ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/Phaser.java
(Generate patch)

Comparing jsr166/src/jsr166y/Phaser.java (file contents):
Revision 1.50 by dl, Sat Nov 6 16:12:10 2010 UTC vs.
Revision 1.63 by dl, Mon Nov 29 15:47:19 2010 UTC

# Line 6 | Line 6
6  
7   package jsr166y;
8  
9 < import java.util.concurrent.*;
9 > import java.util.concurrent.TimeUnit;
10 > import java.util.concurrent.TimeoutException;
11   import java.util.concurrent.atomic.AtomicReference;
12   import java.util.concurrent.locks.LockSupport;
13  
# Line 33 | Line 34 | import java.util.concurrent.locks.LockSu
34   * Phaser} may be repeatedly awaited.  Method {@link
35   * #arriveAndAwaitAdvance} has effect analogous to {@link
36   * java.util.concurrent.CyclicBarrier#await CyclicBarrier.await}. Each
37 < * generation of a {@code Phaser} has an associated phase number. The
38 < * phase number starts at zero, and advances when all parties arrive
39 < * at the barrier, wrapping around to zero after reaching {@code
37 > * generation of a phaser has an associated phase number. The phase
38 > * number starts at zero, and advances when all parties arrive at the
39 > * phaser, wrapping around to zero after reaching {@code
40   * Integer.MAX_VALUE}. The use of phase numbers enables independent
41 < * control of actions upon arrival at a barrier and upon awaiting
41 > * control of actions upon arrival at a phaser and upon awaiting
42   * others, via two kinds of methods that may be invoked by any
43   * registered party:
44   *
45   * <ul>
46   *
47   *   <li> <b>Arrival.</b> Methods {@link #arrive} and
48 < *       {@link #arriveAndDeregister} record arrival at a
49 < *       barrier. These methods do not block, but return an associated
50 < *       <em>arrival phase number</em>; that is, the phase number of
51 < *       the barrier to which the arrival applied. When the final
52 < *       party for a given phase arrives, an optional barrier action
53 < *       is performed and the phase advances.  Barrier actions,
54 < *       performed by the party triggering a phase advance, are
55 < *       arranged by overriding method {@link #onAdvance(int, int)},
56 < *       which also controls termination. Overriding this method is
57 < *       similar to, but more flexible than, providing a barrier
58 < *       action to a {@code CyclicBarrier}.
48 > *       {@link #arriveAndDeregister} record arrival.  These methods
49 > *       do not block, but return an associated <em>arrival phase
50 > *       number</em>; that is, the phase number of the phaser to which
51 > *       the arrival applied. When the final party for a given phase
52 > *       arrives, an optional action is performed and the phase
53 > *       advances.  These actions are performed by the party
54 > *       triggering a phase advance, and are arranged by overriding
55 > *       method {@link #onAdvance(int, int)}, which also controls
56 > *       termination. Overriding this method is similar to, but more
57 > *       flexible than, providing a barrier action to a {@code
58 > *       CyclicBarrier}.
59   *
60   *   <li> <b>Waiting.</b> Method {@link #awaitAdvance} requires an
61   *       argument indicating an arrival phase number, and returns when
62 < *       the barrier advances to (or is already at) a different phase.
62 > *       the phaser advances to (or is already at) a different phase.
63   *       Unlike similar constructions using {@code CyclicBarrier},
64   *       method {@code awaitAdvance} continues to wait even if the
65   *       waiting thread is interrupted. Interruptible and timeout
66   *       versions are also available, but exceptions encountered while
67   *       tasks wait interruptibly or with timeout do not change the
68 < *       state of the barrier. If necessary, you can perform any
68 > *       state of the phaser. If necessary, you can perform any
69   *       associated recovery within handlers of those exceptions,
70   *       often after invoking {@code forceTermination}.  Phasers may
71   *       also be used by tasks executing in a {@link ForkJoinPool},
# Line 73 | Line 74 | import java.util.concurrent.locks.LockSu
74   *
75   * </ul>
76   *
77 < * <p> <b>Termination.</b> A {@code Phaser} may enter a
78 < * <em>termination</em> state in which all synchronization methods
79 < * immediately return without updating phaser state or waiting for
80 < * advance, and indicating (via a negative phase value) that execution
81 < * is complete.  Termination is triggered when an invocation of {@code
82 < * onAdvance} returns {@code true}.  As illustrated below, when
83 < * phasers control actions with a fixed number of iterations, it is
84 < * often convenient to override this method to cause termination when
85 < * the current phase number reaches a threshold. Method {@link
86 < * #forceTermination} is also available to abruptly release waiting
87 < * threads and allow them to terminate.
88 < *
89 < * <p> <b>Tiering.</b> Phasers may be <em>tiered</em> (i.e., arranged
90 < * in tree structures) to reduce contention. Phasers with large
91 < * numbers of parties that would otherwise experience heavy
77 > * <p> <b>Termination.</b> A phaser may enter a <em>termination</em>
78 > * state in which all synchronization methods immediately return
79 > * without updating phaser state or waiting for advance, and
80 > * indicating (via a negative phase value) that execution is complete.
81 > * Termination is triggered when an invocation of {@code onAdvance}
82 > * returns {@code true}. The default implementation returns {@code
83 > * true} if a deregistration has caused the number of registered
84 > * parties to become zero.  As illustrated below, when phasers control
85 > * actions with a fixed number of iterations, it is often convenient
86 > * to override this method to cause termination when the current phase
87 > * number reaches a threshold. Method {@link #forceTermination} is
88 > * also available to abruptly release waiting threads and allow them
89 > * to terminate.
90 > *
91 > * <p> <b>Tiering.</b> Phasers may be <em>tiered</em> (i.e.,
92 > * constructed in tree structures) to reduce contention. Phasers with
93 > * large numbers of parties that would otherwise experience heavy
94   * synchronization contention costs may instead be set up so that
95   * groups of sub-phasers share a common parent.  This may greatly
96   * increase throughput even though it incurs greater per-operation
# Line 182 | Line 185 | import java.util.concurrent.locks.LockSu
185   *
186   * <p>To create a set of tasks using a tree of phasers,
187   * you could use code of the following form, assuming a
188 < * Task class with a constructor accepting a phaser that
188 > * Task class with a constructor accepting a {@code Phaser} that
189   * it registers with upon construction:
190   *
191   *  <pre> {@code
# Line 202 | Line 205 | import java.util.concurrent.locks.LockSu
205   * build(new Task[n], 0, n, new Phaser());}</pre>
206   *
207   * The best value of {@code TASKS_PER_PHASER} depends mainly on
208 < * expected barrier synchronization rates. A value as low as four may
209 < * be appropriate for extremely small per-barrier task bodies (thus
208 > * expected synchronization rates. A value as low as four may
209 > * be appropriate for extremely small per-phase task bodies (thus
210   * high rates), or up to hundreds for extremely large ones.
211   *
212   * <p><b>Implementation notes</b>: This implementation restricts the
# Line 223 | Line 226 | public class Phaser {
226       */
227  
228      /**
229 <     * Barrier state representation. Conceptually, a barrier contains
227 <     * four values:
229 >     * Primary state representation, holding four fields:
230       *
231 <     * * parties -- the number of parties to wait (16 bits)
232 <     * * unarrived -- the number of parties yet to hit barrier (16 bits)
233 <     * * phase -- the generation of the barrier (31 bits)
234 <     * * terminated -- set if barrier is terminated (1 bit)
231 >     * * unarrived -- the number of parties yet to hit barrier (bits  0-15)
232 >     * * parties -- the number of parties to wait              (bits 16-31)
233 >     * * phase -- the generation of the barrier                (bits 32-62)
234 >     * * terminated -- set if barrier is terminated            (bit  63 / sign)
235       *
236       * However, to efficiently maintain atomicity, these values are
237       * packed into a single (atomic) long. Termination uses the sign
238       * bit of 32 bit representation of phase, so phase is set to -1 on
239       * termination. Good performance relies on keeping state decoding
240       * and encoding simple, and keeping race windows short.
239     *
240     * Note: there are some cheats in arrive() that rely on unarrived
241     * count being lowest 16 bits.
241       */
242      private volatile long state;
243  
244 <    private static final int ushortMask = 0xffff;
245 <    private static final int phaseMask  = 0x7fffffff;
244 >    private static final int  MAX_PARTIES     = 0xffff;
245 >    private static final int  MAX_PHASE       = 0x7fffffff;
246 >    private static final int  PARTIES_SHIFT   = 16;
247 >    private static final int  PHASE_SHIFT     = 32;
248 >    private static final int  UNARRIVED_MASK  = 0xffff;      // to mask ints
249 >    private static final long PARTIES_MASK    = 0xffff0000L; // to mask longs
250 >    private static final long ONE_ARRIVAL     = 1L;
251 >    private static final long ONE_PARTY       = 1L << PARTIES_SHIFT;
252 >    private static final long TERMINATION_BIT = 1L << 63;
253 >
254 >    // The following unpacking methods are usually manually inlined
255  
256      private static int unarrivedOf(long s) {
257 <        return (int) (s & ushortMask);
257 >        return (int)s & UNARRIVED_MASK;
258      }
259  
260      private static int partiesOf(long s) {
261 <        return ((int) s) >>> 16;
261 >        return (int)s >>> PARTIES_SHIFT;
262      }
263  
264      private static int phaseOf(long s) {
265 <        return (int) (s >>> 32);
265 >        return (int) (s >>> PHASE_SHIFT);
266      }
267  
268      private static int arrivedOf(long s) {
269          return partiesOf(s) - unarrivedOf(s);
270      }
271  
264    private static long stateFor(int phase, int parties, int unarrived) {
265        return ((((long) phase) << 32) | (((long) parties) << 16) |
266                (long) unarrived);
267    }
268
269    private static long trippedStateFor(int phase, int parties) {
270        long lp = (long) parties;
271        return (((long) phase) << 32) | (lp << 16) | lp;
272    }
273
274    /**
275     * Returns message string for bad bounds exceptions.
276     */
277    private static String badBounds(int parties, int unarrived) {
278        return ("Attempt to set " + unarrived +
279                " unarrived of " + parties + " parties");
280    }
281
272      /**
273       * The parent of this phaser, or null if none
274       */
# Line 290 | Line 280 | public class Phaser {
280       */
281      private final Phaser root;
282  
293    // Wait queues
294
283      /**
284       * Heads of Treiber stacks for waiting threads. To eliminate
285       * contention when releasing some threads while adding others, we
# Line 306 | Line 294 | public class Phaser {
294      }
295  
296      /**
297 <     * Returns current state, first resolving lagged propagation from
298 <     * root if necessary.
297 >     * Returns message string for bounds exceptions on arrival.
298 >     */
299 >    private String badArrive(long s) {
300 >        return "Attempted arrival of unregistered party for " +
301 >            stateToString(s);
302 >    }
303 >
304 >    /**
305 >     * Returns message string for bounds exceptions on registration.
306 >     */
307 >    private String badRegister(long s) {
308 >        return "Attempt to register more than " +
309 >            MAX_PARTIES + " parties for " + stateToString(s);
310 >    }
311 >
312 >    /**
313 >     * Main implementation for methods arrive and arriveAndDeregister.
314 >     * Manually tuned to speed up and minimize race windows for the
315 >     * common case of just decrementing unarrived field.
316 >     *
317 >     * @param adj - adjustment to apply to state -- either
318 >     * ONE_ARRIVAL (for arrive) or
319 >     * ONE_ARRIVAL|ONE_PARTY (for arriveAndDeregister)
320 >     */
321 >    private int doArrive(long adj) {
322 >        for (;;) {
323 >            long s = state;
324 >            int unarrived = (int)s & UNARRIVED_MASK;
325 >            int phase = (int)(s >>> PHASE_SHIFT);
326 >            if (phase < 0)
327 >                return phase;
328 >            else if (unarrived == 0) {
329 >                if (reconcileState() == s)     // recheck
330 >                    throw new IllegalStateException(badArrive(s));
331 >            }
332 >            else if (UNSAFE.compareAndSwapLong(this, stateOffset, s, s-=adj)) {
333 >                if (unarrived == 1) {
334 >                    long p = s & PARTIES_MASK; // unshifted parties field
335 >                    long lu = p >>> PARTIES_SHIFT;
336 >                    int u = (int)lu;
337 >                    int nextPhase = (phase + 1) & MAX_PHASE;
338 >                    long next = ((long)nextPhase << PHASE_SHIFT) | p | lu;
339 >                    final Phaser parent = this.parent;
340 >                    if (parent == null) {
341 >                        if (onAdvance(phase, u))
342 >                            next |= TERMINATION_BIT;
343 >                        UNSAFE.compareAndSwapLong(this, stateOffset, s, next);
344 >                        releaseWaiters(phase);
345 >                    }
346 >                    else {
347 >                        parent.doArrive((u == 0) ?
348 >                                        ONE_ARRIVAL|ONE_PARTY : ONE_ARRIVAL);
349 >                        if ((int)(parent.state >>> PHASE_SHIFT) != nextPhase)
350 >                            reconcileState();
351 >                        else if (state == s)
352 >                            UNSAFE.compareAndSwapLong(this, stateOffset, s,
353 >                                                      next);
354 >                    }
355 >                }
356 >                return phase;
357 >            }
358 >        }
359 >    }
360 >
361 >    /**
362 >     * Implementation of register, bulkRegister
363 >     *
364 >     * @param registrations number to add to both parties and
365 >     * unarrived fields. Must be greater than zero.
366       */
367 <    private long getReconciledState() {
368 <        return (parent == null) ? state : reconcileState();
367 >    private int doRegister(int registrations) {
368 >        // adjustment to state
369 >        long adj = ((long)registrations << PARTIES_SHIFT) | registrations;
370 >        final Phaser parent = this.parent;
371 >        for (;;) {
372 >            long s = (parent == null) ? state : reconcileState();
373 >            int parties = (int)s >>> PARTIES_SHIFT;
374 >            int phase = (int)(s >>> PHASE_SHIFT);
375 >            if (phase < 0)
376 >                return phase;
377 >            else if (registrations > MAX_PARTIES - parties)
378 >                throw new IllegalStateException(badRegister(s));
379 >            else if ((parties == 0 && parent == null) || // first reg of root
380 >                     ((int)s & UNARRIVED_MASK) != 0) {   // not advancing
381 >                if (UNSAFE.compareAndSwapLong(this, stateOffset, s, s + adj))
382 >                    return phase;
383 >            }
384 >            else if (parties != 0)               // wait for onAdvance
385 >                root.internalAwaitAdvance(phase, null);
386 >            else {                               // 1st registration of child
387 >                synchronized (this) {            // register parent first
388 >                    if (reconcileState() == s) { // recheck under lock
389 >                        parent.doRegister(1);    // OK if throws IllegalState
390 >                        for (;;) {               // simpler form of outer loop
391 >                            s = reconcileState();
392 >                            phase = (int)(s >>> PHASE_SHIFT);
393 >                            if (phase < 0 ||
394 >                                UNSAFE.compareAndSwapLong(this, stateOffset,
395 >                                                          s, s + adj))
396 >                                return phase;
397 >                        }
398 >                    }
399 >                }
400 >            }
401 >        }
402      }
403  
404      /**
405 <     * Recursively resolves state.
405 >     * Recursively resolves lagged phase propagation from root if necessary.
406       */
407      private long reconcileState() {
408          Phaser par = parent;
409          long s = state;
410          if (par != null) {
411 <            int phase, rootPhase;
412 <            while ((phase = phaseOf(s)) >= 0 &&
413 <                   (rootPhase = phaseOf(root.state)) != phase &&
414 <                   (rootPhase < 0 || unarrivedOf(s) == 0)) {
415 <                int parentPhase = phaseOf(par.getReconciledState());
416 <                if (parentPhase != phase) {
417 <                    long next = trippedStateFor(parentPhase, partiesOf(s));
418 <                    if (state == s)
419 <                        UNSAFE.compareAndSwapLong(this, stateOffset, s, next);
411 >            Phaser rt = root;
412 >            int phase, rPhase;
413 >            while ((phase = (int)(s >>> PHASE_SHIFT)) >= 0 &&
414 >                   (rPhase = (int)(rt.state >>> PHASE_SHIFT)) != phase) {
415 >                if (par != rt && (int)(par.state >>> PHASE_SHIFT) != rPhase)
416 >                    par.reconcileState();
417 >                else if (rPhase < 0 || ((int)s & UNARRIVED_MASK) == 0) {
418 >                    long u = s & PARTIES_MASK; // reset unarrived to parties
419 >                    long next = ((((long) rPhase) << PHASE_SHIFT) | u |
420 >                                 (u >>> PARTIES_SHIFT));
421 >                    UNSAFE.compareAndSwapLong(this, stateOffset, s, next);
422                  }
423                  s = state;
424              }
# Line 337 | Line 427 | public class Phaser {
427      }
428  
429      /**
430 <     * Creates a new phaser without any initially registered parties,
431 <     * initial phase number 0, and no parent. Any thread using this
430 >     * Creates a new phaser with no initially registered parties, no
431 >     * parent, and initial phase number 0. Any thread using this
432       * phaser will need to first register for it.
433       */
434      public Phaser() {
# Line 347 | Line 437 | public class Phaser {
437  
438      /**
439       * Creates a new phaser with the given number of registered
440 <     * unarrived parties, initial phase number 0, and no parent.
440 >     * unarrived parties, no parent, and initial phase number 0.
441       *
442 <     * @param parties the number of parties required to trip barrier
442 >     * @param parties the number of parties required to advance to the
443 >     * next phase
444       * @throws IllegalArgumentException if parties less than zero
445       * or greater than the maximum number of parties supported
446       */
# Line 358 | Line 449 | public class Phaser {
449      }
450  
451      /**
452 <     * Creates a new phaser with the given parent, without any
362 <     * initially registered parties. If parent is non-null this phaser
363 <     * is registered with the parent and its initial phase number is
364 <     * the same as that of parent phaser.
452 >     * Equivalent to {@link #Phaser(Phaser, int) Phaser(parent, 0)}.
453       *
454       * @param parent the parent phaser
455       */
# Line 371 | Line 459 | public class Phaser {
459  
460      /**
461       * Creates a new phaser with the given parent and number of
462 <     * registered unarrived parties. If parent is non-null, this phaser
463 <     * is registered with the parent and its initial phase number is
464 <     * the same as that of parent phaser.
462 >     * registered unarrived parties. Registration and deregistration
463 >     * of this child phaser with its parent are managed automatically.
464 >     * If the given parent is non-null, whenever this child phaser has
465 >     * any registered parties (as established in this constructor,
466 >     * {@link #register}, or {@link #bulkRegister}), this child phaser
467 >     * is registered with its parent. Whenever the number of
468 >     * registered parties becomes zero as the result of an invocation
469 >     * of {@link #arriveAndDeregister}, this child phaser is
470 >     * deregistered from its parent.
471       *
472       * @param parent the parent phaser
473 <     * @param parties the number of parties required to trip barrier
473 >     * @param parties the number of parties required to advance to the
474 >     * next phase
475       * @throws IllegalArgumentException if parties less than zero
476       * or greater than the maximum number of parties supported
477       */
478      public Phaser(Phaser parent, int parties) {
479 <        if (parties < 0 || parties > ushortMask)
479 >        if (parties >>> PARTIES_SHIFT != 0)
480              throw new IllegalArgumentException("Illegal number of parties");
481 <        int phase;
481 >        long s = ((long) parties) | (((long) parties) << PARTIES_SHIFT);
482          this.parent = parent;
483          if (parent != null) {
484              Phaser r = parent.root;
485              this.root = r;
486              this.evenQ = r.evenQ;
487              this.oddQ = r.oddQ;
488 <            phase = parent.register();
488 >            if (parties != 0)
489 >                s |= ((long)(parent.doRegister(1))) << PHASE_SHIFT;
490          }
491          else {
492              this.root = this;
493              this.evenQ = new AtomicReference<QNode>();
494              this.oddQ = new AtomicReference<QNode>();
399            phase = 0;
495          }
496 <        this.state = trippedStateFor(phase, parties);
496 >        this.state = s;
497      }
498  
499      /**
500 <     * Adds a new unarrived party to this phaser.
501 <     * If an ongoing invocation of {@link #onAdvance} is in progress,
502 <     * this method may wait until its completion before registering.
500 >     * Adds a new unarrived party to this phaser.  If an ongoing
501 >     * invocation of {@link #onAdvance} is in progress, this method
502 >     * may await its completion before returning.  If this phaser has
503 >     * a parent, and this phaser previously had no registered parties,
504 >     * this phaser is also registered with its parent.
505       *
506       * @return the arrival phase number to which this registration applied
507       * @throws IllegalStateException if attempting to register more
# Line 417 | Line 514 | public class Phaser {
514      /**
515       * Adds the given number of new unarrived parties to this phaser.
516       * If an ongoing invocation of {@link #onAdvance} is in progress,
517 <     * this method may wait until its completion before registering.
517 >     * this method may await its completion before returning.  If this
518 >     * phaser has a parent, and the given number of parities is
519 >     * greater than zero, and this phaser previously had no registered
520 >     * parties, this phaser is also registered with its parent.
521       *
522 <     * @param parties the number of additional parties required to trip barrier
522 >     * @param parties the number of additional parties required to
523 >     * advance to the next phase
524       * @return the arrival phase number to which this registration applied
525       * @throws IllegalStateException if attempting to register more
526       * than the maximum supported number of parties
# Line 434 | Line 535 | public class Phaser {
535      }
536  
537      /**
538 <     * Shared code for register, bulkRegister
539 <     */
540 <    private int doRegister(int registrations) {
541 <        Phaser par = parent;
542 <        long s;
543 <        int phase;
443 <        while ((phase = phaseOf(s = par==null? state:reconcileState())) >= 0) {
444 <            int p = partiesOf(s);
445 <            int u = unarrivedOf(s);
446 <            int unarrived = u + registrations;
447 <            int parties = p + registrations;
448 <            if (u == 0 && p != 0)  // if tripped, wait for advance
449 <                untimedWait(phase);
450 <            else if (parties > ushortMask)
451 <                throw new IllegalStateException(badBounds(parties, unarrived));
452 <            else if (par == null || phaseOf(root.state) == phase) {
453 <                long next = stateFor(phase, parties, unarrived);
454 <                if (UNSAFE.compareAndSwapLong(this, stateOffset, s, next))
455 <                    break;
456 <            }
457 <        }
458 <        return phase;
459 <    }
460 <
461 <    /**
462 <     * Arrives at the barrier, but does not wait for others.  (You can
463 <     * in turn wait for others via {@link #awaitAdvance}).  It is an
464 <     * unenforced usage error for an unregistered party to invoke this
465 <     * method.
538 >     * Arrives at this phaser, without waiting for others to arrive.
539 >     *
540 >     * <p>It is a usage error for an unregistered party to invoke this
541 >     * method.  However, this error may result in an {@code
542 >     * IllegalStateException} only upon some subsequent operation on
543 >     * this phaser, if ever.
544       *
545       * @return the arrival phase number, or a negative value if terminated
546       * @throws IllegalStateException if not terminated and the number
547       * of unarrived parties would become negative
548       */
549      public int arrive() {
550 <        Phaser par = parent;
473 <        long s;
474 <        int phase;
475 <        while ((phase = phaseOf(s = par==null? state:reconcileState())) >= 0) {
476 <            int parties = partiesOf(s);
477 <            int unarrived = unarrivedOf(s) - 1;
478 <            if (unarrived > 0) {                // Not the last arrival
479 <                if (UNSAFE.compareAndSwapLong(this, stateOffset, s, s - 1))
480 <                    break;                      // s-1 adds one arrival
481 <            }
482 <            else if (unarrived < 0)
483 <                throw new IllegalStateException(badBounds(parties, unarrived));
484 <            else if (par == null) {             // directly trip
485 <                long next = trippedStateFor(onAdvance(phase, parties) ? -1 :
486 <                                            ((phase + 1) & phaseMask),
487 <                                            parties);
488 <                if (UNSAFE.compareAndSwapLong(this, stateOffset, s, next)) {
489 <                    releaseWaiters(phase);
490 <                    break;
491 <                }
492 <            }
493 <            else if (phaseOf(root.state) == phase &&
494 <                     UNSAFE.compareAndSwapLong(this, stateOffset, s, s - 1)) {
495 <                par.arrive();                   // cascade to parent
496 <                reconcileState();
497 <                break;
498 <            }
499 <        }
500 <        return phase;
550 >        return doArrive(ONE_ARRIVAL);
551      }
552  
553      /**
554 <     * Arrives at the barrier and deregisters from it without waiting
555 <     * for others. Deregistration reduces the number of parties
556 <     * required to trip the barrier in future phases.  If this phaser
554 >     * Arrives at this phaser and deregisters from it without waiting
555 >     * for others to arrive. Deregistration reduces the number of
556 >     * parties required to advance in future phases.  If this phaser
557       * has a parent, and deregistration causes this phaser to have
558 <     * zero parties, this phaser also arrives at and is deregistered
559 <     * from its parent.  It is an unenforced usage error for an
560 <     * unregistered party to invoke this method.
558 >     * zero parties, this phaser is also deregistered from its parent.
559 >     *
560 >     * <p>It is a usage error for an unregistered party to invoke this
561 >     * method.  However, this error may result in an {@code
562 >     * IllegalStateException} only upon some subsequent operation on
563 >     * this phaser, if ever.
564       *
565       * @return the arrival phase number, or a negative value if terminated
566       * @throws IllegalStateException if not terminated and the number
567       * of registered or unarrived parties would become negative
568       */
569      public int arriveAndDeregister() {
570 <        // similar to arrive, but too different to merge
518 <        Phaser par = parent;
519 <        long s;
520 <        int phase;
521 <        while ((phase = phaseOf(s = par==null? state:reconcileState())) >= 0) {
522 <            int parties = partiesOf(s) - 1;
523 <            int unarrived = unarrivedOf(s) - 1;
524 <            if (unarrived > 0) {
525 <                long next = stateFor(phase, parties, unarrived);
526 <                if (UNSAFE.compareAndSwapLong(this, stateOffset, s, next))
527 <                    break;
528 <            }
529 <            else if (unarrived < 0)
530 <                throw new IllegalStateException(badBounds(parties, unarrived));
531 <            else if (par == null) {
532 <                long next = trippedStateFor(onAdvance(phase, parties)? -1:
533 <                                            (phase + 1) & phaseMask,
534 <                                            parties);
535 <                if (UNSAFE.compareAndSwapLong(this, stateOffset, s, next)) {
536 <                    releaseWaiters(phase);
537 <                    break;
538 <                }
539 <            }
540 <            else if (phaseOf(root.state) == phase) {
541 <                long next = stateFor(phase, parties, 0);
542 <                if (UNSAFE.compareAndSwapLong(this, stateOffset, s, next)) {
543 <                    if (parties == 0)
544 <                        par.arriveAndDeregister();
545 <                    else
546 <                        par.arrive();
547 <                    reconcileState();
548 <                    break;
549 <                }
550 <            }
551 <        }
552 <        return phase;
570 >        return doArrive(ONE_ARRIVAL|ONE_PARTY);
571      }
572  
573      /**
574 <     * Arrives at the barrier and awaits others. Equivalent in effect
574 >     * Arrives at this phaser and awaits others. Equivalent in effect
575       * to {@code awaitAdvance(arrive())}.  If you need to await with
576       * interruption or timeout, you can arrange this with an analogous
577       * construction using one of the other forms of the {@code
578       * awaitAdvance} method.  If instead you need to deregister upon
579 <     * arrival, use {@link #arriveAndDeregister}. It is an unenforced
580 <     * usage error for an unregistered party to invoke this method.
579 >     * arrival, use {@code awaitAdvance(arriveAndDeregister())}.
580 >     *
581 >     * <p>It is a usage error for an unregistered party to invoke this
582 >     * method.  However, this error may result in an {@code
583 >     * IllegalStateException} only upon some subsequent operation on
584 >     * this phaser, if ever.
585       *
586       * @return the arrival phase number, or a negative number if terminated
587       * @throws IllegalStateException if not terminated and the number
588       * of unarrived parties would become negative
589       */
590      public int arriveAndAwaitAdvance() {
591 <        return awaitAdvance(arrive());
591 >        return awaitAdvance(doArrive(ONE_ARRIVAL));
592      }
593  
594      /**
595 <     * Awaits the phase of the barrier to advance from the given phase
596 <     * value, returning immediately if the current phase of the
597 <     * barrier is not equal to the given phase value or this barrier
576 <     * is terminated.
595 >     * Awaits the phase of this phaser to advance from the given phase
596 >     * value, returning immediately if the current phase is not equal
597 >     * to the given phase value or this phaser is terminated.
598       *
599       * @param phase an arrival phase number, or negative value if
600       * terminated; this argument is normally the value returned by a
601 <     * previous call to {@code arrive} or its variants
601 >     * previous call to {@code arrive} or {@code arriveAndDeregister}.
602       * @return the next arrival phase number, or a negative value
603       * if terminated or argument is negative
604       */
605      public int awaitAdvance(int phase) {
606 +        Phaser rt;
607 +        int p = (int)(state >>> PHASE_SHIFT);
608          if (phase < 0)
609              return phase;
610 <        int p = getPhase();
611 <        if (p != phase)
612 <            return p;
613 <        return untimedWait(phase);
610 >        if (p == phase &&
611 >            (p = (int)((rt = root).state >>> PHASE_SHIFT)) == phase)
612 >            return rt.internalAwaitAdvance(phase, null);
613 >        return p;
614      }
615  
616      /**
617 <     * Awaits the phase of the barrier to advance from the given phase
617 >     * Awaits the phase of this phaser to advance from the given phase
618       * value, throwing {@code InterruptedException} if interrupted
619 <     * while waiting, or returning immediately if the current phase of
620 <     * the barrier is not equal to the given phase value or this
621 <     * barrier is terminated.
619 >     * while waiting, or returning immediately if the current phase is
620 >     * not equal to the given phase value or this phaser is
621 >     * terminated.
622       *
623       * @param phase an arrival phase number, or negative value if
624       * terminated; this argument is normally the value returned by a
625 <     * previous call to {@code arrive} or its variants
625 >     * previous call to {@code arrive} or {@code arriveAndDeregister}.
626       * @return the next arrival phase number, or a negative value
627       * if terminated or argument is negative
628       * @throws InterruptedException if thread interrupted while waiting
629       */
630      public int awaitAdvanceInterruptibly(int phase)
631          throws InterruptedException {
632 +        Phaser rt;
633 +        int p = (int)(state >>> PHASE_SHIFT);
634          if (phase < 0)
635              return phase;
636 <        int p = getPhase();
637 <        if (p != phase)
638 <            return p;
639 <        return interruptibleWait(phase);
636 >        if (p == phase &&
637 >            (p = (int)((rt = root).state >>> PHASE_SHIFT)) == phase) {
638 >            QNode node = new QNode(this, phase, true, false, 0L);
639 >            p = rt.internalAwaitAdvance(phase, node);
640 >            if (node.wasInterrupted)
641 >                throw new InterruptedException();
642 >        }
643 >        return p;
644      }
645  
646      /**
647 <     * Awaits the phase of the barrier to advance from the given phase
647 >     * Awaits the phase of this phaser to advance from the given phase
648       * value or the given timeout to elapse, throwing {@code
649       * InterruptedException} if interrupted while waiting, or
650 <     * returning immediately if the current phase of the barrier is
651 <     * not equal to the given phase value or this barrier is
623 <     * terminated.
650 >     * returning immediately if the current phase is not equal to the
651 >     * given phase value or this phaser is terminated.
652       *
653       * @param phase an arrival phase number, or negative value if
654       * terminated; this argument is normally the value returned by a
655 <     * previous call to {@code arrive} or its variants
655 >     * previous call to {@code arrive} or {@code arriveAndDeregister}.
656       * @param timeout how long to wait before giving up, in units of
657       *        {@code unit}
658       * @param unit a {@code TimeUnit} determining how to interpret the
# Line 638 | Line 666 | public class Phaser {
666                                           long timeout, TimeUnit unit)
667          throws InterruptedException, TimeoutException {
668          long nanos = unit.toNanos(timeout);
669 +        Phaser rt;
670 +        int p = (int)(state >>> PHASE_SHIFT);
671          if (phase < 0)
672              return phase;
673 <        int p = getPhase();
674 <        if (p != phase)
675 <            return p;
676 <        return timedWait(phase, nanos);
673 >        if (p == phase &&
674 >            (p = (int)((rt = root).state >>> PHASE_SHIFT)) == phase) {
675 >            QNode node = new QNode(this, phase, true, true, nanos);
676 >            p = rt.internalAwaitAdvance(phase, node);
677 >            if (node.wasInterrupted)
678 >                throw new InterruptedException();
679 >            else if (p == phase)
680 >                throw new TimeoutException();
681 >        }
682 >        return p;
683      }
684  
685      /**
686 <     * Forces this barrier to enter termination state. Counts of
687 <     * arrived and registered parties are unaffected. If this phaser
688 <     * has a parent, it too is terminated. This method may be useful
689 <     * for coordinating recovery after one or more tasks encounter
690 <     * unexpected exceptions.
686 >     * Forces this phaser to enter termination state.  Counts of
687 >     * arrived and registered parties are unaffected.  If this phaser
688 >     * is a member of a tiered set of phasers, then all of the phasers
689 >     * in the set are terminated.  If this phaser is already
690 >     * terminated, this method has no effect.  This method may be
691 >     * useful for coordinating recovery after one or more tasks
692 >     * encounter unexpected exceptions.
693       */
694      public void forceTermination() {
695 <        Phaser r = root;    // force at root then reconcile
695 >        // Only need to change root state
696 >        final Phaser root = this.root;
697          long s;
698 <        while (phaseOf(s = r.state) >= 0)
699 <            UNSAFE.compareAndSwapLong(r, stateOffset, s,
700 <                                      stateFor(-1, partiesOf(s),
701 <                                               unarrivedOf(s)));
702 <        reconcileState();
703 <        releaseWaiters(0);  // ensure wakeups on both queues
704 <        releaseWaiters(1);
698 >        while ((s = root.state) >= 0) {
699 >            if (UNSAFE.compareAndSwapLong(root, stateOffset,
700 >                                          s, s | TERMINATION_BIT)) {
701 >                releaseWaiters(0); // signal all threads
702 >                releaseWaiters(1);
703 >                return;
704 >            }
705 >        }
706      }
707  
708      /**
709       * Returns the current phase number. The maximum phase number is
710       * {@code Integer.MAX_VALUE}, after which it restarts at
711 <     * zero. Upon termination, the phase number is negative.
711 >     * zero. Upon termination, the phase number is negative,
712 >     * in which case the prevailing phase prior to termination
713 >     * may be obtained via {@code getPhase() + Integer.MIN_VALUE}.
714       *
715       * @return the phase number, or a negative value if terminated
716       */
717      public final int getPhase() {
718 <        return phaseOf(getReconciledState());
718 >        return (int)(root.state >>> PHASE_SHIFT);
719      }
720  
721      /**
722 <     * Returns the number of parties registered at this barrier.
722 >     * Returns the number of parties registered at this phaser.
723       *
724       * @return the number of parties
725       */
726      public int getRegisteredParties() {
727 <        return partiesOf(getReconciledState());
727 >        return partiesOf(state);
728      }
729  
730      /**
731       * Returns the number of registered parties that have arrived at
732 <     * the current phase of this barrier.
732 >     * the current phase of this phaser.
733       *
734       * @return the number of arrived parties
735       */
736      public int getArrivedParties() {
737 <        return arrivedOf(getReconciledState());
737 >        long s = state;
738 >        int u = unarrivedOf(s); // only reconcile if possibly needed
739 >        return (u != 0 || parent == null) ?
740 >            partiesOf(s) - u :
741 >            arrivedOf(reconcileState());
742      }
743  
744      /**
745       * Returns the number of registered parties that have not yet
746 <     * arrived at the current phase of this barrier.
746 >     * arrived at the current phase of this phaser.
747       *
748       * @return the number of unarrived parties
749       */
750      public int getUnarrivedParties() {
751 <        return unarrivedOf(getReconciledState());
751 >        int u = unarrivedOf(state);
752 >        return (u != 0 || parent == null) ? u : unarrivedOf(reconcileState());
753      }
754  
755      /**
# Line 725 | Line 772 | public class Phaser {
772      }
773  
774      /**
775 <     * Returns {@code true} if this barrier has been terminated.
775 >     * Returns {@code true} if this phaser has been terminated.
776       *
777 <     * @return {@code true} if this barrier has been terminated
777 >     * @return {@code true} if this phaser has been terminated
778       */
779      public boolean isTerminated() {
780 <        return getPhase() < 0;
780 >        return root.state < 0L;
781      }
782  
783      /**
784       * Overridable method to perform an action upon impending phase
785       * advance, and to control termination. This method is invoked
786 <     * upon arrival of the party tripping the barrier (when all other
786 >     * upon arrival of the party advancing this phaser (when all other
787       * waiting parties are dormant).  If this method returns {@code
788 <     * true}, then, rather than advance the phase number, this barrier
788 >     * true}, then, rather than advance the phase number, this phaser
789       * will be set to a final termination state, and subsequent calls
790       * to {@link #isTerminated} will return true. Any (unchecked)
791       * Exception or Error thrown by an invocation of this method is
792 <     * propagated to the party attempting to trip the barrier, in
792 >     * propagated to the party attempting to advance this phaser, in
793       * which case no advance occurs.
794       *
795       * <p>The arguments to this method provide the state of the phaser
796 <     * prevailing for the current transition.  The results and effects
797 <     * of invoking phase-related methods (including {@code getPhase}
751 <     * as well as arrival, registration, and waiting methods) from
796 >     * prevailing for the current transition.  The effects of invoking
797 >     * arrival, registration, and waiting methods on this phaser from
798       * within {@code onAdvance} are unspecified and should not be
799 <     * relied on. Similarly, while it is possible to override this
754 <     * method to produce side-effects visible to participating tasks,
755 <     * it is in general safe to do so only in designs in which all
756 <     * parties register before any arrive, and all {@link
757 <     * #awaitAdvance} at each phase.
758 <     *
759 <     * <p>The default version returns {@code true} when the number of
760 <     * registered parties is zero. Normally, overrides that arrange
761 <     * termination for other reasons should also preserve this
762 <     * property.
799 >     * relied on.
800       *
801 <     * @param phase the phase number on entering the barrier
801 >     * <p>If this phaser is a member of a tiered set of phasers, then
802 >     * {@code onAdvance} is invoked only for its root phaser on each
803 >     * advance.
804 >     *
805 >     * <p>To support the most common use cases, the default
806 >     * implementation of this method returns {@code true} when the
807 >     * number of registered parties has become zero as the result of a
808 >     * party invoking {@code arriveAndDeregister}.  You can disable
809 >     * this behavior, thus enabling continuation upon future
810 >     * registrations, by overriding this method to always return
811 >     * {@code false}:
812 >     *
813 >     * <pre> {@code
814 >     * Phaser phaser = new Phaser() {
815 >     *   protected boolean onAdvance(int phase, int parties) { return false; }
816 >     * }}</pre>
817 >     *
818 >     * @param phase the current phase number on entry to this method,
819 >     * before this phaser is advanced
820       * @param registeredParties the current number of registered parties
821 <     * @return {@code true} if this barrier should terminate
821 >     * @return {@code true} if this phaser should terminate
822       */
823      protected boolean onAdvance(int phase, int registeredParties) {
824 <        return registeredParties <= 0;
824 >        return registeredParties == 0;
825      }
826  
827      /**
# Line 776 | Line 831 | public class Phaser {
831       * followed by the number of registered parties, and {@code
832       * "arrived = "} followed by the number of arrived parties.
833       *
834 <     * @return a string identifying this barrier, as well as its state
834 >     * @return a string identifying this phaser, as well as its state
835       */
836      public String toString() {
837 <        long s = getReconciledState();
837 >        return stateToString(reconcileState());
838 >    }
839 >
840 >    /**
841 >     * Implementation of toString and string-based error messages
842 >     */
843 >    private String stateToString(long s) {
844          return super.toString() +
845              "[phase = " + phaseOf(s) +
846              " parties = " + partiesOf(s) +
847              " arrived = " + arrivedOf(s) + "]";
848      }
849  
850 <    // methods for waiting
850 >    // Waiting mechanics
851 >
852 >    /**
853 >     * Removes and signals threads from queue for phase.
854 >     */
855 >    private void releaseWaiters(int phase) {
856 >        QNode q;   // first element of queue
857 >        int p;     // its phase
858 >        Thread t;  // its thread
859 >        AtomicReference<QNode> head = (phase & 1) == 0 ? evenQ : oddQ;
860 >        while ((q = head.get()) != null &&
861 >               ((p = q.phase) == phase ||
862 >                (int)(root.state >>> PHASE_SHIFT) != p)) {
863 >            if (head.compareAndSet(q, q.next) &&
864 >                (t = q.thread) != null) {
865 >                q.thread = null;
866 >                LockSupport.unpark(t);
867 >            }
868 >        }
869 >    }
870 >
871 >    /** The number of CPUs, for spin control */
872 >    private static final int NCPU = Runtime.getRuntime().availableProcessors();
873 >
874 >    /**
875 >     * The number of times to spin before blocking while waiting for
876 >     * advance, per arrival while waiting. On multiprocessors, fully
877 >     * blocking and waking up a large number of threads all at once is
878 >     * usually a very slow process, so we use rechargeable spins to
879 >     * avoid it when threads regularly arrive: When a thread in
880 >     * internalAwaitAdvance notices another arrival before blocking,
881 >     * and there appear to be enough CPUs available, it spins
882 >     * SPINS_PER_ARRIVAL more times before blocking. The value trades
883 >     * off good-citizenship vs big unnecessary slowdowns.
884 >     */
885 >    static final int SPINS_PER_ARRIVAL = (NCPU < 2) ? 1 : 1 << 8;
886 >
887 >    /**
888 >     * Possibly blocks and waits for phase to advance unless aborted.
889 >     * Call only from root node.
890 >     *
891 >     * @param phase current phase
892 >     * @param node if non-null, the wait node to track interrupt and timeout;
893 >     * if null, denotes noninterruptible wait
894 >     * @return current phase
895 >     */
896 >    private int internalAwaitAdvance(int phase, QNode node) {
897 >        releaseWaiters(phase-1);          // ensure old queue clean
898 >        boolean queued = false;           // true when node is enqueued
899 >        int lastUnarrived = 0;            // to increase spins upon change
900 >        int spins = SPINS_PER_ARRIVAL;
901 >        long s;
902 >        int p;
903 >        while ((p = (int)((s = state) >>> PHASE_SHIFT)) == phase) {
904 >            if (node == null) {           // spinning in noninterruptible mode
905 >                int unarrived = (int)s & UNARRIVED_MASK;
906 >                if (unarrived != lastUnarrived &&
907 >                    (lastUnarrived = unarrived) < NCPU)
908 >                    spins += SPINS_PER_ARRIVAL;
909 >                boolean interrupted = Thread.interrupted();
910 >                if (interrupted || --spins < 0) { // need node to record intr
911 >                    node = new QNode(this, phase, false, false, 0L);
912 >                    node.wasInterrupted = interrupted;
913 >                }
914 >            }
915 >            else if (node.isReleasable()) // done or aborted
916 >                break;
917 >            else if (!queued) {           // push onto queue
918 >                AtomicReference<QNode> head = (phase & 1) == 0 ? evenQ : oddQ;
919 >                QNode q = node.next = head.get();
920 >                if ((q == null || q.phase == phase) &&
921 >                    (int)(state >>> PHASE_SHIFT) == phase) // avoid stale enq
922 >                    queued = head.compareAndSet(q, node);
923 >            }
924 >            else {
925 >                try {
926 >                    ForkJoinPool.managedBlock(node);
927 >                } catch (InterruptedException ie) {
928 >                    node.wasInterrupted = true;
929 >                }
930 >            }
931 >        }
932 >
933 >        if (node != null) {
934 >            if (node.thread != null)
935 >                node.thread = null;       // avoid need for unpark()
936 >            if (node.wasInterrupted && !node.interruptible)
937 >                Thread.currentThread().interrupt();
938 >            if ((p = (int)(state >>> PHASE_SHIFT)) == phase)
939 >                return p;                 // recheck abort
940 >        }
941 >        releaseWaiters(phase);
942 >        return p;
943 >    }
944  
945      /**
946       * Wait nodes for Treiber stack representing wait queue
# Line 794 | Line 948 | public class Phaser {
948      static final class QNode implements ForkJoinPool.ManagedBlocker {
949          final Phaser phaser;
950          final int phase;
797        final long startTime;
798        final long nanos;
799        final boolean timed;
951          final boolean interruptible;
952 <        volatile boolean wasInterrupted = false;
952 >        final boolean timed;
953 >        boolean wasInterrupted;
954 >        long nanos;
955 >        long lastTime;
956          volatile Thread thread; // nulled to cancel wait
957          QNode next;
958  
959          QNode(Phaser phaser, int phase, boolean interruptible,
960 <              boolean timed, long startTime, long nanos) {
960 >              boolean timed, long nanos) {
961              this.phaser = phaser;
962              this.phase = phase;
809            this.timed = timed;
963              this.interruptible = interruptible;
811            this.startTime = startTime;
964              this.nanos = nanos;
965 +            this.timed = timed;
966 +            this.lastTime = timed? System.nanoTime() : 0L;
967              thread = Thread.currentThread();
968          }
969  
970          public boolean isReleasable() {
971 <            return (thread == null ||
972 <                    phaser.getPhase() != phase ||
973 <                    (interruptible && wasInterrupted) ||
974 <                    (timed && (nanos - (System.nanoTime() - startTime)) <= 0));
975 <        }
822 <
823 <        public boolean block() {
824 <            if (Thread.interrupted()) {
825 <                wasInterrupted = true;
826 <                if (interruptible)
827 <                    return true;
828 <            }
829 <            if (!timed)
830 <                LockSupport.park(this);
831 <            else {
832 <                long waitTime = nanos - (System.nanoTime() - startTime);
833 <                if (waitTime <= 0)
834 <                    return true;
835 <                LockSupport.parkNanos(this, waitTime);
971 >            if (thread == null)
972 >                return true;
973 >            if (phaser.getPhase() != phase) {
974 >                thread = null;
975 >                return true;
976              }
977 <            return isReleasable();
978 <        }
979 <
840 <        void signal() {
841 <            Thread t = thread;
842 <            if (t != null) {
977 >            if (Thread.interrupted())
978 >                wasInterrupted = true;
979 >            if (wasInterrupted && interruptible) {
980                  thread = null;
981 <                LockSupport.unpark(t);
981 >                return true;
982              }
983 <        }
984 <
985 <        boolean doWait() {
986 <            if (thread != null) {
987 <                try {
988 <                    ForkJoinPool.managedBlock(this);
989 <                } catch (InterruptedException ie) {
990 <                    wasInterrupted = true; // can't currently happen
983 >            if (timed) {
984 >                if (nanos > 0L) {
985 >                    long now = System.nanoTime();
986 >                    nanos -= now - lastTime;
987 >                    lastTime = now;
988 >                }
989 >                if (nanos <= 0L) {
990 >                    thread = null;
991 >                    return true;
992                  }
993              }
994 <            return wasInterrupted;
994 >            return false;
995          }
858    }
996  
997 <    /**
998 <     * Removes and signals waiting threads from wait queue.
999 <     */
1000 <    private void releaseWaiters(int phase) {
1001 <        AtomicReference<QNode> head = queueFor(phase);
1002 <        QNode q;
1003 <        while ((q = head.get()) != null) {
1004 <            if (head.compareAndSet(q, q.next))
868 <                q.signal();
869 <        }
870 <    }
871 <
872 <    /**
873 <     * Tries to enqueue given node in the appropriate wait queue.
874 <     *
875 <     * @return true if successful
876 <     */
877 <    private boolean tryEnqueue(QNode node) {
878 <        AtomicReference<QNode> head = queueFor(node.phase);
879 <        return head.compareAndSet(node.next = head.get(), node);
880 <    }
881 <
882 <    /**
883 <     * The number of times to spin before blocking waiting for advance.
884 <     */
885 <    static final int MAX_SPINS =
886 <        Runtime.getRuntime().availableProcessors() == 1 ? 0 : 1 << 8;
887 <
888 <    /**
889 <     * Enqueues node and waits unless aborted or signalled.
890 <     *
891 <     * @return current phase
892 <     */
893 <    private int untimedWait(int phase) {
894 <        QNode node = null;
895 <        boolean queued = false;
896 <        boolean interrupted = false;
897 <        int spins = MAX_SPINS;
898 <        int p;
899 <        while ((p = getPhase()) == phase) {
900 <            if (Thread.interrupted())
901 <                interrupted = true;
902 <            else if (spins > 0) {
903 <                if (--spins == 0)
904 <                    Thread.yield();
905 <            }
906 <            else if (node == null)
907 <                node = new QNode(this, phase, false, false, 0, 0);
908 <            else if (!queued)
909 <                queued = tryEnqueue(node);
910 <            else if (node.doWait())
911 <                interrupted = true;
997 >        public boolean block() {
998 >            if (isReleasable())
999 >                return true;
1000 >            else if (!timed)
1001 >                LockSupport.park(this);
1002 >            else if (nanos > 0)
1003 >                LockSupport.parkNanos(this, nanos);
1004 >            return isReleasable();
1005          }
913        if (node != null)
914            node.thread = null;
915        releaseWaiters(phase);
916        if (interrupted)
917            Thread.currentThread().interrupt();
918        return p;
919    }
920
921    /**
922     * Interruptible version
923     * @return current phase
924     */
925    private int interruptibleWait(int phase) throws InterruptedException {
926        QNode node = null;
927        boolean queued = false;
928        boolean interrupted = false;
929        int spins = MAX_SPINS;
930        int p;
931        while ((p = getPhase()) == phase && !interrupted) {
932            if (Thread.interrupted())
933                interrupted = true;
934            else if (spins > 0) {
935                if (--spins == 0)
936                    Thread.yield();
937            }
938            else if (node == null)
939                node = new QNode(this, phase, true, false, 0, 0);
940            else if (!queued)
941                queued = tryEnqueue(node);
942            else if (node.doWait())
943                interrupted = true;
944        }
945        if (node != null)
946            node.thread = null;
947        if (p != phase || (p = getPhase()) != phase)
948            releaseWaiters(phase);
949        if (interrupted)
950            throw new InterruptedException();
951        return p;
952    }
953
954    /**
955     * Timeout version.
956     * @return current phase
957     */
958    private int timedWait(int phase, long nanos)
959        throws InterruptedException, TimeoutException {
960        long startTime = System.nanoTime();
961        QNode node = null;
962        boolean queued = false;
963        boolean interrupted = false;
964        int spins = MAX_SPINS;
965        int p;
966        while ((p = getPhase()) == phase && !interrupted) {
967            if (Thread.interrupted())
968                interrupted = true;
969            else if (nanos - (System.nanoTime() - startTime) <= 0)
970                break;
971            else if (spins > 0) {
972                if (--spins == 0)
973                    Thread.yield();
974            }
975            else if (node == null)
976                node = new QNode(this, phase, true, true, startTime, nanos);
977            else if (!queued)
978                queued = tryEnqueue(node);
979            else if (node.doWait())
980                interrupted = true;
981        }
982        if (node != null)
983            node.thread = null;
984        if (p != phase || (p = getPhase()) != phase)
985            releaseWaiters(phase);
986        if (interrupted)
987            throw new InterruptedException();
988        if (p == phase)
989            throw new TimeoutException();
990        return p;
1006      }
1007  
1008      // Unsafe mechanics

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines