Shared code for register, bulkRegister
537 <     */
538 <    private int doRegister(int registrations) {
539 <        int phase;
540 <        for (;;) {
541 <            long s = getReconciledState();
442 <            phase = phaseOf(s);
443 <            int unarrived = unarrivedOf(s) + registrations;
444 <            int parties = partiesOf(s) + registrations;
445 <            if (phase < 0)
446 <                break;
447 <            if (parties > ushortMask || unarrived > ushortMask)
448 <                throw new IllegalStateException(badBounds(parties, unarrived));
449 <            if (phase == phaseOf(root.state) &&
450 <                casState(s, stateFor(phase, parties, unarrived)))
451 <                break;
452 <        }
453 <        return phase;
454 <    }
455 <
456 <    /**
457 <     * Arrives at the barrier, but does not wait for others.  (You can
458 <     * in turn wait for others via {@link #awaitAdvance}).  It is an
459 <     * unenforced usage error for an unregistered party to invoke this
460 <     * method.
536 >     * Arrives at the barrier, without waiting for others to arrive.
537 >     *
538 >     * <p>It is a usage error for an unregistered party to invoke this
539 >     * method.  However, this error may result in an {@code
540 >     * IllegalStateException} only upon some subsequent operation on
541 >     * this Phaser, if ever.
542       *
543       * @return the arrival phase number, or a negative value if terminated
544       * @throws IllegalStateException if not terminated and the number
545       * of unarrived parties would become negative
546       */
547      public int arrive() {
548 <        int phase;
468 <        for (;;) {
469 <            long s = state;
470 <            phase = phaseOf(s);
471 <            if (phase < 0)
472 <                break;
473 <            int parties = partiesOf(s);
474 <            int unarrived = unarrivedOf(s) - 1;
475 <            if (unarrived > 0) {        // Not the last arrival
476 <                if (casState(s, s - 1)) // s-1 adds one arrival
477 <                    break;
478 <            }
479 <            else if (unarrived == 0) {  // the last arrival
480 <                Phaser par = parent;
481 <                if (par == null) {      // directly trip
482 <                    if (casState
483 <                        (s,
484 <                         trippedStateFor(onAdvance(phase, parties) ? -1 :
485 <                                         ((phase + 1) & phaseMask), parties))) {
486 <                        releaseWaiters(phase);
487 <                        break;
488 <                    }
489 <                }
490 <                else {                  // cascade to parent
491 <                    if (casState(s, s - 1)) { // zeroes unarrived
492 <                        par.arrive();
493 <                        reconcileState();
494 <                        break;
495 <                    }
496 <                }
497 <            }
498 <            else if (phase != phaseOf(root.state)) // or if unreconciled
499 <                reconcileState();
500 <            else
501 <                throw new IllegalStateException(badBounds(parties, unarrived));
502 <        }
503 <        return phase;
548 >        return doArrive(ONE_ARRIVAL);
549      }
550  
551      /**
552       * Arrives at the barrier and deregisters from it without waiting
553 <     * for others. Deregistration reduces the number of parties
554 <     * required to trip the barrier in future phases.  If this phaser
555 <     * has a parent, and deregistration causes this phaser to have
556 <     * zero parties, this phaser also arrives at and is deregistered
557 <     * from its parent.  It is an unenforced usage error for an
558 <     * unregistered party to invoke this method.
553 >     * for others to arrive. Deregistration reduces the number of
554 >     * parties required to trip the barrier in future phases.  If this
555 >     * Phaser has a parent, and deregistration causes this Phaser to
556 >     * have zero parties, this Phaser is also deregistered from its
557 >     * parent.
558 >     *
559 >     * <p>It is a usage error for an unregistered party to invoke this
560 >     * method.  However, this error may result in an {@code
561 >     * IllegalStateException} only upon some subsequent operation on
562 >     * this Phaser, if ever.
563       *
564       * @return the arrival phase number, or a negative value if terminated
565       * @throws IllegalStateException if not terminated and the number
566       * of registered or unarrived parties would become negative
567       */
568      public int arriveAndDeregister() {
569 <        // similar code to arrive, but too different to merge
521 <        Phaser par = parent;
522 <        int phase;
523 <        for (;;) {
524 <            long s = state;
525 <            phase = phaseOf(s);
526 <            if (phase < 0)
527 <                break;
528 <            int parties = partiesOf(s) - 1;
529 <            int unarrived = unarrivedOf(s) - 1;
530 <            if (parties >= 0) {
531 <                if (unarrived > 0 || (unarrived == 0 && par != null)) {
532 <                    if (casState
533 <                        (s,
534 <                         stateFor(phase, parties, unarrived))) {
535 <                        if (unarrived == 0) {
536 <                            par.arriveAndDeregister();
537 <                            reconcileState();
538 <                        }
539 <                        break;
540 <                    }
541 <                    continue;
542 <                }
543 <                if (unarrived == 0) {
544 <                    if (casState
545 <                        (s,
546 <                         trippedStateFor(onAdvance(phase, parties) ? -1 :
547 <                                         ((phase + 1) & phaseMask), parties))) {
548 <                        releaseWaiters(phase);
549 <                        break;
550 <                    }
551 <                    continue;
552 <                }
553 <                if (par != null && phase != phaseOf(root.state)) {
554 <                    reconcileState();
555 <                    continue;
556 <                }
557 <            }
558 <            throw new IllegalStateException(badBounds(parties, unarrived));
559 <        }
560 <        return phase;
569 >        return doArrive(ONE_ARRIVAL|ONE_PARTY);
570      }
571  
572      /**
573       * Arrives at the barrier and awaits others. Equivalent in effect
574       * to {@code awaitAdvance(arrive())}.  If you need to await with
575       * interruption or timeout, you can arrange this with an analogous
576 <     * construction using one of the other forms of the awaitAdvance
577 <     * method.  If instead you need to deregister upon arrival use
578 <     * {@code arriveAndDeregister}. It is an unenforced usage error
579 <     * for an unregistered party to invoke this method.
576 >     * construction using one of the other forms of the {@code
577 >     * awaitAdvance} method.  If instead you need to deregister upon
578 >     * arrival, use {@code awaitAdvance(arriveAndDeregister())}.
579 >     *
580 >     * <p>It is a usage error for an unregistered party to invoke this
581 >     * method.  However, this error may result in an {@code
582 >     * IllegalStateException} only upon some subsequent operation on
583 >     * this Phaser, if ever.
584       *
585       * @return the arrival phase number, or a negative number if terminated
586       * @throws IllegalStateException if not terminated and the number
# Line 581 | Line 594 | public class Phaser {
594       * Awaits the phase of the barrier to advance from the given phase
595       * value, returning immediately if the current phase of the
596       * barrier is not equal to the given phase value or this barrier
597 <     * is terminated.  It is an unenforced usage error for an
585 <     * unregistered party to invoke this method.
597 >     * is terminated.
598       *
599       * @param phase an arrival phase number, or negative value if
600       * terminated; this argument is normally the value returned by a
# Line 591 | Line 603 | public class Phaser {
603       * if terminated or argument is negative
604       */
605      public int awaitAdvance(int phase) {
606 +        Phaser r;
607 +        int p = (int)(state >>> PHASE_SHIFT);
608          if (phase < 0)
609              return phase;
610 <        long s = getReconciledState();
611 <        int p = phaseOf(s);
612 <        if (p != phase)
613 <            return p;
600 <        if (unarrivedOf(s) == 0 && parent != null)
601 <            parent.awaitAdvance(phase);
602 <        // Fall here even if parent waited, to reconcile and help release
603 <        return untimedWait(phase);
610 >        if (p == phase &&
611 >            (p = (int)((r = root).state >>> PHASE_SHIFT)) == phase)
612 >            return r.internalAwaitAdvance(phase, null);
613 >        return p;
614      }
615  
616      /**
# Line 608 | Line 618 | public class Phaser {
618       * value, throwing {@code InterruptedException} if interrupted
619       * while waiting, or returning immediately if the current phase of
620       * the barrier is not equal to the given phase value or this
621 <     * barrier is terminated. It is an unenforced usage error for an
612 <     * unregistered party to invoke this method.
621 >     * barrier is terminated.
622       *
623       * @param phase an arrival phase number, or negative value if
624       * terminated; this argument is normally the value returned by a
# Line 620 | Line 629 | public class Phaser {
629       */
630      public int awaitAdvanceInterruptibly(int phase)
631          throws InterruptedException {
632 +        Phaser r;
633 +        int p = (int)(state >>> PHASE_SHIFT);
634          if (phase < 0)
635              return phase;
636 <        long s = getReconciledState();
637 <        int p = phaseOf(s);
638 <        if (p != phase)
639 <            return p;
640 <        if (unarrivedOf(s) == 0 && parent != null)
641 <            parent.awaitAdvanceInterruptibly(phase);
642 <        return interruptibleWait(phase);
636 >        if (p == phase &&
637 >            (p = (int)((r = root).state >>> PHASE_SHIFT)) == phase) {
638 >            QNode node = new QNode(this, phase, true, false, 0L);
639 >            p = r.internalAwaitAdvance(phase, node);
640 >            if (node.wasInterrupted)
641 >                throw new InterruptedException();
642 >        }
643 >        return p;
644      }
645  
646      /**
# Line 637 | Line 649 | public class Phaser {
649       * InterruptedException} if interrupted while waiting, or
650       * returning immediately if the current phase of the barrier is
651       * not equal to the given phase value or this barrier is
652 <     * terminated.  It is an unenforced usage error for an
641 <     * unregistered party to invoke this method.
652 >     * terminated.
653       *
654       * @param phase an arrival phase number, or negative value if
655       * terminated; this argument is normally the value returned by a
# Line 655 | Line 666 | public class Phaser {
666      public int awaitAdvanceInterruptibly(int phase,
667                                           long timeout, TimeUnit unit)
668          throws InterruptedException, TimeoutException {
669 +        long nanos = unit.toNanos(timeout);
670 +        Phaser r;
671 +        int p = (int)(state >>> PHASE_SHIFT);
672          if (phase < 0)
673              return phase;
674 <        long s = getReconciledState();
675 <        int p = phaseOf(s);
676 <        if (p != phase)
677 <            return p;
678 <        if (unarrivedOf(s) == 0 && parent != null)
679 <            parent.awaitAdvanceInterruptibly(phase, timeout, unit);
680 <        return timedWait(phase, unit.toNanos(timeout));
674 >        if (p == phase &&
675 >            (p = (int)((r = root).state >>> PHASE_SHIFT)) == phase) {
676 >            QNode node = new QNode(this, phase, true, true, nanos);
677 >            p = r.internalAwaitAdvance(phase, node);
678 >            if (node.wasInterrupted)
679 >                throw new InterruptedException();
680 >            else if (p == phase)
681 >                throw new TimeoutException();
682 >        }
683 >        return p;
684      }
685  
686      /**
687 <     * Forces this barrier to enter termination state. Counts of
688 <     * arrived and registered parties are unaffected. If this phaser
689 <     * has a parent, it too is terminated. This method may be useful
690 <     * for coordinating recovery after one or more tasks encounter
691 <     * unexpected exceptions.
687 >     * Forces this barrier to enter termination state.  Counts of
688 >     * arrived and registered parties are unaffected.  If this Phaser
689 >     * is a member of a tiered set of Phasers, then all of the Phasers
690 >     * in the set are terminated.  If this Phaser is already
691 >     * terminated, this method has no effect.  This method may be
692 >     * useful for coordinating recovery after one or more tasks
693 >     * encounter unexpected exceptions.
694       */
695      public void forceTermination() {
696 <        for (;;) {
697 <            long s = getReconciledState();
698 <            int phase = phaseOf(s);
699 <            int parties = partiesOf(s);
700 <            int unarrived = unarrivedOf(s);
701 <            if (phase < 0 ||
702 <                casState(s, stateFor(-1, parties, unarrived))) {
684 <                releaseWaiters(0);
696 >        // Only need to change root state
697 >        final Phaser root = this.root;
698 >        long s;
699 >        while ((s = root.state) >= 0) {
700 >            if (UNSAFE.compareAndSwapLong(root, stateOffset,
701 >                                          s, s | TERMINATION_BIT)) {
702 >                releaseWaiters(0); // signal all threads
703                  releaseWaiters(1);
686                if (parent != null)
687                    parent.forceTermination();
704                  return;
705              }
706          }
# Line 698 | Line 714 | public class Phaser {
714       * @return the phase number, or a negative value if terminated
715       */
716      public final int getPhase() {
717 <        return phaseOf(getReconciledState());
717 >        return (int)(root.state >>> PHASE_SHIFT);
718      }
719  
720      /**
# Line 717 | Line 733 | public class Phaser {
733       * @return the number of arrived parties
734       */
735      public int getArrivedParties() {
736 <        return arrivedOf(state);
736 >        long s = state;
737 >        int u = unarrivedOf(s); // only reconcile if possibly needed
738 >        return (u != 0 || parent == null) ?
739 >            partiesOf(s) - u :
740 >            arrivedOf(reconcileState());
741      }
742  
743      /**
# Line 727 | Line 747 | public class Phaser {
747       * @return the number of unarrived parties
748       */
749      public int getUnarrivedParties() {
750 <        return unarrivedOf(state);
750 >        int u = unarrivedOf(state);
751 >        return (u != 0 || parent == null) ? u : unarrivedOf(reconcileState());
752      }
753  
754      /**
755 <     * Returns the parent of this phaser, or {@code null} if none.
755 >     * Returns the parent of this Phaser, or {@code null} if none.
756       *
757 <     * @return the parent of this phaser, or {@code null} if none
757 >     * @return the parent of this Phaser, or {@code null} if none
758       */
759      public Phaser getParent() {
760          return parent;
761      }
762  
763      /**
764 <     * Returns the root ancestor of this phaser, which is the same as
765 <     * this phaser if it has no parent.
764 >     * Returns the root ancestor of this Phaser, which is the same as
765 >     * this Phaser if it has no parent.
766       *
767 <     * @return the root ancestor of this phaser
767 >     * @return the root ancestor of this Phaser
768       */
769      public Phaser getRoot() {
770          return root;
# Line 755 | Line 776 | public class Phaser {
776       * @return {@code true} if this barrier has been terminated
777       */
778      public boolean isTerminated() {
779 <        return getPhase() < 0;
779 >        return root.state < 0L;
780      }
781  
782      /**
# Line 770 | Line 791 | public class Phaser {
791       * propagated to the party attempting to trip the barrier, in
792       * which case no advance occurs.
793       *
794 <     * <p>The arguments to this method provide the state of the phaser
795 <     * prevailing for the current transition. (When called from within
796 <     * an implementation of {@code onAdvance} the values returned by
797 <     * methods such as {@code getPhase} may or may not reliably
798 <     * indicate the state to which this transition applies.)
799 <     *
800 <     * <p>The default version returns {@code true} when the number of
801 <     * registered parties is zero. Normally, overrides that arrange
802 <     * termination for other reasons should also preserve this
803 <     * property.
804 <     *
805 <     * <p>You may override this method to perform an action with side
806 <     * effects visible to participating tasks, but doing so requires
807 <     * care: Method {@code onAdvance} may be invoked more than once
808 <     * per transition.  Further, unless all parties register before
809 <     * any arrive, and all {@link #awaitAdvance} at each phase, then
810 <     * you cannot ensure lack of interference from other parties
811 <     * during the invocation of this method.
794 >     * <p>The arguments to this method provide the state of the Phaser
795 >     * prevailing for the current transition.  The effects of invoking
796 >     * arrival, registration, and waiting methods on this Phaser from
797 >     * within {@code onAdvance} are unspecified and should not be
798 >     * relied on.
799 >     *
800 >     * <p>If this Phaser is a member of a tiered set of Phasers, then
801 >     * {@code onAdvance} is invoked only for its root Phaser on each
802 >     * advance.
803 >     *
804 >     * <p>To support the most common use cases, the default
805 >     * implementation of this method returns {@code true} when the
806 >     * number of registered parties has become zero as the result of a
807 >     * party invoking {@code arriveAndDeregister}.  You can disable
808 >     * this behavior, thus enabling continuation upon future
809 >     * registrations, by overriding this method to always return
810 >     * {@code false}:
811 >     *
812 >     * <pre> {@code
813 >     * Phaser phaser = new Phaser() {
814 >     *   protected boolean onAdvance(int phase, int parties) { return false; }
815 >     * }}</pre>
816       *
817       * @param phase the phase number on entering the barrier
818       * @param registeredParties the current number of registered parties
# Line 798 | Line 823 | public class Phaser {
823      }
824  
825      /**
826 <     * Returns a string identifying this phaser, as well as its
826 >     * Returns a string identifying this Phaser, as well as its
827       * state.  The state, in brackets, includes the String {@code
828       * "phase = "} followed by the phase number, {@code "parties = "}
829       * followed by the number of registered parties, and {@code
# Line 807 | Line 832 | public class Phaser {
832       * @return a string identifying this barrier, as well as its state
833       */
834      public String toString() {
835 <        long s = getReconciledState();
835 >        return stateToString(reconcileState());
836 >    }
837 >
838 >    /**
839 >     * Implementation of toString and string-based error messages
840 >     */
841 >    private String stateToString(long s) {
842          return super.toString() +
843              "[phase = " + phaseOf(s) +
844              " parties = " + partiesOf(s) +
845              " arrived = " + arrivedOf(s) + "]";
846      }
847  
848 <    // methods for waiting
848 >    // Waiting mechanics
849 >
850 >    /**
851 >     * Removes and signals threads from queue for phase.
852 >     */
853 >    private void releaseWaiters(int phase) {
854 >        AtomicReference<QNode> head = queueFor(phase);
855 >        QNode q;
856 >        int p;
857 >        while ((q = head.get()) != null &&
858 >               ((p = q.phase) == phase ||
859 >                (int)(root.state >>> PHASE_SHIFT) != p)) {
860 >            if (head.compareAndSet(q, q.next))
861 >                q.signal();
862 >        }
863 >    }
864 >
865 >    /** The number of CPUs, for spin control */
866 >    private static final int NCPU = Runtime.getRuntime().availableProcessors();
867 >
868 >    /**
869 >     * The number of times to spin before blocking while waiting for
870 >     * advance, per arrival while waiting. On multiprocessors, fully
871 >     * blocking and waking up a large number of threads all at once is
872 >     * usually a very slow process, so we use rechargeable spins to
873 >     * avoid it when threads regularly arrive: When a thread in
874 >     * internalAwaitAdvance notices another arrival before blocking,
875 >     * and there appear to be enough CPUs available, it spins
876 >     * SPINS_PER_ARRIVAL more times before blocking. Plus, even on
877 >     * uniprocessors, there is at least one intervening Thread.yield
878 >     * before blocking. The value trades off good-citizenship vs big
879 >     * unnecessary slowdowns.
880 >     */
881 >    static final int SPINS_PER_ARRIVAL = (NCPU < 2) ? 1 : 1 << 8;
882 >
883 >    /**
884 >     * Possibly blocks and waits for phase to advance unless aborted.
885 >     * Call only from root node.
886 >     *
887 >     * @param phase current phase
888 >     * @param node if non-null, the wait node to track interrupt and timeout;
889 >     * if null, denotes noninterruptible wait
890 >     * @return current phase
891 >     */
892 >    private int internalAwaitAdvance(int phase, QNode node) {
893 >        boolean queued = false;      // true when node is enqueued
894 >        int lastUnarrived = -1;      // to increase spins upon change
895 >        int spins = SPINS_PER_ARRIVAL;
896 >        long s;
897 >        int p;
898 >        while ((p = (int)((s = state) >>> PHASE_SHIFT)) == phase) {
899 >            int unarrived = (int)s & UNARRIVED_MASK;
900 >            if (unarrived != lastUnarrived) {
901 >                if (lastUnarrived == -1) // ensure old queue clean
902 >                    releaseWaiters(phase-1);
903 >                if ((lastUnarrived = unarrived) < NCPU)
904 >                    spins += SPINS_PER_ARRIVAL;
905 >            }
906 >            else if (spins > 0) {
907 >                if (--spins == (SPINS_PER_ARRIVAL >>> 1))
908 >                    Thread.yield();  // yield midway through spin
909 >            }
910 >            else if (node == null)   // must be noninterruptible
911 >                node = new QNode(this, phase, false, false, 0L);
912 >            else if (node.isReleasable()) {
913 >                p = (int)(state >>> PHASE_SHIFT);
914 >                break;               // aborted
915 >            }
916 >            else if (!queued) {      // push onto queue
917 >                AtomicReference<QNode> head = queueFor(phase);
918 >                QNode q = head.get();
919 >                if (q == null || q.phase == phase) {
920 >                    node.next = q;
921 >                    if ((p = (int)(state >>> PHASE_SHIFT)) != phase)
922 >                        break;       // recheck to avoid stale enqueue
923 >                    else
924 >                        queued = head.compareAndSet(q, node);
925 >                }
926 >            }
927 >            else {
928 >                try {
929 >                    ForkJoinPool.managedBlock(node);
930 >                } catch (InterruptedException ie) {
931 >                    node.wasInterrupted = true;
932 >                }
933 >            }
934 >        }
935 >
936 >        if (node != null) {
937 >            if (node.thread != null)
938 >                node.thread = null; // disable unpark() in node.signal
939 >            if (!node.interruptible && node.wasInterrupted)
940 >                Thread.currentThread().interrupt();
941 >        }
942 >        if (p != phase)
943 >            releaseWaiters(phase);
944 >        return p;
945 >    }
946  
947      /**
948       * Wait nodes for Treiber stack representing wait queue
# Line 822 | Line 950 | public class Phaser {
950      static final class QNode implements ForkJoinPool.ManagedBlocker {
951          final Phaser phaser;
952          final int phase;
825        final long startTime;
826        final long nanos;
827        final boolean timed;
953          final boolean interruptible;
954 <        volatile boolean wasInterrupted = false;
954 >        final boolean timed;
955 >        boolean wasInterrupted;
956 >        long nanos;
957 >        long lastTime;
958          volatile Thread thread; // nulled to cancel wait
959          QNode next;
960 +
961          QNode(Phaser phaser, int phase, boolean interruptible,
962 <              boolean timed, long startTime, long nanos) {
962 >              boolean timed, long nanos) {
963              this.phaser = phaser;
964              this.phase = phase;
836            this.timed = timed;
965              this.interruptible = interruptible;
838            this.startTime = startTime;
966              this.nanos = nanos;
967 +            this.timed = timed;
968 +            this.lastTime = timed? System.nanoTime() : 0L;
969              thread = Thread.currentThread();
970          }
971 +
972          public boolean isReleasable() {
973 <            return (thread == null ||
974 <                    phaser.getPhase() != phase ||
975 <                    (interruptible && wasInterrupted) ||
976 <                    (timed && (nanos - (System.nanoTime() - startTime)) <= 0));
973 >            Thread t = thread;
974 >            if (t != null) {
975 >                if (phaser.getPhase() != phase)
976 >                    t = null;
977 >                else {
978 >                    if (Thread.interrupted())
979 >                        wasInterrupted = true;
980 >                    if (interruptible && wasInterrupted)
981 >                        t = null;
982 >                    else if (timed) {
983 >                        if (nanos > 0) {
984 >                            long now = System.nanoTime();
985 >                            nanos -= now - lastTime;
986 >                            lastTime = now;
987 >                        }
988 >                        if (nanos <= 0)
989 >                            t = null;
990 >                    }
991 >                }
992 >                if (t != null)
993 >                    return false;
994 >                thread = null;
995 >            }
996 >            return true;
997          }
998 +
999          public boolean block() {
1000 <            if (Thread.interrupted()) {
1001 <                wasInterrupted = true;
1002 <                if (interruptible)
852 <                    return true;
853 <            }
854 <            if (!timed)
1000 >            if (isReleasable())
1001 >                return true;
1002 >            else if (!timed)
1003                  LockSupport.park(this);
1004 <            else {
1005 <                long waitTime = nanos - (System.nanoTime() - startTime);
858 <                if (waitTime <= 0)
859 <                    return true;
860 <                LockSupport.parkNanos(this, waitTime);
861 <            }
1004 >            else if (nanos > 0)
1005 >                LockSupport.parkNanos(this, nanos);
1006              return isReleasable();
1007          }
1008 +
1009          void signal() {
1010              Thread t = thread;
1011              if (t != null) {
# Line 868 | Line 1013 | public class Phaser {
1013                  LockSupport.unpark(t);
1014              }
1015          }
871        boolean doWait() {
872            if (thread != null) {
873                try {
874                    ForkJoinPool.managedBlock(this, false);
875                } catch (InterruptedException ie) {
876                }
877            }
878            return wasInterrupted;
879        }
880
881    }
882
883    /**
884     * Removes and signals waiting threads from wait queue.
885     */
886    private void releaseWaiters(int phase) {
887        AtomicReference<QNode> head = queueFor(phase);
888        QNode q;
889        while ((q = head.get()) != null) {
890            if (head.compareAndSet(q, q.next))
891                q.signal();
892        }
893    }
894
895    /**
896     * Tries to enqueue given node in the appropriate wait queue.
897     *
898     * @return true if successful
899     */
900    private boolean tryEnqueue(QNode node) {
901        AtomicReference<QNode> head = queueFor(node.phase);
902        return head.compareAndSet(node.next = head.get(), node);
903    }
904
905    /**
906     * Enqueues node and waits unless aborted or signalled.
907     *
908     * @return current phase
909     */
910    private int untimedWait(int phase) {
911        QNode node = null;
912        boolean queued = false;
913        boolean interrupted = false;
914        int p;
915        while ((p = getPhase()) == phase) {
916            if (Thread.interrupted())
917                interrupted = true;
918            else if (node == null)
919                node = new QNode(this, phase, false, false, 0, 0);
920            else if (!queued)
921                queued = tryEnqueue(node);
922            else
923                interrupted = node.doWait();
924        }
925        if (node != null)
926            node.thread = null;
927        releaseWaiters(phase);
928        if (interrupted)
929            Thread.currentThread().interrupt();
930        return p;
931    }
932
933    /**
934     * Interruptible version
935     * @return current phase
936     */
937    private int interruptibleWait(int phase) throws InterruptedException {
938        QNode node = null;
939        boolean queued = false;
940        boolean interrupted = false;
941        int p;
942        while ((p = getPhase()) == phase && !interrupted) {
943            if (Thread.interrupted())
944                interrupted = true;
945            else if (node == null)
946                node = new QNode(this, phase, true, false, 0, 0);
947            else if (!queued)
948                queued = tryEnqueue(node);
949            else
950                interrupted = node.doWait();
951        }
952        if (node != null)
953            node.thread = null;
954        if (p != phase || (p = getPhase()) != phase)
955            releaseWaiters(phase);
956        if (interrupted)
957            throw new InterruptedException();
958        return p;
959    }
960
961    /**
962     * Timeout version.
963     * @return current phase
964     */
965    private int timedWait(int phase, long nanos)
966        throws InterruptedException, TimeoutException {
967        long startTime = System.nanoTime();
968        QNode node = null;
969        boolean queued = false;
970        boolean interrupted = false;
971        int p;
972        while ((p = getPhase()) == phase && !interrupted) {
973            if (Thread.interrupted())
974                interrupted = true;
975            else if (nanos - (System.nanoTime() - startTime) <= 0)
976                break;
977            else if (node == null)
978                node = new QNode(this, phase, true, true, startTime, nanos);
979            else if (!queued)
980                queued = tryEnqueue(node);
981            else
982                interrupted = node.doWait();
983        }
984        if (node != null)
985            node.thread = null;
986        if (p != phase || (p = getPhase()) != phase)
987            releaseWaiters(phase);
988        if (interrupted)
989            throw new InterruptedException();
990        if (p == phase)
991            throw new TimeoutException();
992        return p;
1016      }
1017  
1018      // Unsafe mechanics
# Line 998 | Line 1021 | public class Phaser {
1021      private static final long stateOffset =
1022          objectFieldOffset("state", Phaser.class);
1023  
1001    private final boolean casState(long cmp, long val) {
1002        return UNSAFE.compareAndSwapLong(this, stateOffset, cmp, val);
1003    }
1004
1024      private static long objectFieldOffset(String field, Class<?> klazz) {
1025          try {
1026              return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines