ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/Phaser.java
(Generate patch)

Comparing jsr166/src/jsr166y/Phaser.java (file contents):
Revision 1.64 by jsr166, Mon Nov 29 20:58:06 2010 UTC vs.
Revision 1.80 by jsr166, Sun Sep 13 16:28:14 2015 UTC

# Line 1 | Line 1
1   /*
2   * Written by Doug Lea with assistance from members of JCP JSR-166
3   * Expert Group and released to the public domain, as explained at
4 < * http://creativecommons.org/licenses/publicdomain
4 > * http://creativecommons.org/publicdomain/zero/1.0/
5   */
6  
7   package jsr166y;
# Line 17 | Line 17 | import java.util.concurrent.locks.LockSu
17   * {@link java.util.concurrent.CountDownLatch CountDownLatch}
18   * but supporting more flexible usage.
19   *
20 < * <p> <b>Registration.</b> Unlike the case for other barriers, the
20 > * <p><b>Registration.</b> Unlike the case for other barriers, the
21   * number of parties <em>registered</em> to synchronize on a phaser
22   * may vary over time.  Tasks may be registered at any time (using
23   * methods {@link #register}, {@link #bulkRegister}, or forms of
# Line 30 | Line 30 | import java.util.concurrent.locks.LockSu
30   * (However, you can introduce such bookkeeping by subclassing this
31   * class.)
32   *
33 < * <p> <b>Synchronization.</b> Like a {@code CyclicBarrier}, a {@code
33 > * <p><b>Synchronization.</b> Like a {@code CyclicBarrier}, a {@code
34   * Phaser} may be repeatedly awaited.  Method {@link
35   * #arriveAndAwaitAdvance} has effect analogous to {@link
36   * java.util.concurrent.CyclicBarrier#await CyclicBarrier.await}. Each
# Line 44 | Line 44 | import java.util.concurrent.locks.LockSu
44   *
45   * <ul>
46   *
47 < *   <li> <b>Arrival.</b> Methods {@link #arrive} and
47 > *   <li><b>Arrival.</b> Methods {@link #arrive} and
48   *       {@link #arriveAndDeregister} record arrival.  These methods
49   *       do not block, but return an associated <em>arrival phase
50   *       number</em>; that is, the phase number of the phaser to which
# Line 57 | Line 57 | import java.util.concurrent.locks.LockSu
57   *       flexible than, providing a barrier action to a {@code
58   *       CyclicBarrier}.
59   *
60 < *   <li> <b>Waiting.</b> Method {@link #awaitAdvance} requires an
60 > *   <li><b>Waiting.</b> Method {@link #awaitAdvance} requires an
61   *       argument indicating an arrival phase number, and returns when
62   *       the phaser advances to (or is already at) a different phase.
63   *       Unlike similar constructions using {@code CyclicBarrier},
# Line 74 | Line 74 | import java.util.concurrent.locks.LockSu
74   *
75   * </ul>
76   *
77 < * <p> <b>Termination.</b> A phaser may enter a <em>termination</em>
78 < * state in which all synchronization methods immediately return
79 < * without updating phaser state or waiting for advance, and
80 < * indicating (via a negative phase value) that execution is complete.
77 > * <p><b>Termination.</b> A phaser may enter a <em>termination</em>
78 > * state, that may be checked using method {@link #isTerminated}. Upon
79 > * termination, all synchronization methods immediately return without
80 > * waiting for advance, as indicated by a negative return value.
81 > * Similarly, attempts to register upon termination have no effect.
82   * Termination is triggered when an invocation of {@code onAdvance}
83   * returns {@code true}. The default implementation returns {@code
84   * true} if a deregistration has caused the number of registered
# Line 88 | Line 89 | import java.util.concurrent.locks.LockSu
89   * also available to abruptly release waiting threads and allow them
90   * to terminate.
91   *
92 < * <p> <b>Tiering.</b> Phasers may be <em>tiered</em> (i.e.,
92 > * <p><b>Tiering.</b> Phasers may be <em>tiered</em> (i.e.,
93   * constructed in tree structures) to reduce contention. Phasers with
94   * large numbers of parties that would otherwise experience heavy
95   * synchronization contention costs may instead be set up so that
# Line 96 | Line 97 | import java.util.concurrent.locks.LockSu
97   * increase throughput even though it incurs greater per-operation
98   * overhead.
99   *
100 + * <p>In a tree of tiered phasers, registration and deregistration of
101 + * child phasers with their parent are managed automatically.
102 + * Whenever the number of registered parties of a child phaser becomes
103 + * non-zero (as established in the {@link #Phaser(Phaser,int)}
104 + * constructor, {@link #register}, or {@link #bulkRegister}), the
105 + * child phaser is registered with its parent.  Whenever the number of
106 + * registered parties becomes zero as the result of an invocation of
107 + * {@link #arriveAndDeregister}, the child phaser is deregistered
108 + * from its parent.
109 + *
110   * <p><b>Monitoring.</b> While synchronization methods may be invoked
111   * only by registered parties, the current state of a phaser may be
112   * monitored by any caller.  At any given moment there are {@link
# Line 119 | Line 130 | import java.util.concurrent.locks.LockSu
130   * void runTasks(List<Runnable> tasks) {
131   *   final Phaser phaser = new Phaser(1); // "1" to register self
132   *   // create and start threads
133 < *   for (Runnable task : tasks) {
133 > *   for (final Runnable task : tasks) {
134   *     phaser.register();
135   *     new Thread() {
136   *       public void run() {
# Line 183 | Line 194 | import java.util.concurrent.locks.LockSu
194   * }}</pre>
195   *
196   *
197 < * <p>To create a set of tasks using a tree of phasers,
198 < * you could use code of the following form, assuming a
199 < * Task class with a constructor accepting a {@code Phaser} that
200 < * it registers with upon construction:
197 > * <p>To create a set of {@code n} tasks using a tree of phasers, you
198 > * could use code of the following form, assuming a Task class with a
199 > * constructor accepting a {@code Phaser} that it registers with upon
200 > * construction. After invocation of {@code build(new Task[n], 0, n,
201 > * new Phaser())}, these tasks could then be started, for example by
202 > * submitting to a pool:
203   *
204   *  <pre> {@code
205 < * void build(Task[] actions, int lo, int hi, Phaser ph) {
205 > * void build(Task[] tasks, int lo, int hi, Phaser ph) {
206   *   if (hi - lo > TASKS_PER_PHASER) {
207   *     for (int i = lo; i < hi; i += TASKS_PER_PHASER) {
208   *       int j = Math.min(i + TASKS_PER_PHASER, hi);
209 < *       build(actions, i, j, new Phaser(ph));
209 > *       build(tasks, i, j, new Phaser(ph));
210   *     }
211   *   } else {
212   *     for (int i = lo; i < hi; ++i)
213 < *       actions[i] = new Task(ph);
213 > *       tasks[i] = new Task(ph);
214   *       // assumes new Task(ph) performs ph.register()
215   *   }
216 < * }
204 < * // .. initially called, for n tasks via
205 < * build(new Task[n], 0, n, new Phaser());}</pre>
216 > * }}</pre>
217   *
218   * The best value of {@code TASKS_PER_PHASER} depends mainly on
219   * expected synchronization rates. A value as low as four may
# Line 226 | Line 237 | public class Phaser {
237       */
238  
239      /**
240 <     * Primary state representation, holding four fields:
240 >     * Primary state representation, holding four bit-fields:
241       *
242 <     * * unarrived -- the number of parties yet to hit barrier (bits  0-15)
243 <     * * parties -- the number of parties to wait              (bits 16-31)
244 <     * * phase -- the generation of the barrier                (bits 32-62)
245 <     * * terminated -- set if barrier is terminated            (bit  63 / sign)
246 <     *
247 <     * However, to efficiently maintain atomicity, these values are
248 <     * packed into a single (atomic) long. Termination uses the sign
249 <     * bit of 32 bit representation of phase, so phase is set to -1 on
250 <     * termination. Good performance relies on keeping state decoding
251 <     * and encoding simple, and keeping race windows short.
242 >     * unarrived  -- the number of parties yet to hit barrier (bits  0-15)
243 >     * parties    -- the number of parties to wait            (bits 16-31)
244 >     * phase      -- the generation of the barrier            (bits 32-62)
245 >     * terminated -- set if barrier is terminated             (bit  63 / sign)
246 >     *
247 >     * Except that a phaser with no registered parties is
248 >     * distinguished by the otherwise illegal state of having zero
249 >     * parties and one unarrived parties (encoded as EMPTY below).
250 >     *
251 >     * To efficiently maintain atomicity, these values are packed into
252 >     * a single (atomic) long. Good performance relies on keeping
253 >     * state decoding and encoding simple, and keeping race windows
254 >     * short.
255 >     *
256 >     * All state updates are performed via CAS except initial
257 >     * registration of a sub-phaser (i.e., one with a non-null
258 >     * parent).  In this (relatively rare) case, we use built-in
259 >     * synchronization to lock while first registering with its
260 >     * parent.
261 >     *
262 >     * The phase of a subphaser is allowed to lag that of its
263 >     * ancestors until it is actually accessed -- see method
264 >     * reconcileState.
265       */
266      private volatile long state;
267  
268      private static final int  MAX_PARTIES     = 0xffff;
269 <    private static final int  MAX_PHASE       = 0x7fffffff;
269 >    private static final int  MAX_PHASE       = Integer.MAX_VALUE;
270      private static final int  PARTIES_SHIFT   = 16;
271      private static final int  PHASE_SHIFT     = 32;
272      private static final int  UNARRIVED_MASK  = 0xffff;      // to mask ints
273      private static final long PARTIES_MASK    = 0xffff0000L; // to mask longs
274 <    private static final long ONE_ARRIVAL     = 1L;
251 <    private static final long ONE_PARTY       = 1L << PARTIES_SHIFT;
274 >    private static final long COUNTS_MASK     = 0xffffffffL;
275      private static final long TERMINATION_BIT = 1L << 63;
276  
277 +    // some special values
278 +    private static final int  ONE_ARRIVAL     = 1;
279 +    private static final int  ONE_PARTY       = 1 << PARTIES_SHIFT;
280 +    private static final int  ONE_DEREGISTER  = ONE_ARRIVAL|ONE_PARTY;
281 +    private static final int  EMPTY           = 1;
282 +
283      // The following unpacking methods are usually manually inlined
284  
285      private static int unarrivedOf(long s) {
286 <        return (int)s & UNARRIVED_MASK;
286 >        int counts = (int)s;
287 >        return (counts == EMPTY) ? 0 : (counts & UNARRIVED_MASK);
288      }
289  
290      private static int partiesOf(long s) {
# Line 262 | Line 292 | public class Phaser {
292      }
293  
294      private static int phaseOf(long s) {
295 <        return (int) (s >>> PHASE_SHIFT);
295 >        return (int)(s >>> PHASE_SHIFT);
296      }
297  
298      private static int arrivedOf(long s) {
299 <        return partiesOf(s) - unarrivedOf(s);
299 >        int counts = (int)s;
300 >        return (counts == EMPTY) ? 0 :
301 >            (counts >>> PARTIES_SHIFT) - (counts & UNARRIVED_MASK);
302      }
303  
304      /**
# Line 275 | Line 307 | public class Phaser {
307      private final Phaser parent;
308  
309      /**
310 <     * The root of phaser tree. Equals this if not in a tree.  Used to
279 <     * support faster state push-down.
310 >     * The root of phaser tree. Equals this if not in a tree.
311       */
312      private final Phaser root;
313  
# Line 314 | Line 345 | public class Phaser {
345       * Manually tuned to speed up and minimize race windows for the
346       * common case of just decrementing unarrived field.
347       *
348 <     * @param adj - adjustment to apply to state -- either
349 <     * ONE_ARRIVAL (for arrive) or
350 <     * ONE_ARRIVAL|ONE_PARTY (for arriveAndDeregister)
348 >     * @param adjust value to subtract from state;
349 >     *               ONE_ARRIVAL for arrive,
350 >     *               ONE_DEREGISTER for arriveAndDeregister
351       */
352 <    private int doArrive(long adj) {
352 >    private int doArrive(int adjust) {
353 >        final Phaser root = this.root;
354          for (;;) {
355 <            long s = state;
324 <            int unarrived = (int)s & UNARRIVED_MASK;
355 >            long s = (root == this) ? state : reconcileState();
356              int phase = (int)(s >>> PHASE_SHIFT);
357              if (phase < 0)
358                  return phase;
359 <            else if (unarrived == 0) {
360 <                if (reconcileState() == s)     // recheck
361 <                    throw new IllegalStateException(badArrive(s));
362 <            }
363 <            else if (UNSAFE.compareAndSwapLong(this, stateOffset, s, s-=adj)) {
359 >            int counts = (int)s;
360 >            int unarrived = (counts == EMPTY) ? 0 : (counts & UNARRIVED_MASK);
361 >            if (unarrived <= 0)
362 >                throw new IllegalStateException(badArrive(s));
363 >            if (UNSAFE.compareAndSwapLong(this, stateOffset, s, s-=adjust)) {
364                  if (unarrived == 1) {
365 <                    long p = s & PARTIES_MASK; // unshifted parties field
366 <                    long lu = p >>> PARTIES_SHIFT;
367 <                    int u = (int)lu;
368 <                    int nextPhase = (phase + 1) & MAX_PHASE;
369 <                    long next = ((long)nextPhase << PHASE_SHIFT) | p | lu;
370 <                    final Phaser parent = this.parent;
371 <                    if (parent == null) {
372 <                        if (onAdvance(phase, u))
373 <                            next |= TERMINATION_BIT;
374 <                        UNSAFE.compareAndSwapLong(this, stateOffset, s, next);
365 >                    long n = s & PARTIES_MASK;  // base of next state
366 >                    int nextUnarrived = (int)n >>> PARTIES_SHIFT;
367 >                    if (root == this) {
368 >                        if (onAdvance(phase, nextUnarrived))
369 >                            n |= TERMINATION_BIT;
370 >                        else if (nextUnarrived == 0)
371 >                            n |= EMPTY;
372 >                        else
373 >                            n |= nextUnarrived;
374 >                        int nextPhase = (phase + 1) & MAX_PHASE;
375 >                        n |= (long)nextPhase << PHASE_SHIFT;
376 >                        UNSAFE.compareAndSwapLong(this, stateOffset, s, n);
377                          releaseWaiters(phase);
378                      }
379 <                    else {
380 <                        parent.doArrive((u == 0) ?
381 <                                        ONE_ARRIVAL|ONE_PARTY : ONE_ARRIVAL);
382 <                        if ((int)(parent.state >>> PHASE_SHIFT) != nextPhase)
350 <                            reconcileState();
351 <                        else if (state == s)
352 <                            UNSAFE.compareAndSwapLong(this, stateOffset, s,
353 <                                                      next);
379 >                    else if (nextUnarrived == 0) { // propagate deregistration
380 >                        phase = parent.doArrive(ONE_DEREGISTER);
381 >                        UNSAFE.compareAndSwapLong(this, stateOffset,
382 >                                                  s, s | EMPTY);
383                      }
384 +                    else
385 +                        phase = parent.doArrive(ONE_ARRIVAL);
386                  }
387                  return phase;
388              }
# Line 366 | Line 397 | public class Phaser {
397       */
398      private int doRegister(int registrations) {
399          // adjustment to state
400 <        long adj = ((long)registrations << PARTIES_SHIFT) | registrations;
400 >        long adjust = ((long)registrations << PARTIES_SHIFT) | registrations;
401          final Phaser parent = this.parent;
402 +        int phase;
403          for (;;) {
404              long s = (parent == null) ? state : reconcileState();
405 <            int parties = (int)s >>> PARTIES_SHIFT;
406 <            int phase = (int)(s >>> PHASE_SHIFT);
407 <            if (phase < 0)
408 <                return phase;
377 <            else if (registrations > MAX_PARTIES - parties)
405 >            int counts = (int)s;
406 >            int parties = counts >>> PARTIES_SHIFT;
407 >            int unarrived = counts & UNARRIVED_MASK;
408 >            if (registrations > MAX_PARTIES - parties)
409                  throw new IllegalStateException(badRegister(s));
410 <            else if ((parties == 0 && parent == null) || // first reg of root
411 <                     ((int)s & UNARRIVED_MASK) != 0) {   // not advancing
412 <                if (UNSAFE.compareAndSwapLong(this, stateOffset, s, s + adj))
413 <                    return phase;
410 >            phase = (int)(s >>> PHASE_SHIFT);
411 >            if (phase < 0)
412 >                break;
413 >            if (counts != EMPTY) {                  // not 1st registration
414 >                if (parent == null || reconcileState() == s) {
415 >                    if (unarrived == 0)             // wait out advance
416 >                        root.internalAwaitAdvance(phase, null);
417 >                    else if (UNSAFE.compareAndSwapLong(this, stateOffset,
418 >                                                       s, s + adjust))
419 >                        break;
420 >                }
421              }
422 <            else if (parties != 0)               // wait for onAdvance
423 <                root.internalAwaitAdvance(phase, null);
424 <            else {                               // 1st registration of child
425 <                synchronized (this) {            // register parent first
426 <                    if (reconcileState() == s) { // recheck under lock
427 <                        parent.doRegister(1);    // OK if throws IllegalState
428 <                        for (;;) {               // simpler form of outer loop
429 <                            s = reconcileState();
430 <                            phase = (int)(s >>> PHASE_SHIFT);
431 <                            if (phase < 0 ||
432 <                                UNSAFE.compareAndSwapLong(this, stateOffset,
433 <                                                          s, s + adj))
434 <                                return phase;
422 >            else if (parent == null) {              // 1st root registration
423 >                long next = ((long)phase << PHASE_SHIFT) | adjust;
424 >                if (UNSAFE.compareAndSwapLong(this, stateOffset, s, next))
425 >                    break;
426 >            }
427 >            else {
428 >                synchronized (this) {               // 1st sub registration
429 >                    if (state == s) {               // recheck under lock
430 >                        phase = parent.doRegister(1);
431 >                        if (phase < 0)
432 >                            break;
433 >                        // finish registration whenever parent registration
434 >                        // succeeded, even when racing with termination,
435 >                        // since these are part of the same "transaction".
436 >                        while (!UNSAFE.compareAndSwapLong
437 >                               (this, stateOffset, s,
438 >                                ((long)phase << PHASE_SHIFT) | adjust)) {
439 >                            s = state;
440 >                            phase = (int)(root.state >>> PHASE_SHIFT);
441 >                            // assert (int)s == EMPTY;
442                          }
443 +                        break;
444                      }
445                  }
446              }
447          }
448 +        return phase;
449      }
450  
451      /**
452 <     * Recursively resolves lagged phase propagation from root if necessary.
452 >     * Resolves lagged phase propagation from root if necessary.
453 >     * Reconciliation normally occurs when root has advanced but
454 >     * subphasers have not yet done so, in which case they must finish
455 >     * their own advance by setting unarrived to parties (or if
456 >     * parties is zero, resetting to unregistered EMPTY state).
457 >     *
458 >     * @return reconciled state
459       */
460      private long reconcileState() {
461 <        Phaser par = parent;
461 >        final Phaser root = this.root;
462          long s = state;
463 <        if (par != null) {
464 <            Phaser rt = root;
465 <            int phase, rPhase;
466 <            while ((phase = (int)(s >>> PHASE_SHIFT)) >= 0 &&
467 <                   (rPhase = (int)(rt.state >>> PHASE_SHIFT)) != phase) {
468 <                if (par != rt && (int)(par.state >>> PHASE_SHIFT) != rPhase)
469 <                    par.reconcileState();
470 <                else if (rPhase < 0 || ((int)s & UNARRIVED_MASK) == 0) {
471 <                    long u = s & PARTIES_MASK; // reset unarrived to parties
472 <                    long next = ((((long) rPhase) << PHASE_SHIFT) | u |
473 <                                 (u >>> PARTIES_SHIFT));
421 <                    UNSAFE.compareAndSwapLong(this, stateOffset, s, next);
422 <                }
463 >        if (root != this) {
464 >            int phase, p;
465 >            // CAS to root phase with current parties, tripping unarrived
466 >            while ((phase = (int)(root.state >>> PHASE_SHIFT)) !=
467 >                   (int)(s >>> PHASE_SHIFT) &&
468 >                   !UNSAFE.compareAndSwapLong
469 >                   (this, stateOffset, s,
470 >                    s = (((long)phase << PHASE_SHIFT) |
471 >                         ((phase < 0) ? (s & COUNTS_MASK) :
472 >                          (((p = (int)s >>> PARTIES_SHIFT) == 0) ? EMPTY :
473 >                           ((s & PARTIES_MASK) | p))))))
474                  s = state;
424            }
475          }
476          return s;
477      }
# Line 459 | Line 509 | public class Phaser {
509  
510      /**
511       * Creates a new phaser with the given parent and number of
512 <     * registered unarrived parties. Registration and deregistration
513 <     * of this child phaser with its parent are managed automatically.
514 <     * If the given parent is non-null, whenever this child phaser has
465 <     * any registered parties (as established in this constructor,
466 <     * {@link #register}, or {@link #bulkRegister}), this child phaser
467 <     * is registered with its parent. Whenever the number of
468 <     * registered parties becomes zero as the result of an invocation
469 <     * of {@link #arriveAndDeregister}, this child phaser is
470 <     * deregistered from its parent.
512 >     * registered unarrived parties.  When the given parent is non-null
513 >     * and the given number of parties is greater than zero, this
514 >     * child phaser is registered with its parent.
515       *
516       * @param parent the parent phaser
517       * @param parties the number of parties required to advance to the
# Line 478 | Line 522 | public class Phaser {
522      public Phaser(Phaser parent, int parties) {
523          if (parties >>> PARTIES_SHIFT != 0)
524              throw new IllegalArgumentException("Illegal number of parties");
525 <        long s = ((long) parties) | (((long) parties) << PARTIES_SHIFT);
525 >        int phase = 0;
526          this.parent = parent;
527          if (parent != null) {
528 <            Phaser r = parent.root;
529 <            this.root = r;
530 <            this.evenQ = r.evenQ;
531 <            this.oddQ = r.oddQ;
528 >            final Phaser root = parent.root;
529 >            this.root = root;
530 >            this.evenQ = root.evenQ;
531 >            this.oddQ = root.oddQ;
532              if (parties != 0)
533 <                s |= ((long)(parent.doRegister(1))) << PHASE_SHIFT;
533 >                phase = parent.doRegister(1);
534          }
535          else {
536              this.root = this;
537              this.evenQ = new AtomicReference<QNode>();
538              this.oddQ = new AtomicReference<QNode>();
539          }
540 <        this.state = s;
540 >        this.state = (parties == 0) ? (long)EMPTY :
541 >            ((long)phase << PHASE_SHIFT) |
542 >            ((long)parties << PARTIES_SHIFT) |
543 >            ((long)parties);
544      }
545  
546      /**
# Line 501 | Line 548 | public class Phaser {
548       * invocation of {@link #onAdvance} is in progress, this method
549       * may await its completion before returning.  If this phaser has
550       * a parent, and this phaser previously had no registered parties,
551 <     * this phaser is also registered with its parent.
552 <     *
553 <     * @return the arrival phase number to which this registration applied
551 >     * this child phaser is also registered with its parent. If
552 >     * this phaser is terminated, the attempt to register has
553 >     * no effect, and a negative value is returned.
554 >     *
555 >     * @return the arrival phase number to which this registration
556 >     * applied.  If this value is negative, then this phaser has
557 >     * terminated, in which case registration has no effect.
558       * @throws IllegalStateException if attempting to register more
559       * than the maximum supported number of parties
560       */
# Line 515 | Line 566 | public class Phaser {
566       * Adds the given number of new unarrived parties to this phaser.
567       * If an ongoing invocation of {@link #onAdvance} is in progress,
568       * this method may await its completion before returning.  If this
569 <     * phaser has a parent, and the given number of parities is
570 <     * greater than zero, and this phaser previously had no registered
571 <     * parties, this phaser is also registered with its parent.
569 >     * phaser has a parent, and the given number of parties is greater
570 >     * than zero, and this phaser previously had no registered
571 >     * parties, this child phaser is also registered with its parent.
572 >     * If this phaser is terminated, the attempt to register has no
573 >     * effect, and a negative value is returned.
574       *
575       * @param parties the number of additional parties required to
576       * advance to the next phase
577 <     * @return the arrival phase number to which this registration applied
577 >     * @return the arrival phase number to which this registration
578 >     * applied.  If this value is negative, then this phaser has
579 >     * terminated, in which case registration has no effect.
580       * @throws IllegalStateException if attempting to register more
581       * than the maximum supported number of parties
582       * @throws IllegalArgumentException if {@code parties < 0}
# Line 567 | Line 622 | public class Phaser {
622       * of registered or unarrived parties would become negative
623       */
624      public int arriveAndDeregister() {
625 <        return doArrive(ONE_ARRIVAL|ONE_PARTY);
625 >        return doArrive(ONE_DEREGISTER);
626      }
627  
628      /**
# Line 583 | Line 638 | public class Phaser {
638       * IllegalStateException} only upon some subsequent operation on
639       * this phaser, if ever.
640       *
641 <     * @return the arrival phase number, or a negative number if terminated
641 >     * @return the arrival phase number, or the (negative)
642 >     * {@linkplain #getPhase() current phase} if terminated
643       * @throws IllegalStateException if not terminated and the number
644       * of unarrived parties would become negative
645       */
646      public int arriveAndAwaitAdvance() {
647 <        return awaitAdvance(doArrive(ONE_ARRIVAL));
647 >        // Specialization of doArrive+awaitAdvance eliminating some reads/paths
648 >        final Phaser root = this.root;
649 >        for (;;) {
650 >            long s = (root == this) ? state : reconcileState();
651 >            int phase = (int)(s >>> PHASE_SHIFT);
652 >            if (phase < 0)
653 >                return phase;
654 >            int counts = (int)s;
655 >            int unarrived = (counts == EMPTY) ? 0 : (counts & UNARRIVED_MASK);
656 >            if (unarrived <= 0)
657 >                throw new IllegalStateException(badArrive(s));
658 >            if (UNSAFE.compareAndSwapLong(this, stateOffset, s,
659 >                                          s -= ONE_ARRIVAL)) {
660 >                if (unarrived > 1)
661 >                    return root.internalAwaitAdvance(phase, null);
662 >                if (root != this)
663 >                    return parent.arriveAndAwaitAdvance();
664 >                long n = s & PARTIES_MASK;  // base of next state
665 >                int nextUnarrived = (int)n >>> PARTIES_SHIFT;
666 >                if (onAdvance(phase, nextUnarrived))
667 >                    n |= TERMINATION_BIT;
668 >                else if (nextUnarrived == 0)
669 >                    n |= EMPTY;
670 >                else
671 >                    n |= nextUnarrived;
672 >                int nextPhase = (phase + 1) & MAX_PHASE;
673 >                n |= (long)nextPhase << PHASE_SHIFT;
674 >                if (!UNSAFE.compareAndSwapLong(this, stateOffset, s, n))
675 >                    return (int)(state >>> PHASE_SHIFT); // terminated
676 >                releaseWaiters(phase);
677 >                return nextPhase;
678 >            }
679 >        }
680      }
681  
682      /**
# Line 599 | Line 687 | public class Phaser {
687       * @param phase an arrival phase number, or negative value if
688       * terminated; this argument is normally the value returned by a
689       * previous call to {@code arrive} or {@code arriveAndDeregister}.
690 <     * @return the next arrival phase number, or a negative value
691 <     * if terminated or argument is negative
690 >     * @return the next arrival phase number, or the argument if it is
691 >     * negative, or the (negative) {@linkplain #getPhase() current phase}
692 >     * if terminated
693       */
694      public int awaitAdvance(int phase) {
695 <        Phaser rt;
696 <        int p = (int)(state >>> PHASE_SHIFT);
695 >        final Phaser root = this.root;
696 >        long s = (root == this) ? state : reconcileState();
697 >        int p = (int)(s >>> PHASE_SHIFT);
698          if (phase < 0)
699              return phase;
700 <        if (p == phase &&
701 <            (p = (int)((rt = root).state >>> PHASE_SHIFT)) == phase)
612 <            return rt.internalAwaitAdvance(phase, null);
700 >        if (p == phase)
701 >            return root.internalAwaitAdvance(phase, null);
702          return p;
703      }
704  
# Line 623 | Line 712 | public class Phaser {
712       * @param phase an arrival phase number, or negative value if
713       * terminated; this argument is normally the value returned by a
714       * previous call to {@code arrive} or {@code arriveAndDeregister}.
715 <     * @return the next arrival phase number, or a negative value
716 <     * if terminated or argument is negative
715 >     * @return the next arrival phase number, or the argument if it is
716 >     * negative, or the (negative) {@linkplain #getPhase() current phase}
717 >     * if terminated
718       * @throws InterruptedException if thread interrupted while waiting
719       */
720      public int awaitAdvanceInterruptibly(int phase)
721          throws InterruptedException {
722 <        Phaser rt;
723 <        int p = (int)(state >>> PHASE_SHIFT);
722 >        final Phaser root = this.root;
723 >        long s = (root == this) ? state : reconcileState();
724 >        int p = (int)(s >>> PHASE_SHIFT);
725          if (phase < 0)
726              return phase;
727 <        if (p == phase &&
637 <            (p = (int)((rt = root).state >>> PHASE_SHIFT)) == phase) {
727 >        if (p == phase) {
728              QNode node = new QNode(this, phase, true, false, 0L);
729 <            p = rt.internalAwaitAdvance(phase, node);
729 >            p = root.internalAwaitAdvance(phase, node);
730              if (node.wasInterrupted)
731                  throw new InterruptedException();
732          }
# Line 657 | Line 747 | public class Phaser {
747       *        {@code unit}
748       * @param unit a {@code TimeUnit} determining how to interpret the
749       *        {@code timeout} parameter
750 <     * @return the next arrival phase number, or a negative value
751 <     * if terminated or argument is negative
750 >     * @return the next arrival phase number, or the argument if it is
751 >     * negative, or the (negative) {@linkplain #getPhase() current phase}
752 >     * if terminated
753       * @throws InterruptedException if thread interrupted while waiting
754       * @throws TimeoutException if timed out while waiting
755       */
# Line 666 | Line 757 | public class Phaser {
757                                           long timeout, TimeUnit unit)
758          throws InterruptedException, TimeoutException {
759          long nanos = unit.toNanos(timeout);
760 <        Phaser rt;
761 <        int p = (int)(state >>> PHASE_SHIFT);
760 >        final Phaser root = this.root;
761 >        long s = (root == this) ? state : reconcileState();
762 >        int p = (int)(s >>> PHASE_SHIFT);
763          if (phase < 0)
764              return phase;
765 <        if (p == phase &&
674 <            (p = (int)((rt = root).state >>> PHASE_SHIFT)) == phase) {
765 >        if (p == phase) {
766              QNode node = new QNode(this, phase, true, true, nanos);
767 <            p = rt.internalAwaitAdvance(phase, node);
767 >            p = root.internalAwaitAdvance(phase, node);
768              if (node.wasInterrupted)
769                  throw new InterruptedException();
770              else if (p == phase)
# Line 684 | Line 775 | public class Phaser {
775  
776      /**
777       * Forces this phaser to enter termination state.  Counts of
778 <     * arrived and registered parties are unaffected.  If this phaser
779 <     * is a member of a tiered set of phasers, then all of the phasers
780 <     * in the set are terminated.  If this phaser is already
781 <     * terminated, this method has no effect.  This method may be
782 <     * useful for coordinating recovery after one or more tasks
783 <     * encounter unexpected exceptions.
778 >     * registered parties are unaffected.  If this phaser is a member
779 >     * of a tiered set of phasers, then all of the phasers in the set
780 >     * are terminated.  If this phaser is already terminated, this
781 >     * method has no effect.  This method may be useful for
782 >     * coordinating recovery after one or more tasks encounter
783 >     * unexpected exceptions.
784       */
785      public void forceTermination() {
786          // Only need to change root state
# Line 698 | Line 789 | public class Phaser {
789          while ((s = root.state) >= 0) {
790              if (UNSAFE.compareAndSwapLong(root, stateOffset,
791                                            s, s | TERMINATION_BIT)) {
792 <                releaseWaiters(0); // signal all threads
793 <                releaseWaiters(1);
792 >                // signal all threads
793 >                releaseWaiters(0); // Waiters on evenQ
794 >                releaseWaiters(1); // Waiters on oddQ
795                  return;
796              }
797          }
# Line 729 | Line 821 | public class Phaser {
821  
822      /**
823       * Returns the number of registered parties that have arrived at
824 <     * the current phase of this phaser.
824 >     * the current phase of this phaser. If this phaser has terminated,
825 >     * the returned value is meaningless and arbitrary.
826       *
827       * @return the number of arrived parties
828       */
829      public int getArrivedParties() {
830 <        long s = state;
738 <        int u = unarrivedOf(s); // only reconcile if possibly needed
739 <        return (u != 0 || parent == null) ?
740 <            partiesOf(s) - u :
741 <            arrivedOf(reconcileState());
830 >        return arrivedOf(reconcileState());
831      }
832  
833      /**
834       * Returns the number of registered parties that have not yet
835 <     * arrived at the current phase of this phaser.
835 >     * arrived at the current phase of this phaser. If this phaser has
836 >     * terminated, the returned value is meaningless and arbitrary.
837       *
838       * @return the number of unarrived parties
839       */
840      public int getUnarrivedParties() {
841 <        int u = unarrivedOf(state);
752 <        return (u != 0 || parent == null) ? u : unarrivedOf(reconcileState());
841 >        return unarrivedOf(reconcileState());
842      }
843  
844      /**
# Line 785 | Line 874 | public class Phaser {
874       * advance, and to control termination. This method is invoked
875       * upon arrival of the party advancing this phaser (when all other
876       * waiting parties are dormant).  If this method returns {@code
877 <     * true}, then, rather than advance the phase number, this phaser
878 <     * will be set to a final termination state, and subsequent calls
879 <     * to {@link #isTerminated} will return true. Any (unchecked)
880 <     * Exception or Error thrown by an invocation of this method is
881 <     * propagated to the party attempting to advance this phaser, in
882 <     * which case no advance occurs.
877 >     * true}, this phaser will be set to a final termination state
878 >     * upon advance, and subsequent calls to {@link #isTerminated}
879 >     * will return true. Any (unchecked) Exception or Error thrown by
880 >     * an invocation of this method is propagated to the party
881 >     * attempting to advance this phaser, in which case no advance
882 >     * occurs.
883       *
884       * <p>The arguments to this method provide the state of the phaser
885       * prevailing for the current transition.  The effects of invoking
# Line 854 | Line 943 | public class Phaser {
943       */
944      private void releaseWaiters(int phase) {
945          QNode q;   // first element of queue
857        int p;     // its phase
946          Thread t;  // its thread
947          AtomicReference<QNode> head = (phase & 1) == 0 ? evenQ : oddQ;
948          while ((q = head.get()) != null &&
949 <               ((p = q.phase) == phase ||
862 <                (int)(root.state >>> PHASE_SHIFT) != p)) {
949 >               q.phase != (int)(root.state >>> PHASE_SHIFT)) {
950              if (head.compareAndSet(q, q.next) &&
951                  (t = q.thread) != null) {
952                  q.thread = null;
# Line 868 | Line 955 | public class Phaser {
955          }
956      }
957  
958 +    /**
959 +     * Variant of releaseWaiters that additionally tries to remove any
960 +     * nodes no longer waiting for advance due to timeout or
961 +     * interrupt. Currently, nodes are removed only if they are at
962 +     * head of queue, which suffices to reduce memory footprint in
963 +     * most usages.
964 +     *
965 +     * @return current phase on exit
966 +     */
967 +    private int abortWait(int phase) {
968 +        AtomicReference<QNode> head = (phase & 1) == 0 ? evenQ : oddQ;
969 +        for (;;) {
970 +            Thread t;
971 +            QNode q = head.get();
972 +            int p = (int)(root.state >>> PHASE_SHIFT);
973 +            if (q == null || ((t = q.thread) != null && q.phase == p))
974 +                return p;
975 +            if (head.compareAndSet(q, q.next) && t != null) {
976 +                q.thread = null;
977 +                LockSupport.unpark(t);
978 +            }
979 +        }
980 +    }
981 +
982      /** The number of CPUs, for spin control */
983      private static final int NCPU = Runtime.getRuntime().availableProcessors();
984  
# Line 886 | Line 997 | public class Phaser {
997  
998      /**
999       * Possibly blocks and waits for phase to advance unless aborted.
1000 <     * Call only from root node.
1000 >     * Call only on root phaser.
1001       *
1002       * @param phase current phase
1003       * @param node if non-null, the wait node to track interrupt and timeout;
# Line 894 | Line 1005 | public class Phaser {
1005       * @return current phase
1006       */
1007      private int internalAwaitAdvance(int phase, QNode node) {
1008 +        // assert root == this;
1009          releaseWaiters(phase-1);          // ensure old queue clean
1010          boolean queued = false;           // true when node is enqueued
1011          int lastUnarrived = 0;            // to increase spins upon change
# Line 935 | Line 1047 | public class Phaser {
1047                  node.thread = null;       // avoid need for unpark()
1048              if (node.wasInterrupted && !node.interruptible)
1049                  Thread.currentThread().interrupt();
1050 <            if ((p = (int)(state >>> PHASE_SHIFT)) == phase)
1051 <                return p;                 // recheck abort
1050 >            if (p == phase && (p = (int)(state >>> PHASE_SHIFT)) == phase)
1051 >                return abortWait(phase); // possibly clean up on abort
1052          }
1053          releaseWaiters(phase);
1054          return p;
# Line 1007 | Line 1119 | public class Phaser {
1119  
1120      // Unsafe mechanics
1121  
1122 <    private static final sun.misc.Unsafe UNSAFE = getUnsafe();
1123 <    private static final long stateOffset =
1124 <        objectFieldOffset("state", Phaser.class);
1013 <
1014 <    private static long objectFieldOffset(String field, Class<?> klazz) {
1122 >    private static final sun.misc.Unsafe UNSAFE;
1123 >    private static final long stateOffset;
1124 >    static {
1125          try {
1126 <            return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
1127 <        } catch (NoSuchFieldException e) {
1128 <            // Convert Exception to corresponding Error
1129 <            NoSuchFieldError error = new NoSuchFieldError(field);
1130 <            error.initCause(e);
1131 <            throw error;
1126 >            UNSAFE = getUnsafe();
1127 >            Class<?> k = Phaser.class;
1128 >            stateOffset = UNSAFE.objectFieldOffset
1129 >                (k.getDeclaredField("state"));
1130 >        } catch (Exception e) {
1131 >            throw new Error(e);
1132          }
1133      }
1134  
# Line 1032 | Line 1142 | public class Phaser {
1142      private static sun.misc.Unsafe getUnsafe() {
1143          try {
1144              return sun.misc.Unsafe.getUnsafe();
1145 <        } catch (SecurityException se) {
1146 <            try {
1147 <                return java.security.AccessController.doPrivileged
1148 <                    (new java.security
1149 <                     .PrivilegedExceptionAction<sun.misc.Unsafe>() {
1150 <                        public sun.misc.Unsafe run() throws Exception {
1151 <                            java.lang.reflect.Field f = sun.misc
1152 <                                .Unsafe.class.getDeclaredField("theUnsafe");
1153 <                            f.setAccessible(true);
1154 <                            return (sun.misc.Unsafe) f.get(null);
1155 <                        }});
1156 <            } catch (java.security.PrivilegedActionException e) {
1157 <                throw new RuntimeException("Could not initialize intrinsics",
1158 <                                           e.getCause());
1159 <            }
1145 >        } catch (SecurityException tryReflectionInstead) {}
1146 >        try {
1147 >            return java.security.AccessController.doPrivileged
1148 >            (new java.security.PrivilegedExceptionAction<sun.misc.Unsafe>() {
1149 >                public sun.misc.Unsafe run() throws Exception {
1150 >                    Class<sun.misc.Unsafe> k = sun.misc.Unsafe.class;
1151 >                    for (java.lang.reflect.Field f : k.getDeclaredFields()) {
1152 >                        f.setAccessible(true);
1153 >                        Object x = f.get(null);
1154 >                        if (k.isInstance(x))
1155 >                            return k.cast(x);
1156 >                    }
1157 >                    throw new NoSuchFieldError("the Unsafe");
1158 >                }});
1159 >        } catch (java.security.PrivilegedActionException e) {
1160 >            throw new RuntimeException("Could not initialize intrinsics",
1161 >                                       e.getCause());
1162          }
1163      }
1164   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines