ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/Phaser.java
(Generate patch)

Comparing jsr166/src/jsr166y/Phaser.java (file contents):
Revision 1.42 by dl, Mon Aug 24 18:37:15 2009 UTC vs.
Revision 1.65 by dl, Wed Dec 1 17:20:41 2010 UTC

# Line 6 | Line 6
6  
7   package jsr166y;
8  
9 < import java.util.concurrent.*;
10 <
9 > import java.util.concurrent.TimeUnit;
10 > import java.util.concurrent.TimeoutException;
11   import java.util.concurrent.atomic.AtomicReference;
12   import java.util.concurrent.locks.LockSupport;
13  
# Line 34 | Line 34 | import java.util.concurrent.locks.LockSu
34   * Phaser} may be repeatedly awaited.  Method {@link
35   * #arriveAndAwaitAdvance} has effect analogous to {@link
36   * java.util.concurrent.CyclicBarrier#await CyclicBarrier.await}. Each
37 < * generation of a {@code Phaser} has an associated phase number. The
38 < * phase number starts at zero, and advances when all parties arrive
39 < * at the barrier, wrapping around to zero after reaching {@code
37 > * generation of a phaser has an associated phase number. The phase
38 > * number starts at zero, and advances when all parties arrive at the
39 > * phaser, wrapping around to zero after reaching {@code
40   * Integer.MAX_VALUE}. The use of phase numbers enables independent
41 < * control of actions upon arrival at a barrier and upon awaiting
41 > * control of actions upon arrival at a phaser and upon awaiting
42   * others, via two kinds of methods that may be invoked by any
43   * registered party:
44   *
45   * <ul>
46   *
47   *   <li> <b>Arrival.</b> Methods {@link #arrive} and
48 < *       {@link #arriveAndDeregister} record arrival at a
49 < *       barrier. These methods do not block, but return an associated
50 < *       <em>arrival phase number</em>; that is, the phase number of
51 < *       the barrier to which the arrival applied. When the final
52 < *       party for a given phase arrives, an optional barrier action
53 < *       is performed and the phase advances.  Barrier actions,
54 < *       performed by the party triggering a phase advance, are
55 < *       arranged by overriding method {@link #onAdvance(int, int)},
56 < *       which also controls termination. Overriding this method is
57 < *       similar to, but more flexible than, providing a barrier
58 < *       action to a {@code CyclicBarrier}.
48 > *       {@link #arriveAndDeregister} record arrival.  These methods
49 > *       do not block, but return an associated <em>arrival phase
50 > *       number</em>; that is, the phase number of the phaser to which
51 > *       the arrival applied. When the final party for a given phase
52 > *       arrives, an optional action is performed and the phase
53 > *       advances.  These actions are performed by the party
54 > *       triggering a phase advance, and are arranged by overriding
55 > *       method {@link #onAdvance(int, int)}, which also controls
56 > *       termination. Overriding this method is similar to, but more
57 > *       flexible than, providing a barrier action to a {@code
58 > *       CyclicBarrier}.
59   *
60   *   <li> <b>Waiting.</b> Method {@link #awaitAdvance} requires an
61   *       argument indicating an arrival phase number, and returns when
62 < *       the barrier advances to (or is already at) a different phase.
62 > *       the phaser advances to (or is already at) a different phase.
63   *       Unlike similar constructions using {@code CyclicBarrier},
64   *       method {@code awaitAdvance} continues to wait even if the
65   *       waiting thread is interrupted. Interruptible and timeout
66   *       versions are also available, but exceptions encountered while
67   *       tasks wait interruptibly or with timeout do not change the
68 < *       state of the barrier. If necessary, you can perform any
68 > *       state of the phaser. If necessary, you can perform any
69   *       associated recovery within handlers of those exceptions,
70   *       often after invoking {@code forceTermination}.  Phasers may
71   *       also be used by tasks executing in a {@link ForkJoinPool},
# Line 74 | Line 74 | import java.util.concurrent.locks.LockSu
74   *
75   * </ul>
76   *
77 < * <p> <b>Termination.</b> A {@code Phaser} may enter a
78 < * <em>termination</em> state in which all synchronization methods
79 < * immediately return without updating phaser state or waiting for
80 < * advance, and indicating (via a negative phase value) that execution
81 < * is complete.  Termination is triggered when an invocation of {@code
82 < * onAdvance} returns {@code true}.  As illustrated below, when
83 < * phasers control actions with a fixed number of iterations, it is
84 < * often convenient to override this method to cause termination when
85 < * the current phase number reaches a threshold. Method {@link
86 < * #forceTermination} is also available to abruptly release waiting
87 < * threads and allow them to terminate.
88 < *
89 < * <p> <b>Tiering.</b> Phasers may be <em>tiered</em> (i.e., arranged
90 < * in tree structures) to reduce contention. Phasers with large
91 < * numbers of parties that would otherwise experience heavy
77 > * <p> <b>Termination.</b> A phaser may enter a <em>termination</em>
78 > * state in which all synchronization methods immediately return
79 > * without updating phaser state or waiting for advance, and
80 > * indicating (via a negative phase value) that execution is complete.
81 > * Termination is triggered when an invocation of {@code onAdvance}
82 > * returns {@code true}. The default implementation returns {@code
83 > * true} if a deregistration has caused the number of registered
84 > * parties to become zero.  As illustrated below, when phasers control
85 > * actions with a fixed number of iterations, it is often convenient
86 > * to override this method to cause termination when the current phase
87 > * number reaches a threshold. Method {@link #forceTermination} is
88 > * also available to abruptly release waiting threads and allow them
89 > * to terminate.
90 > *
91 > * <p> <b>Tiering.</b> Phasers may be <em>tiered</em> (i.e.,
92 > * constructed in tree structures) to reduce contention. Phasers with
93 > * large numbers of parties that would otherwise experience heavy
94   * synchronization contention costs may instead be set up so that
95   * groups of sub-phasers share a common parent.  This may greatly
96   * increase throughput even though it incurs greater per-operation
# Line 109 | Line 111 | import java.util.concurrent.locks.LockSu
111   * <p><b>Sample usages:</b>
112   *
113   * <p>A {@code Phaser} may be used instead of a {@code CountDownLatch}
114 < * to control a one-shot action serving a variable number of
115 < * parties. The typical idiom is for the method setting this up to
116 < * first register, then start the actions, then deregister, as in:
114 > * to control a one-shot action serving a variable number of parties.
115 > * The typical idiom is for the method setting this up to first
116 > * register, then start the actions, then deregister, as in:
117   *
118   *  <pre> {@code
119   * void runTasks(List<Runnable> tasks) {
# Line 142 | Line 144 | import java.util.concurrent.locks.LockSu
144   *     }
145   *   };
146   *   phaser.register();
147 < *   for (Runnable task : tasks) {
147 > *   for (final Runnable task : tasks) {
148   *     phaser.register();
149   *     new Thread() {
150   *       public void run() {
151   *         do {
152   *           task.run();
153   *           phaser.arriveAndAwaitAdvance();
154 < *         } while(!phaser.isTerminated();
154 > *         } while (!phaser.isTerminated());
155   *       }
156   *     }.start();
157   *   }
# Line 158 | Line 160 | import java.util.concurrent.locks.LockSu
160   *
161   * If the main task must later await termination, it
162   * may re-register and then execute a similar loop:
163 < * <pre> {@code
163 > *  <pre> {@code
164   *   // ...
165   *   phaser.register();
166   *   while (!phaser.isTerminated())
167 < *     phaser.arriveAndAwaitAdvance();
166 < * }</pre>
167 > *     phaser.arriveAndAwaitAdvance();}</pre>
168   *
169 < * Related constructions may be used to await particular phase numbers
169 > * <p>Related constructions may be used to await particular phase numbers
170   * in contexts where you are sure that the phase will never wrap around
171   * {@code Integer.MAX_VALUE}. For example:
172   *
173 < * <pre> {@code
174 < *   void awaitPhase(Phaser phaser, int phase) {
175 < *     int p = phaser.register(); // assumes caller not already registered
176 < *     while (p < phase) {
177 < *       if (phaser.isTerminated())
178 < *         // ... deal with unexpected termination
179 < *       else
180 < *         p = phaser.arriveAndAwaitAdvance();
180 < *     }
181 < *     phaser.arriveAndDeregister();
173 > *  <pre> {@code
174 > * void awaitPhase(Phaser phaser, int phase) {
175 > *   int p = phaser.register(); // assumes caller not already registered
176 > *   while (p < phase) {
177 > *     if (phaser.isTerminated())
178 > *       // ... deal with unexpected termination
179 > *     else
180 > *       p = phaser.arriveAndAwaitAdvance();
181   *   }
182 < * }</pre>
182 > *   phaser.arriveAndDeregister();
183 > * }}</pre>
184 > *
185   *
186 + * <p>To create a set of {@code n} tasks using a tree of phasers, you
187 + * could use code of the following form, assuming a Task class with a
188 + * constructor accepting a {@code Phaser} that it registers with upon
189 + * construction. After invocation of {@code build(new Task[n], 0, n,
190 + * new Phaser())}, these tasks could then be started, for example by
191 + * submitting to a pool:
192   *
186 * <p>To create a set of tasks using a tree of phasers,
187 * you could use code of the following form, assuming a
188 * Task class with a constructor accepting a phaser that
189 * it registers for upon construction:
193   *  <pre> {@code
194 < * void build(Task[] actions, int lo, int hi, Phaser b) {
195 < *   int step = (hi - lo) / TASKS_PER_PHASER;
196 < *   if (step > 1) {
197 < *     int i = lo;
198 < *     while (i < hi) {
196 < *       int r = Math.min(i + step, hi);
197 < *       build(actions, i, r, new Phaser(b));
198 < *       i = r;
194 > * void build(Task[] tasks, int lo, int hi, Phaser ph) {
195 > *   if (hi - lo > TASKS_PER_PHASER) {
196 > *     for (int i = lo; i < hi; i += TASKS_PER_PHASER) {
197 > *       int j = Math.min(i + TASKS_PER_PHASER, hi);
198 > *       build(tasks, i, j, new Phaser(ph));
199   *     }
200   *   } else {
201   *     for (int i = lo; i < hi; ++i)
202 < *       actions[i] = new Task(b);
203 < *       // assumes new Task(b) performs b.register()
202 > *       tasks[i] = new Task(ph);
203 > *       // assumes new Task(ph) performs ph.register()
204   *   }
205 < * }
206 < * // .. initially called, for n tasks via
207 < * build(new Task[n], 0, n, new Phaser());}</pre>
205 > * }}</pre>
206   *
207   * The best value of {@code TASKS_PER_PHASER} depends mainly on
208 < * expected barrier synchronization rates. A value as low as four may
209 < * be appropriate for extremely small per-barrier task bodies (thus
208 > * expected synchronization rates. A value as low as four may
209 > * be appropriate for extremely small per-phase task bodies (thus
210   * high rates), or up to hundreds for extremely large ones.
211   *
214 * </pre>
215 *
212   * <p><b>Implementation notes</b>: This implementation restricts the
213   * maximum number of parties to 65535. Attempts to register additional
214   * parties result in {@code IllegalStateException}. However, you can and
# Line 230 | Line 226 | public class Phaser {
226       */
227  
228      /**
229 <     * Barrier state representation. Conceptually, a barrier contains
234 <     * four values:
229 >     * Primary state representation, holding four fields:
230       *
231 <     * * parties -- the number of parties to wait (16 bits)
232 <     * * unarrived -- the number of parties yet to hit barrier (16 bits)
233 <     * * phase -- the generation of the barrier (31 bits)
234 <     * * terminated -- set if barrier is terminated (1 bit)
235 <     *
236 <     * However, to efficiently maintain atomicity, these values are
237 <     * packed into a single (atomic) long. Termination uses the sign
238 <     * bit of 32 bit representation of phase, so phase is set to -1 on
239 <     * termination. Good performance relies on keeping state decoding
240 <     * and encoding simple, and keeping race windows short.
241 <     *
242 <     * Note: there are some cheats in arrive() that rely on unarrived
243 <     * count being lowest 16 bits.
231 >     * * unarrived -- the number of parties yet to hit barrier (bits  0-15)
232 >     * * parties -- the number of parties to wait              (bits 16-31)
233 >     * * phase -- the generation of the barrier                (bits 32-62)
234 >     * * terminated -- set if barrier is terminated            (bit  63 / sign)
235 >     *
236 >     * Except that a phaser with no registered parties is
237 >     * distinguished with the otherwise illegal state of having zero
238 >     * parties and one unarrived parties (encoded as EMPTY below).
239 >     *
240 >     * To efficiently maintain atomicity, these values are packed into
241 >     * a single (atomic) long. Good performance relies on keeping
242 >     * state decoding and encoding simple, and keeping race windows
243 >     * short.
244 >     *
245 >     * All state updates are performed via CAS except initial
246 >     * registration of a sub-phaser (i.e., one with a non-null
247 >     * parent).  In this (relatively rare) case, we use built-in
248 >     * synchronization to lock while first registering with its
249 >     * parent.
250 >     *
251 >     * The phase of a subphaser is allowed to lag that of its
252 >     * ancestors until it is actually accessed.  Method reconcileState
253 >     * is usually attempted only only when the number of unarrived
254 >     * parties appears to be zero, which indicates a potential lag in
255 >     * updating phase after the root advanced.
256       */
257      private volatile long state;
258  
259 <    private static final int ushortMask = 0xffff;
260 <    private static final int phaseMask  = 0x7fffffff;
259 >    private static final int  MAX_PARTIES     = 0xffff;
260 >    private static final int  MAX_PHASE       = 0x7fffffff;
261 >    private static final int  PARTIES_SHIFT   = 16;
262 >    private static final int  PHASE_SHIFT     = 32;
263 >    private static final int  UNARRIVED_MASK  = 0xffff;      // to mask ints
264 >    private static final long PARTIES_MASK    = 0xffff0000L; // to mask longs
265 >    private static final long TERMINATION_BIT = 1L << 63;
266 >
267 >    // some special values
268 >    private static final int  ONE_ARRIVAL     = 1;
269 >    private static final int  ONE_PARTY       = 1 << PARTIES_SHIFT;
270 >    private static final int  EMPTY           = 1;
271 >
272 >    // The following unpacking methods are usually manually inlined
273  
274      private static int unarrivedOf(long s) {
275 <        return (int) (s & ushortMask);
275 >        int counts = (int)s;
276 >        return (counts == EMPTY)? 0 : counts & UNARRIVED_MASK;
277      }
278  
279      private static int partiesOf(long s) {
280 <        return ((int) s) >>> 16;
280 >        int counts = (int)s;
281 >        return (counts == EMPTY)? 0 : counts >>> PARTIES_SHIFT;
282      }
283  
284      private static int phaseOf(long s) {
285 <        return (int) (s >>> 32);
285 >        return (int) (s >>> PHASE_SHIFT);
286      }
287  
288      private static int arrivedOf(long s) {
289 <        return partiesOf(s) - unarrivedOf(s);
290 <    }
291 <
271 <    private static long stateFor(int phase, int parties, int unarrived) {
272 <        return ((((long) phase) << 32) | (((long) parties) << 16) |
273 <                (long) unarrived);
274 <    }
275 <
276 <    private static long trippedStateFor(int phase, int parties) {
277 <        long lp = (long) parties;
278 <        return (((long) phase) << 32) | (lp << 16) | lp;
279 <    }
280 <
281 <    /**
282 <     * Returns message string for bad bounds exceptions.
283 <     */
284 <    private static String badBounds(int parties, int unarrived) {
285 <        return ("Attempt to set " + unarrived +
286 <                " unarrived of " + parties + " parties");
289 >        int counts = (int)s;
290 >        return (counts == EMPTY)? 0 :
291 >            (counts >>> PARTIES_SHIFT) - (counts & UNARRIVED_MASK);
292      }
293  
294      /**
# Line 292 | Line 297 | public class Phaser {
297      private final Phaser parent;
298  
299      /**
300 <     * The root of phaser tree. Equals this if not in a tree.  Used to
296 <     * support faster state push-down.
300 >     * The root of phaser tree. Equals this if not in a tree.
301       */
302      private final Phaser root;
303  
300    // Wait queues
301
304      /**
305       * Heads of Treiber stacks for waiting threads. To eliminate
306 <     * contention while releasing some threads while adding others, we
306 >     * contention when releasing some threads while adding others, we
307       * use two of them, alternating across even and odd phases.
308 +     * Subphasers share queues with root to speed up releases.
309       */
310 <    private final AtomicReference<QNode> evenQ = new AtomicReference<QNode>();
311 <    private final AtomicReference<QNode> oddQ  = new AtomicReference<QNode>();
310 >    private final AtomicReference<QNode> evenQ;
311 >    private final AtomicReference<QNode> oddQ;
312  
313      private AtomicReference<QNode> queueFor(int phase) {
314          return ((phase & 1) == 0) ? evenQ : oddQ;
315      }
316  
317      /**
318 <     * Returns current state, first resolving lagged propagation from
316 <     * root if necessary.
318 >     * Returns message string for bounds exceptions on arrival.
319       */
320 <    private long getReconciledState() {
321 <        return (parent == null) ? state : reconcileState();
320 >    private String badArrive(long s) {
321 >        return "Attempted arrival of unregistered party for " +
322 >            stateToString(s);
323      }
324  
325      /**
326 <     * Recursively resolves state.
326 >     * Returns message string for bounds exceptions on registration.
327       */
328 <    private long reconcileState() {
329 <        Phaser p = parent;
330 <        long s = state;
331 <        if (p != null) {
332 <            while (unarrivedOf(s) == 0 && phaseOf(s) != phaseOf(root.state)) {
333 <                long parentState = p.getReconciledState();
334 <                int parentPhase = phaseOf(parentState);
335 <                int phase = phaseOf(s = state);
336 <                if (phase != parentPhase) {
337 <                    long next = trippedStateFor(parentPhase, partiesOf(s));
338 <                    if (casState(s, next)) {
328 >    private String badRegister(long s) {
329 >        return "Attempt to register more than " +
330 >            MAX_PARTIES + " parties for " + stateToString(s);
331 >    }
332 >
333 >    /**
334 >     * Main implementation for methods arrive and arriveAndDeregister.
335 >     * Manually tuned to speed up and minimize race windows for the
336 >     * common case of just decrementing unarrived field.
337 >     *
338 >     * @param deregister false for arrive, true for arriveAndDeregister
339 >     */
340 >    private int doArrive(boolean deregister) {
341 >        int adj = deregister ? ONE_ARRIVAL|ONE_PARTY : ONE_ARRIVAL;
342 >        long s;
343 >        int phase;
344 >        while ((phase = (int)((s = state) >>> PHASE_SHIFT)) >= 0) {
345 >            int counts = (int)s;
346 >            int unarrived = counts & UNARRIVED_MASK;
347 >            if (counts == EMPTY || unarrived == 0) {
348 >                if (reconcileState() == s)
349 >                    throw new IllegalStateException(badArrive(s));
350 >            }
351 >            else if (UNSAFE.compareAndSwapLong(this, stateOffset, s, s-=adj)) {
352 >                if (unarrived == 1) {
353 >                    long n = s & PARTIES_MASK;       // unshifted parties field
354 >                    int u = ((int)n) >>> PARTIES_SHIFT;
355 >                    Phaser par = parent;
356 >                    if (par != null) {
357 >                        par.doArrive(u == 0);
358 >                        reconcileState();
359 >                    }
360 >                    else {
361 >                        n |= (((long)((phase+1) & MAX_PHASE)) << PHASE_SHIFT);
362 >                        if (onAdvance(phase, u))
363 >                            n |= TERMINATION_BIT;
364 >                        else if (u == 0)
365 >                            n |= EMPTY;             // reset to unregistered
366 >                        else
367 >                            n |= (long)u;           // reset unarr to parties
368 >                        // assert state == s || isTerminated();
369 >                        UNSAFE.compareAndSwapLong(this, stateOffset, s, n);
370                          releaseWaiters(phase);
371 <                        s = next;
371 >                    }
372 >                }
373 >                break;
374 >            }
375 >        }
376 >        return phase;
377 >    }
378 >
379 >    /**
380 >     * Implementation of register, bulkRegister
381 >     *
382 >     * @param registrations number to add to both parties and
383 >     * unarrived fields. Must be greater than zero.
384 >     */
385 >    private int doRegister(int registrations) {
386 >        // adjustment to state
387 >        long adj = ((long)registrations << PARTIES_SHIFT) | registrations;
388 >        Phaser par = parent;
389 >        int phase;
390 >        for (;;) {
391 >            long s = state;
392 >            int counts = (int)s;
393 >            int parties = counts >>> PARTIES_SHIFT;
394 >            int unarrived = counts & UNARRIVED_MASK;
395 >            if (registrations > MAX_PARTIES - parties)
396 >                throw new IllegalStateException(badRegister(s));
397 >            else if ((phase = (int)(s >>> PHASE_SHIFT)) < 0)
398 >                break;
399 >            else if (counts != EMPTY) {             // not 1st registration
400 >                if (par == null || reconcileState() == s) {
401 >                    if (unarrived == 0)             // wait out advance
402 >                        root.internalAwaitAdvance(phase, null);
403 >                    else if (UNSAFE.compareAndSwapLong(this, stateOffset,
404 >                                                       s, s + adj))
405 >                        break;
406 >                }
407 >            }
408 >            else if (par == null) {                 // 1st root registration
409 >                long next = (((long) phase) << PHASE_SHIFT) | adj;
410 >                if (UNSAFE.compareAndSwapLong(this, stateOffset, s, next))
411 >                    break;
412 >            }
413 >            else {
414 >                synchronized(this) {                // 1st sub registration
415 >                    if (state == s) {               // recheck under lock
416 >                        par.doRegister(1);
417 >                        do {                        // force current phase
418 >                            phase = (int)(root.state >>> PHASE_SHIFT);
419 >                            // assert phase < 0 || (int)state == EMPTY;
420 >                        } while (!UNSAFE.compareAndSwapLong
421 >                                 (this, stateOffset, state,
422 >                                  (((long) phase) << PHASE_SHIFT) | adj));
423 >                        break;
424                      }
425                  }
426              }
427          }
428 +        return phase;
429 +    }
430 +
431 +    /**
432 +     * Resolves lagged phase propagation from root if necessary.
433 +     */
434 +    private long reconcileState() {
435 +        Phaser rt = root;
436 +        long s = state;
437 +        if (rt != this) {
438 +            int phase;
439 +            while ((phase = (int)(rt.state >>> PHASE_SHIFT)) !=
440 +                   (int)(s >>> PHASE_SHIFT)) {
441 +                // assert phase < 0 || unarrivedOf(s) == 0
442 +                long t;                             // to reread s
443 +                long p = s & PARTIES_MASK;          // unshifted parties field
444 +                long n = (((long) phase) << PHASE_SHIFT) | p;
445 +                if (phase >= 0) {
446 +                    if (p == 0L)
447 +                        n |= EMPTY;                 // reset to empty
448 +                    else
449 +                        n |= p >>> PARTIES_SHIFT;   // set unarr to parties
450 +                }
451 +                if ((t = state) == s &&
452 +                    UNSAFE.compareAndSwapLong(this, stateOffset, s, s = n))
453 +                    break;
454 +                s = t;
455 +            }
456 +        }
457          return s;
458      }
459  
460      /**
461 <     * Creates a new phaser without any initially registered parties,
462 <     * initial phase number 0, and no parent. Any thread using this
461 >     * Creates a new phaser with no initially registered parties, no
462 >     * parent, and initial phase number 0. Any thread using this
463       * phaser will need to first register for it.
464       */
465      public Phaser() {
466 <        this(null);
466 >        this(null, 0);
467      }
468  
469      /**
470 <     * Creates a new phaser with the given numbers of registered
471 <     * unarrived parties, initial phase number 0, and no parent.
470 >     * Creates a new phaser with the given number of registered
471 >     * unarrived parties, no parent, and initial phase number 0.
472       *
473 <     * @param parties the number of parties required to trip barrier
473 >     * @param parties the number of parties required to advance to the
474 >     * next phase
475       * @throws IllegalArgumentException if parties less than zero
476       * or greater than the maximum number of parties supported
477       */
# Line 364 | Line 480 | public class Phaser {
480      }
481  
482      /**
483 <     * Creates a new phaser with the given parent, without any
368 <     * initially registered parties. If parent is non-null this phaser
369 <     * is registered with the parent and its initial phase number is
370 <     * the same as that of parent phaser.
483 >     * Equivalent to {@link #Phaser(Phaser, int) Phaser(parent, 0)}.
484       *
485       * @param parent the parent phaser
486       */
487      public Phaser(Phaser parent) {
488 <        int phase = 0;
376 <        this.parent = parent;
377 <        if (parent != null) {
378 <            this.root = parent.root;
379 <            phase = parent.register();
380 <        }
381 <        else
382 <            this.root = this;
383 <        this.state = trippedStateFor(phase, 0);
488 >        this(parent, 0);
489      }
490  
491      /**
492 <     * Creates a new phaser with the given parent and numbers of
493 <     * registered unarrived parties. If parent is non-null, this phaser
494 <     * is registered with the parent and its initial phase number is
495 <     * the same as that of parent phaser.
492 >     * Creates a new phaser with the given parent and number of
493 >     * registered unarrived parties. Registration and deregistration
494 >     * of this child phaser with its parent are managed automatically.
495 >     * If the given parent is non-null, whenever this child phaser has
496 >     * any registered parties (as established in this constructor,
497 >     * {@link #register}, or {@link #bulkRegister}), this child phaser
498 >     * is registered with its parent. Whenever the number of
499 >     * registered parties becomes zero as the result of an invocation
500 >     * of {@link #arriveAndDeregister}, this child phaser is
501 >     * deregistered from its parent.
502       *
503       * @param parent the parent phaser
504 <     * @param parties the number of parties required to trip barrier
504 >     * @param parties the number of parties required to advance to the
505 >     * next phase
506       * @throws IllegalArgumentException if parties less than zero
507       * or greater than the maximum number of parties supported
508       */
509      public Phaser(Phaser parent, int parties) {
510 <        if (parties < 0 || parties > ushortMask)
510 >        if (parties >>> PARTIES_SHIFT != 0)
511              throw new IllegalArgumentException("Illegal number of parties");
512          int phase = 0;
513          this.parent = parent;
514          if (parent != null) {
515 <            this.root = parent.root;
516 <            phase = parent.register();
515 >            Phaser r = parent.root;
516 >            this.root = r;
517 >            this.evenQ = r.evenQ;
518 >            this.oddQ = r.oddQ;
519 >            if (parties != 0)
520 >                phase = parent.doRegister(1);
521          }
522 <        else
522 >        else {
523              this.root = this;
524 <        this.state = trippedStateFor(phase, parties);
524 >            this.evenQ = new AtomicReference<QNode>();
525 >            this.oddQ = new AtomicReference<QNode>();
526 >        }
527 >        this.state = (parties == 0)? ((long) EMPTY) :
528 >            ((((long) phase) << PHASE_SHIFT) |
529 >             (((long) parties) << PARTIES_SHIFT) |
530 >             ((long) parties));
531      }
532  
533      /**
534 <     * Adds a new unarrived party to this phaser.
534 >     * Adds a new unarrived party to this phaser.  If an ongoing
535 >     * invocation of {@link #onAdvance} is in progress, this method
536 >     * may await its completion before returning.  If this phaser has
537 >     * a parent, and this phaser previously had no registered parties,
538 >     * this phaser is also registered with its parent.
539       *
540       * @return the arrival phase number to which this registration applied
541       * @throws IllegalStateException if attempting to register more
# Line 421 | Line 547 | public class Phaser {
547  
548      /**
549       * Adds the given number of new unarrived parties to this phaser.
550 +     * If an ongoing invocation of {@link #onAdvance} is in progress,
551 +     * this method may await its completion before returning.  If this
552 +     * phaser has a parent, and the given number of parities is
553 +     * greater than zero, and this phaser previously had no registered
554 +     * parties, this phaser is also registered with its parent.
555       *
556 <     * @param parties the number of parties required to trip barrier
556 >     * @param parties the number of additional parties required to
557 >     * advance to the next phase
558       * @return the arrival phase number to which this registration applied
559       * @throws IllegalStateException if attempting to register more
560       * than the maximum supported number of parties
561 +     * @throws IllegalArgumentException if {@code parties < 0}
562       */
563      public int bulkRegister(int parties) {
564          if (parties < 0)
# Line 436 | Line 569 | public class Phaser {
569      }
570  
571      /**
572 <     * Shared code for register, bulkRegister
573 <     */
574 <    private int doRegister(int registrations) {
575 <        int phase;
576 <        for (;;) {
577 <            long s = getReconciledState();
445 <            phase = phaseOf(s);
446 <            int unarrived = unarrivedOf(s) + registrations;
447 <            int parties = partiesOf(s) + registrations;
448 <            if (phase < 0)
449 <                break;
450 <            if (parties > ushortMask || unarrived > ushortMask)
451 <                throw new IllegalStateException(badBounds(parties, unarrived));
452 <            if (phase == phaseOf(root.state) &&
453 <                casState(s, stateFor(phase, parties, unarrived)))
454 <                break;
455 <        }
456 <        return phase;
457 <    }
458 <
459 <    /**
460 <     * Arrives at the barrier, but does not wait for others.  (You can
461 <     * in turn wait for others via {@link #awaitAdvance}).  It is an
462 <     * unenforced usage error for an unregistered party to invoke this
463 <     * method.
572 >     * Arrives at this phaser, without waiting for others to arrive.
573 >     *
574 >     * <p>It is a usage error for an unregistered party to invoke this
575 >     * method.  However, this error may result in an {@code
576 >     * IllegalStateException} only upon some subsequent operation on
577 >     * this phaser, if ever.
578       *
579       * @return the arrival phase number, or a negative value if terminated
580       * @throws IllegalStateException if not terminated and the number
581       * of unarrived parties would become negative
582       */
583      public int arrive() {
584 <        int phase;
471 <        for (;;) {
472 <            long s = state;
473 <            phase = phaseOf(s);
474 <            if (phase < 0)
475 <                break;
476 <            int parties = partiesOf(s);
477 <            int unarrived = unarrivedOf(s) - 1;
478 <            if (unarrived > 0) {        // Not the last arrival
479 <                if (casState(s, s - 1)) // s-1 adds one arrival
480 <                    break;
481 <            }
482 <            else if (unarrived == 0) {  // the last arrival
483 <                Phaser par = parent;
484 <                if (par == null) {      // directly trip
485 <                    if (casState
486 <                        (s,
487 <                         trippedStateFor(onAdvance(phase, parties) ? -1 :
488 <                                         ((phase + 1) & phaseMask), parties))) {
489 <                        releaseWaiters(phase);
490 <                        break;
491 <                    }
492 <                }
493 <                else {                  // cascade to parent
494 <                    if (casState(s, s - 1)) { // zeroes unarrived
495 <                        par.arrive();
496 <                        reconcileState();
497 <                        break;
498 <                    }
499 <                }
500 <            }
501 <            else if (phase != phaseOf(root.state)) // or if unreconciled
502 <                reconcileState();
503 <            else
504 <                throw new IllegalStateException(badBounds(parties, unarrived));
505 <        }
506 <        return phase;
584 >        return doArrive(false);
585      }
586  
587      /**
588 <     * Arrives at the barrier and deregisters from it without waiting
589 <     * for others. Deregistration reduces the number of parties
590 <     * required to trip the barrier in future phases.  If this phaser
588 >     * Arrives at this phaser and deregisters from it without waiting
589 >     * for others to arrive. Deregistration reduces the number of
590 >     * parties required to advance in future phases.  If this phaser
591       * has a parent, and deregistration causes this phaser to have
592 <     * zero parties, this phaser also arrives at and is deregistered
593 <     * from its parent.  It is an unenforced usage error for an
594 <     * unregistered party to invoke this method.
592 >     * zero parties, this phaser is also deregistered from its parent.
593 >     *
594 >     * <p>It is a usage error for an unregistered party to invoke this
595 >     * method.  However, this error may result in an {@code
596 >     * IllegalStateException} only upon some subsequent operation on
597 >     * this phaser, if ever.
598       *
599       * @return the arrival phase number, or a negative value if terminated
600       * @throws IllegalStateException if not terminated and the number
601       * of registered or unarrived parties would become negative
602       */
603      public int arriveAndDeregister() {
604 <        // similar code to arrive, but too different to merge
524 <        Phaser par = parent;
525 <        int phase;
526 <        for (;;) {
527 <            long s = state;
528 <            phase = phaseOf(s);
529 <            if (phase < 0)
530 <                break;
531 <            int parties = partiesOf(s) - 1;
532 <            int unarrived = unarrivedOf(s) - 1;
533 <            if (parties >= 0) {
534 <                if (unarrived > 0 || (unarrived == 0 && par != null)) {
535 <                    if (casState
536 <                        (s,
537 <                         stateFor(phase, parties, unarrived))) {
538 <                        if (unarrived == 0) {
539 <                            par.arriveAndDeregister();
540 <                            reconcileState();
541 <                        }
542 <                        break;
543 <                    }
544 <                    continue;
545 <                }
546 <                if (unarrived == 0) {
547 <                    if (casState
548 <                        (s,
549 <                         trippedStateFor(onAdvance(phase, parties) ? -1 :
550 <                                         ((phase + 1) & phaseMask), parties))) {
551 <                        releaseWaiters(phase);
552 <                        break;
553 <                    }
554 <                    continue;
555 <                }
556 <                if (par != null && phase != phaseOf(root.state)) {
557 <                    reconcileState();
558 <                    continue;
559 <                }
560 <            }
561 <            throw new IllegalStateException(badBounds(parties, unarrived));
562 <        }
563 <        return phase;
604 >        return doArrive(true);
605      }
606  
607      /**
608 <     * Arrives at the barrier and awaits others. Equivalent in effect
608 >     * Arrives at this phaser and awaits others. Equivalent in effect
609       * to {@code awaitAdvance(arrive())}.  If you need to await with
610       * interruption or timeout, you can arrange this with an analogous
611 <     * construction using one of the other forms of the awaitAdvance
612 <     * method.  If instead you need to deregister upon arrival use
613 <     * {@code arriveAndDeregister}. It is an unenforced usage error
614 <     * for an unregistered party to invoke this method.
611 >     * construction using one of the other forms of the {@code
612 >     * awaitAdvance} method.  If instead you need to deregister upon
613 >     * arrival, use {@code awaitAdvance(arriveAndDeregister())}.
614 >     *
615 >     * <p>It is a usage error for an unregistered party to invoke this
616 >     * method.  However, this error may result in an {@code
617 >     * IllegalStateException} only upon some subsequent operation on
618 >     * this phaser, if ever.
619       *
620       * @return the arrival phase number, or a negative number if terminated
621       * @throws IllegalStateException if not terminated and the number
622       * of unarrived parties would become negative
623       */
624      public int arriveAndAwaitAdvance() {
625 <        return awaitAdvance(arrive());
625 >        return awaitAdvance(doArrive(false));
626      }
627  
628      /**
629 <     * Awaits the phase of the barrier to advance from the given phase
630 <     * value, returning immediately if the current phase of the
631 <     * barrier is not equal to the given phase value or this barrier
587 <     * is terminated.  It is an unenforced usage error for an
588 <     * unregistered party to invoke this method.
629 >     * Awaits the phase of this phaser to advance from the given phase
630 >     * value, returning immediately if the current phase is not equal
631 >     * to the given phase value or this phaser is terminated.
632       *
633       * @param phase an arrival phase number, or negative value if
634       * terminated; this argument is normally the value returned by a
635 <     * previous call to {@code arrive} or its variants
635 >     * previous call to {@code arrive} or {@code arriveAndDeregister}.
636       * @return the next arrival phase number, or a negative value
637       * if terminated or argument is negative
638       */
639      public int awaitAdvance(int phase) {
640 +        Phaser rt;
641 +        int p = (int)(state >>> PHASE_SHIFT);
642          if (phase < 0)
643              return phase;
644 <        long s = getReconciledState();
645 <        int p = phaseOf(s);
646 <        if (p != phase)
647 <            return p;
648 <        if (unarrivedOf(s) == 0 && parent != null)
649 <            parent.awaitAdvance(phase);
605 <        // Fall here even if parent waited, to reconcile and help release
606 <        return untimedWait(phase);
644 >        if (p == phase) {
645 >            if ((p = (int)((rt = root).state >>> PHASE_SHIFT)) == phase)
646 >                return rt.internalAwaitAdvance(phase, null);
647 >            reconcileState();
648 >        }
649 >        return p;
650      }
651  
652      /**
653 <     * Awaits the phase of the barrier to advance from the given phase
653 >     * Awaits the phase of this phaser to advance from the given phase
654       * value, throwing {@code InterruptedException} if interrupted
655 <     * while waiting, or returning immediately if the current phase of
656 <     * the barrier is not equal to the given phase value or this
657 <     * barrier is terminated. It is an unenforced usage error for an
615 <     * unregistered party to invoke this method.
655 >     * while waiting, or returning immediately if the current phase is
656 >     * not equal to the given phase value or this phaser is
657 >     * terminated.
658       *
659       * @param phase an arrival phase number, or negative value if
660       * terminated; this argument is normally the value returned by a
661 <     * previous call to {@code arrive} or its variants
661 >     * previous call to {@code arrive} or {@code arriveAndDeregister}.
662       * @return the next arrival phase number, or a negative value
663       * if terminated or argument is negative
664       * @throws InterruptedException if thread interrupted while waiting
665       */
666      public int awaitAdvanceInterruptibly(int phase)
667          throws InterruptedException {
668 +        Phaser rt;
669 +        int p = (int)(state >>> PHASE_SHIFT);
670          if (phase < 0)
671              return phase;
672 <        long s = getReconciledState();
673 <        int p = phaseOf(s);
674 <        if (p != phase)
675 <            return p;
676 <        if (unarrivedOf(s) == 0 && parent != null)
677 <            parent.awaitAdvanceInterruptibly(phase);
678 <        return interruptibleWait(phase);
672 >        if (p == phase) {
673 >            if ((p = (int)((rt = root).state >>> PHASE_SHIFT)) == phase) {
674 >                QNode node = new QNode(this, phase, true, false, 0L);
675 >                p = rt.internalAwaitAdvance(phase, node);
676 >                if (node.wasInterrupted)
677 >                    throw new InterruptedException();
678 >            }
679 >            else
680 >                reconcileState();
681 >        }
682 >        return p;
683      }
684  
685      /**
686 <     * Awaits the phase of the barrier to advance from the given phase
686 >     * Awaits the phase of this phaser to advance from the given phase
687       * value or the given timeout to elapse, throwing {@code
688       * InterruptedException} if interrupted while waiting, or
689 <     * returning immediately if the current phase of the barrier is
690 <     * not equal to the given phase value or this barrier is
643 <     * terminated.  It is an unenforced usage error for an
644 <     * unregistered party to invoke this method.
689 >     * returning immediately if the current phase is not equal to the
690 >     * given phase value or this phaser is terminated.
691       *
692       * @param phase an arrival phase number, or negative value if
693       * terminated; this argument is normally the value returned by a
694 <     * previous call to {@code arrive} or its variants
694 >     * previous call to {@code arrive} or {@code arriveAndDeregister}.
695       * @param timeout how long to wait before giving up, in units of
696       *        {@code unit}
697       * @param unit a {@code TimeUnit} determining how to interpret the
# Line 658 | Line 704 | public class Phaser {
704      public int awaitAdvanceInterruptibly(int phase,
705                                           long timeout, TimeUnit unit)
706          throws InterruptedException, TimeoutException {
707 +        long nanos = unit.toNanos(timeout);
708 +        Phaser rt;
709 +        int p = (int)(state >>> PHASE_SHIFT);
710          if (phase < 0)
711              return phase;
712 <        long s = getReconciledState();
713 <        int p = phaseOf(s);
714 <        if (p != phase)
715 <            return p;
716 <        if (unarrivedOf(s) == 0 && parent != null)
717 <            parent.awaitAdvanceInterruptibly(phase, timeout, unit);
718 <        return timedWait(phase, unit.toNanos(timeout));
712 >        if (p == phase) {
713 >            if ((p = (int)((rt = root).state >>> PHASE_SHIFT)) == phase) {
714 >                QNode node = new QNode(this, phase, true, true, nanos);
715 >                p = rt.internalAwaitAdvance(phase, node);
716 >                if (node.wasInterrupted)
717 >                    throw new InterruptedException();
718 >                else if (p == phase)
719 >                    throw new TimeoutException();
720 >            }
721 >            else
722 >                reconcileState();
723 >        }
724 >        return p;
725      }
726  
727      /**
728 <     * Forces this barrier to enter termination state. Counts of
729 <     * arrived and registered parties are unaffected. If this phaser
730 <     * has a parent, it too is terminated. This method may be useful
731 <     * for coordinating recovery after one or more tasks encounter
728 >     * Forces this phaser to enter termination state.  Counts of
729 >     * registered parties are unaffected.  If this phaser is a member
730 >     * of a tiered set of phasers, then all of the phasers in the set
731 >     * are terminated.  If this phaser is already terminated, this
732 >     * method has no effect.  This method may be useful for
733 >     * coordinating recovery after one or more tasks encounter
734       * unexpected exceptions.
735       */
736      public void forceTermination() {
737 <        for (;;) {
738 <            long s = getReconciledState();
739 <            int phase = phaseOf(s);
740 <            int parties = partiesOf(s);
741 <            int unarrived = unarrivedOf(s);
742 <            if (phase < 0 ||
743 <                casState(s, stateFor(-1, parties, unarrived))) {
687 <                releaseWaiters(0);
737 >        // Only need to change root state
738 >        final Phaser root = this.root;
739 >        long s;
740 >        while ((s = root.state) >= 0) {
741 >            long next = (s & ~(long)(MAX_PARTIES)) | TERMINATION_BIT;
742 >            if (UNSAFE.compareAndSwapLong(root, stateOffset, s, next)) {
743 >                releaseWaiters(0); // signal all threads
744                  releaseWaiters(1);
689                if (parent != null)
690                    parent.forceTermination();
745                  return;
746              }
747          }
# Line 696 | Line 750 | public class Phaser {
750      /**
751       * Returns the current phase number. The maximum phase number is
752       * {@code Integer.MAX_VALUE}, after which it restarts at
753 <     * zero. Upon termination, the phase number is negative.
753 >     * zero. Upon termination, the phase number is negative,
754 >     * in which case the prevailing phase prior to termination
755 >     * may be obtained via {@code getPhase() + Integer.MIN_VALUE}.
756       *
757       * @return the phase number, or a negative value if terminated
758       */
759      public final int getPhase() {
760 <        return phaseOf(getReconciledState());
760 >        return (int)(root.state >>> PHASE_SHIFT);
761      }
762  
763      /**
764 <     * Returns the number of parties registered at this barrier.
764 >     * Returns the number of parties registered at this phaser.
765       *
766       * @return the number of parties
767       */
# Line 715 | Line 771 | public class Phaser {
771  
772      /**
773       * Returns the number of registered parties that have arrived at
774 <     * the current phase of this barrier.
774 >     * the current phase of this phaser.
775       *
776       * @return the number of arrived parties
777       */
778      public int getArrivedParties() {
779 <        return arrivedOf(state);
779 >        return arrivedOf(reconcileState());
780      }
781  
782      /**
783       * Returns the number of registered parties that have not yet
784 <     * arrived at the current phase of this barrier.
784 >     * arrived at the current phase of this phaser.
785       *
786       * @return the number of unarrived parties
787       */
788      public int getUnarrivedParties() {
789 <        return unarrivedOf(state);
789 >        return unarrivedOf(reconcileState());
790      }
791  
792      /**
# Line 753 | Line 809 | public class Phaser {
809      }
810  
811      /**
812 <     * Returns {@code true} if this barrier has been terminated.
812 >     * Returns {@code true} if this phaser has been terminated.
813       *
814 <     * @return {@code true} if this barrier has been terminated
814 >     * @return {@code true} if this phaser has been terminated
815       */
816      public boolean isTerminated() {
817 <        return getPhase() < 0;
817 >        return root.state < 0L;
818      }
819  
820      /**
821 <     * Overridable method to perform an action upon phase advance, and
822 <     * to control termination. This method is invoked upon arrival of
823 <     * the party tripping the barrier (when all other waiting parties
824 <     * are dormant).  If this method returns {@code true}, then,
825 <     * rather than advance the phase number, this barrier will be set
826 <     * to a final termination state, and subsequent calls to {@link
827 <     * #isTerminated} will return true. Any (unchecked) Exception or
828 <     * Error thrown by an invocation of this method is propagated to
829 <     * the party attempting to trip the barrier, in which case no
830 <     * advance occurs.
821 >     * Overridable method to perform an action upon impending phase
822 >     * advance, and to control termination. This method is invoked
823 >     * upon arrival of the party advancing this phaser (when all other
824 >     * waiting parties are dormant).  If this method returns {@code
825 >     * true}, this phaser will be set to a final termination state
826 >     * upon advance, and subsequent calls to {@link #isTerminated}
827 >     * will return true. Any (unchecked) Exception or Error thrown by
828 >     * an invocation of this method is propagated to the party
829 >     * attempting to advance this phaser, in which case no advance
830 >     * occurs.
831       *
832       * <p>The arguments to this method provide the state of the phaser
833 <     * prevailing for the current transition. (When called from within
834 <     * an implementation of {@code onAdvance} the values returned by
835 <     * methods such as {@code getPhase} may or may not reliably
836 <     * indicate the state to which this transition applies.)
837 <     *
838 <     * <p>The default version returns {@code true} when the number of
839 <     * registered parties is zero. Normally, overrides that arrange
840 <     * termination for other reasons should also preserve this
841 <     * property.
842 <     *
843 <     * <p>You may override this method to perform an action with side
844 <     * effects visible to participating tasks, but it is in general
845 <     * only sensible to do so in designs where all parties register
846 <     * before any arrive, and all {@link #awaitAdvance} at each phase.
847 <     * Otherwise, you cannot ensure lack of interference from other
848 <     * parties during the invocation of this method.
833 >     * prevailing for the current transition.  The effects of invoking
834 >     * arrival, registration, and waiting methods on this phaser from
835 >     * within {@code onAdvance} are unspecified and should not be
836 >     * relied on.
837 >     *
838 >     * <p>If this phaser is a member of a tiered set of phasers, then
839 >     * {@code onAdvance} is invoked only for its root phaser on each
840 >     * advance.
841 >     *
842 >     * <p>To support the most common use cases, the default
843 >     * implementation of this method returns {@code true} when the
844 >     * number of registered parties has become zero as the result of a
845 >     * party invoking {@code arriveAndDeregister}.  You can disable
846 >     * this behavior, thus enabling continuation upon future
847 >     * registrations, by overriding this method to always return
848 >     * {@code false}:
849 >     *
850 >     * <pre> {@code
851 >     * Phaser phaser = new Phaser() {
852 >     *   protected boolean onAdvance(int phase, int parties) { return false; }
853 >     * }}</pre>
854       *
855 <     * @param phase the phase number on entering the barrier
855 >     * @param phase the current phase number on entry to this method,
856 >     * before this phaser is advanced
857       * @param registeredParties the current number of registered parties
858 <     * @return {@code true} if this barrier should terminate
858 >     * @return {@code true} if this phaser should terminate
859       */
860      protected boolean onAdvance(int phase, int registeredParties) {
861 <        return registeredParties <= 0;
861 >        return registeredParties == 0;
862      }
863  
864      /**
# Line 806 | Line 868 | public class Phaser {
868       * followed by the number of registered parties, and {@code
869       * "arrived = "} followed by the number of arrived parties.
870       *
871 <     * @return a string identifying this barrier, as well as its state
871 >     * @return a string identifying this phaser, as well as its state
872       */
873      public String toString() {
874 <        long s = getReconciledState();
874 >        return stateToString(reconcileState());
875 >    }
876 >
877 >    /**
878 >     * Implementation of toString and string-based error messages
879 >     */
880 >    private String stateToString(long s) {
881          return super.toString() +
882              "[phase = " + phaseOf(s) +
883              " parties = " + partiesOf(s) +
884              " arrived = " + arrivedOf(s) + "]";
885      }
886  
887 <    // methods for waiting
887 >    // Waiting mechanics
888  
889      /**
890 <     * Wait nodes for Treiber stack representing wait queue
890 >     * Removes and signals threads from queue for phase.
891       */
892 <    static final class QNode implements ForkJoinPool.ManagedBlocker {
893 <        final Phaser phaser;
894 <        final int phase;
895 <        final long startTime;
896 <        final long nanos;
897 <        final boolean timed;
898 <        final boolean interruptible;
899 <        volatile boolean wasInterrupted = false;
900 <        volatile Thread thread; // nulled to cancel wait
901 <        QNode next;
902 <        QNode(Phaser phaser, int phase, boolean interruptible,
835 <              boolean timed, long startTime, long nanos) {
836 <            this.phaser = phaser;
837 <            this.phase = phase;
838 <            this.timed = timed;
839 <            this.interruptible = interruptible;
840 <            this.startTime = startTime;
841 <            this.nanos = nanos;
842 <            thread = Thread.currentThread();
843 <        }
844 <        public boolean isReleasable() {
845 <            return (thread == null ||
846 <                    phaser.getPhase() != phase ||
847 <                    (interruptible && wasInterrupted) ||
848 <                    (timed && (nanos - (System.nanoTime() - startTime)) <= 0));
849 <        }
850 <        public boolean block() {
851 <            if (Thread.interrupted()) {
852 <                wasInterrupted = true;
853 <                if (interruptible)
854 <                    return true;
855 <            }
856 <            if (!timed)
857 <                LockSupport.park(this);
858 <            else {
859 <                long waitTime = nanos - (System.nanoTime() - startTime);
860 <                if (waitTime <= 0)
861 <                    return true;
862 <                LockSupport.parkNanos(this, waitTime);
863 <            }
864 <            return isReleasable();
865 <        }
866 <        void signal() {
867 <            Thread t = thread;
868 <            if (t != null) {
869 <                thread = null;
892 >    private void releaseWaiters(int phase) {
893 >        QNode q;   // first element of queue
894 >        int p;     // its phase
895 >        Thread t;  // its thread
896 >        //        assert phase != phaseOf(root.state);
897 >        AtomicReference<QNode> head = (phase & 1) == 0 ? evenQ : oddQ;
898 >        while ((q = head.get()) != null &&
899 >               q.phase != (int)(root.state >>> PHASE_SHIFT)) {
900 >            if (head.compareAndSet(q, q.next) &&
901 >                (t = q.thread) != null) {
902 >                q.thread = null;
903                  LockSupport.unpark(t);
904              }
905          }
873        boolean doWait() {
874            if (thread != null) {
875                try {
876                    ForkJoinPool.managedBlock(this, false);
877                } catch (InterruptedException ie) {
878                }
879            }
880            return wasInterrupted;
881        }
882
906      }
907  
908 <    /**
909 <     * Removes and signals waiting threads from wait queue.
887 <     */
888 <    private void releaseWaiters(int phase) {
889 <        AtomicReference<QNode> head = queueFor(phase);
890 <        QNode q;
891 <        while ((q = head.get()) != null) {
892 <            if (head.compareAndSet(q, q.next))
893 <                q.signal();
894 <        }
895 <    }
908 >    /** The number of CPUs, for spin control */
909 >    private static final int NCPU = Runtime.getRuntime().availableProcessors();
910  
911      /**
912 <     * Tries to enqueue given node in the appropriate wait queue.
913 <     *
914 <     * @return true if successful
912 >     * The number of times to spin before blocking while waiting for
913 >     * advance, per arrival while waiting. On multiprocessors, fully
914 >     * blocking and waking up a large number of threads all at once is
915 >     * usually a very slow process, so we use rechargeable spins to
916 >     * avoid it when threads regularly arrive: When a thread in
917 >     * internalAwaitAdvance notices another arrival before blocking,
918 >     * and there appear to be enough CPUs available, it spins
919 >     * SPINS_PER_ARRIVAL more times before blocking. The value trades
920 >     * off good-citizenship vs big unnecessary slowdowns.
921       */
922 <    private boolean tryEnqueue(QNode node) {
903 <        AtomicReference<QNode> head = queueFor(node.phase);
904 <        return head.compareAndSet(node.next = head.get(), node);
905 <    }
922 >    static final int SPINS_PER_ARRIVAL = (NCPU < 2) ? 1 : 1 << 8;
923  
924      /**
925 <     * Enqueues node and waits unless aborted or signalled.
925 >     * Possibly blocks and waits for phase to advance unless aborted.
926 >     * Call only from root node.
927       *
928 +     * @param phase current phase
929 +     * @param node if non-null, the wait node to track interrupt and timeout;
930 +     * if null, denotes noninterruptible wait
931       * @return current phase
932       */
933 <    private int untimedWait(int phase) {
934 <        QNode node = null;
935 <        boolean queued = false;
936 <        boolean interrupted = false;
933 >    private int internalAwaitAdvance(int phase, QNode node) {
934 >        releaseWaiters(phase-1);          // ensure old queue clean
935 >        boolean queued = false;           // true when node is enqueued
936 >        int lastUnarrived = 0;            // to increase spins upon change
937 >        int spins = SPINS_PER_ARRIVAL;
938 >        long s;
939          int p;
940 <        while ((p = getPhase()) == phase) {
941 <            if (Thread.interrupted())
942 <                interrupted = true;
943 <            else if (node == null)
944 <                node = new QNode(this, phase, false, false, 0, 0);
945 <            else if (!queued)
946 <                queued = tryEnqueue(node);
947 <            else
948 <                interrupted = node.doWait();
940 >        while ((p = (int)((s = state) >>> PHASE_SHIFT)) == phase) {
941 >            if (node == null) {           // spinning in noninterruptible mode
942 >                int unarrived = (int)s & UNARRIVED_MASK;
943 >                if (unarrived != lastUnarrived &&
944 >                    (lastUnarrived = unarrived) < NCPU)
945 >                    spins += SPINS_PER_ARRIVAL;
946 >                boolean interrupted = Thread.interrupted();
947 >                if (interrupted || --spins < 0) { // need node to record intr
948 >                    node = new QNode(this, phase, false, false, 0L);
949 >                    node.wasInterrupted = interrupted;
950 >                }
951 >            }
952 >            else if (node.isReleasable()) // done or aborted
953 >                break;
954 >            else if (!queued) {           // push onto queue
955 >                AtomicReference<QNode> head = (phase & 1) == 0 ? evenQ : oddQ;
956 >                QNode q = node.next = head.get();
957 >                if ((q == null || q.phase == phase) &&
958 >                    (int)(state >>> PHASE_SHIFT) == phase) // avoid stale enq
959 >                    queued = head.compareAndSet(q, node);
960 >            }
961 >            else {
962 >                try {
963 >                    ForkJoinPool.managedBlock(node);
964 >                } catch (InterruptedException ie) {
965 >                    node.wasInterrupted = true;
966 >                }
967 >            }
968 >        }
969 >
970 >        if (node != null) {
971 >            if (node.thread != null)
972 >                node.thread = null;       // avoid need for unpark()
973 >            if (node.wasInterrupted && !node.interruptible)
974 >                Thread.currentThread().interrupt();
975 >            if (p == phase && (p = (int)(state >>> PHASE_SHIFT)) == phase)
976 >                return p;                 // recheck abort
977          }
927        if (node != null)
928            node.thread = null;
978          releaseWaiters(phase);
930        if (interrupted)
931            Thread.currentThread().interrupt();
979          return p;
980      }
981  
982      /**
983 <     * Interruptible version
937 <     * @return current phase
983 >     * Wait nodes for Treiber stack representing wait queue
984       */
985 <    private int interruptibleWait(int phase) throws InterruptedException {
986 <        QNode node = null;
987 <        boolean queued = false;
988 <        boolean interrupted = false;
989 <        int p;
990 <        while ((p = getPhase()) == phase && !interrupted) {
991 <            if (Thread.interrupted())
992 <                interrupted = true;
993 <            else if (node == null)
994 <                node = new QNode(this, phase, true, false, 0, 0);
995 <            else if (!queued)
996 <                queued = tryEnqueue(node);
997 <            else
998 <                interrupted = node.doWait();
985 >    static final class QNode implements ForkJoinPool.ManagedBlocker {
986 >        final Phaser phaser;
987 >        final int phase;
988 >        final boolean interruptible;
989 >        final boolean timed;
990 >        boolean wasInterrupted;
991 >        long nanos;
992 >        long lastTime;
993 >        volatile Thread thread; // nulled to cancel wait
994 >        QNode next;
995 >
996 >        QNode(Phaser phaser, int phase, boolean interruptible,
997 >              boolean timed, long nanos) {
998 >            this.phaser = phaser;
999 >            this.phase = phase;
1000 >            this.interruptible = interruptible;
1001 >            this.nanos = nanos;
1002 >            this.timed = timed;
1003 >            this.lastTime = timed ? System.nanoTime() : 0L;
1004 >            thread = Thread.currentThread();
1005          }
954        if (node != null)
955            node.thread = null;
956        if (p != phase || (p = getPhase()) != phase)
957            releaseWaiters(phase);
958        if (interrupted)
959            throw new InterruptedException();
960        return p;
961    }
1006  
1007 <    /**
1008 <     * Timeout version.
1009 <     * @return current phase
1010 <     */
1011 <    private int timedWait(int phase, long nanos)
1012 <        throws InterruptedException, TimeoutException {
1013 <        long startTime = System.nanoTime();
970 <        QNode node = null;
971 <        boolean queued = false;
972 <        boolean interrupted = false;
973 <        int p;
974 <        while ((p = getPhase()) == phase && !interrupted) {
1007 >        public boolean isReleasable() {
1008 >            if (thread == null)
1009 >                return true;
1010 >            if (phaser.getPhase() != phase) {
1011 >                thread = null;
1012 >                return true;
1013 >            }
1014              if (Thread.interrupted())
1015 <                interrupted = true;
1016 <            else if (nanos - (System.nanoTime() - startTime) <= 0)
1017 <                break;
1018 <            else if (node == null)
1019 <                node = new QNode(this, phase, true, true, startTime, nanos);
1020 <            else if (!queued)
1021 <                queued = tryEnqueue(node);
1022 <            else
1023 <                interrupted = node.doWait();
1015 >                wasInterrupted = true;
1016 >            if (wasInterrupted && interruptible) {
1017 >                thread = null;
1018 >                return true;
1019 >            }
1020 >            if (timed) {
1021 >                if (nanos > 0L) {
1022 >                    long now = System.nanoTime();
1023 >                    nanos -= now - lastTime;
1024 >                    lastTime = now;
1025 >                }
1026 >                if (nanos <= 0L) {
1027 >                    thread = null;
1028 >                    return true;
1029 >                }
1030 >            }
1031 >            return false;
1032 >        }
1033 >
1034 >        public boolean block() {
1035 >            if (isReleasable())
1036 >                return true;
1037 >            else if (!timed)
1038 >                LockSupport.park(this);
1039 >            else if (nanos > 0)
1040 >                LockSupport.parkNanos(this, nanos);
1041 >            return isReleasable();
1042          }
986        if (node != null)
987            node.thread = null;
988        if (p != phase || (p = getPhase()) != phase)
989            releaseWaiters(phase);
990        if (interrupted)
991            throw new InterruptedException();
992        if (p == phase)
993            throw new TimeoutException();
994        return p;
1043      }
1044  
1045      // Unsafe mechanics
# Line 1000 | Line 1048 | public class Phaser {
1048      private static final long stateOffset =
1049          objectFieldOffset("state", Phaser.class);
1050  
1003    private final boolean casState(long cmp, long val) {
1004        return UNSAFE.compareAndSwapLong(this, stateOffset, cmp, val);
1005    }
1006
1051      private static long objectFieldOffset(String field, Class<?> klazz) {
1052          try {
1053              return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines