ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/Phaser.java
(Generate patch)

Comparing jsr166/src/jsr166y/Phaser.java (file contents):
Revision 1.65 by dl, Wed Dec 1 17:20:41 2010 UTC vs.
Revision 1.80 by jsr166, Sun Sep 13 16:28:14 2015 UTC

# Line 1 | Line 1
1   /*
2   * Written by Doug Lea with assistance from members of JCP JSR-166
3   * Expert Group and released to the public domain, as explained at
4 < * http://creativecommons.org/licenses/publicdomain
4 > * http://creativecommons.org/publicdomain/zero/1.0/
5   */
6  
7   package jsr166y;
# Line 17 | Line 17 | import java.util.concurrent.locks.LockSu
17   * {@link java.util.concurrent.CountDownLatch CountDownLatch}
18   * but supporting more flexible usage.
19   *
20 < * <p> <b>Registration.</b> Unlike the case for other barriers, the
20 > * <p><b>Registration.</b> Unlike the case for other barriers, the
21   * number of parties <em>registered</em> to synchronize on a phaser
22   * may vary over time.  Tasks may be registered at any time (using
23   * methods {@link #register}, {@link #bulkRegister}, or forms of
# Line 30 | Line 30 | import java.util.concurrent.locks.LockSu
30   * (However, you can introduce such bookkeeping by subclassing this
31   * class.)
32   *
33 < * <p> <b>Synchronization.</b> Like a {@code CyclicBarrier}, a {@code
33 > * <p><b>Synchronization.</b> Like a {@code CyclicBarrier}, a {@code
34   * Phaser} may be repeatedly awaited.  Method {@link
35   * #arriveAndAwaitAdvance} has effect analogous to {@link
36   * java.util.concurrent.CyclicBarrier#await CyclicBarrier.await}. Each
# Line 44 | Line 44 | import java.util.concurrent.locks.LockSu
44   *
45   * <ul>
46   *
47 < *   <li> <b>Arrival.</b> Methods {@link #arrive} and
47 > *   <li><b>Arrival.</b> Methods {@link #arrive} and
48   *       {@link #arriveAndDeregister} record arrival.  These methods
49   *       do not block, but return an associated <em>arrival phase
50   *       number</em>; that is, the phase number of the phaser to which
# Line 57 | Line 57 | import java.util.concurrent.locks.LockSu
57   *       flexible than, providing a barrier action to a {@code
58   *       CyclicBarrier}.
59   *
60 < *   <li> <b>Waiting.</b> Method {@link #awaitAdvance} requires an
60 > *   <li><b>Waiting.</b> Method {@link #awaitAdvance} requires an
61   *       argument indicating an arrival phase number, and returns when
62   *       the phaser advances to (or is already at) a different phase.
63   *       Unlike similar constructions using {@code CyclicBarrier},
# Line 74 | Line 74 | import java.util.concurrent.locks.LockSu
74   *
75   * </ul>
76   *
77 < * <p> <b>Termination.</b> A phaser may enter a <em>termination</em>
78 < * state in which all synchronization methods immediately return
79 < * without updating phaser state or waiting for advance, and
80 < * indicating (via a negative phase value) that execution is complete.
77 > * <p><b>Termination.</b> A phaser may enter a <em>termination</em>
78 > * state, that may be checked using method {@link #isTerminated}. Upon
79 > * termination, all synchronization methods immediately return without
80 > * waiting for advance, as indicated by a negative return value.
81 > * Similarly, attempts to register upon termination have no effect.
82   * Termination is triggered when an invocation of {@code onAdvance}
83   * returns {@code true}. The default implementation returns {@code
84   * true} if a deregistration has caused the number of registered
# Line 88 | Line 89 | import java.util.concurrent.locks.LockSu
89   * also available to abruptly release waiting threads and allow them
90   * to terminate.
91   *
92 < * <p> <b>Tiering.</b> Phasers may be <em>tiered</em> (i.e.,
92 > * <p><b>Tiering.</b> Phasers may be <em>tiered</em> (i.e.,
93   * constructed in tree structures) to reduce contention. Phasers with
94   * large numbers of parties that would otherwise experience heavy
95   * synchronization contention costs may instead be set up so that
# Line 96 | Line 97 | import java.util.concurrent.locks.LockSu
97   * increase throughput even though it incurs greater per-operation
98   * overhead.
99   *
100 + * <p>In a tree of tiered phasers, registration and deregistration of
101 + * child phasers with their parent are managed automatically.
102 + * Whenever the number of registered parties of a child phaser becomes
103 + * non-zero (as established in the {@link #Phaser(Phaser,int)}
104 + * constructor, {@link #register}, or {@link #bulkRegister}), the
105 + * child phaser is registered with its parent.  Whenever the number of
106 + * registered parties becomes zero as the result of an invocation of
107 + * {@link #arriveAndDeregister}, the child phaser is deregistered
108 + * from its parent.
109 + *
110   * <p><b>Monitoring.</b> While synchronization methods may be invoked
111   * only by registered parties, the current state of a phaser may be
112   * monitored by any caller.  At any given moment there are {@link
# Line 119 | Line 130 | import java.util.concurrent.locks.LockSu
130   * void runTasks(List<Runnable> tasks) {
131   *   final Phaser phaser = new Phaser(1); // "1" to register self
132   *   // create and start threads
133 < *   for (Runnable task : tasks) {
133 > *   for (final Runnable task : tasks) {
134   *     phaser.register();
135   *     new Thread() {
136   *       public void run() {
# Line 226 | Line 237 | public class Phaser {
237       */
238  
239      /**
240 <     * Primary state representation, holding four fields:
240 >     * Primary state representation, holding four bit-fields:
241       *
242 <     * * unarrived -- the number of parties yet to hit barrier (bits  0-15)
243 <     * * parties -- the number of parties to wait              (bits 16-31)
244 <     * * phase -- the generation of the barrier                (bits 32-62)
245 <     * * terminated -- set if barrier is terminated            (bit  63 / sign)
242 >     * unarrived  -- the number of parties yet to hit barrier (bits  0-15)
243 >     * parties    -- the number of parties to wait            (bits 16-31)
244 >     * phase      -- the generation of the barrier            (bits 32-62)
245 >     * terminated -- set if barrier is terminated             (bit  63 / sign)
246       *
247       * Except that a phaser with no registered parties is
248 <     * distinguished with the otherwise illegal state of having zero
248 >     * distinguished by the otherwise illegal state of having zero
249       * parties and one unarrived parties (encoded as EMPTY below).
250       *
251       * To efficiently maintain atomicity, these values are packed into
# Line 249 | Line 260 | public class Phaser {
260       * parent.
261       *
262       * The phase of a subphaser is allowed to lag that of its
263 <     * ancestors until it is actually accessed.  Method reconcileState
264 <     * is usually attempted only only when the number of unarrived
254 <     * parties appears to be zero, which indicates a potential lag in
255 <     * updating phase after the root advanced.
263 >     * ancestors until it is actually accessed -- see method
264 >     * reconcileState.
265       */
266      private volatile long state;
267  
268      private static final int  MAX_PARTIES     = 0xffff;
269 <    private static final int  MAX_PHASE       = 0x7fffffff;
269 >    private static final int  MAX_PHASE       = Integer.MAX_VALUE;
270      private static final int  PARTIES_SHIFT   = 16;
271      private static final int  PHASE_SHIFT     = 32;
272      private static final int  UNARRIVED_MASK  = 0xffff;      // to mask ints
273      private static final long PARTIES_MASK    = 0xffff0000L; // to mask longs
274 +    private static final long COUNTS_MASK     = 0xffffffffL;
275      private static final long TERMINATION_BIT = 1L << 63;
276  
277      // some special values
278      private static final int  ONE_ARRIVAL     = 1;
279      private static final int  ONE_PARTY       = 1 << PARTIES_SHIFT;
280 +    private static final int  ONE_DEREGISTER  = ONE_ARRIVAL|ONE_PARTY;
281      private static final int  EMPTY           = 1;
282  
283      // The following unpacking methods are usually manually inlined
284  
285      private static int unarrivedOf(long s) {
286          int counts = (int)s;
287 <        return (counts == EMPTY)? 0 : counts & UNARRIVED_MASK;
287 >        return (counts == EMPTY) ? 0 : (counts & UNARRIVED_MASK);
288      }
289  
290      private static int partiesOf(long s) {
291 <        int counts = (int)s;
281 <        return (counts == EMPTY)? 0 : counts >>> PARTIES_SHIFT;
291 >        return (int)s >>> PARTIES_SHIFT;
292      }
293  
294      private static int phaseOf(long s) {
295 <        return (int) (s >>> PHASE_SHIFT);
295 >        return (int)(s >>> PHASE_SHIFT);
296      }
297  
298      private static int arrivedOf(long s) {
299          int counts = (int)s;
300 <        return (counts == EMPTY)? 0 :
300 >        return (counts == EMPTY) ? 0 :
301              (counts >>> PARTIES_SHIFT) - (counts & UNARRIVED_MASK);
302      }
303  
# Line 335 | Line 345 | public class Phaser {
345       * Manually tuned to speed up and minimize race windows for the
346       * common case of just decrementing unarrived field.
347       *
348 <     * @param deregister false for arrive, true for arriveAndDeregister
348 >     * @param adjust value to subtract from state;
349 >     *               ONE_ARRIVAL for arrive,
350 >     *               ONE_DEREGISTER for arriveAndDeregister
351       */
352 <    private int doArrive(boolean deregister) {
353 <        int adj = deregister ? ONE_ARRIVAL|ONE_PARTY : ONE_ARRIVAL;
354 <        long s;
355 <        int phase;
356 <        while ((phase = (int)((s = state) >>> PHASE_SHIFT)) >= 0) {
352 >    private int doArrive(int adjust) {
353 >        final Phaser root = this.root;
354 >        for (;;) {
355 >            long s = (root == this) ? state : reconcileState();
356 >            int phase = (int)(s >>> PHASE_SHIFT);
357 >            if (phase < 0)
358 >                return phase;
359              int counts = (int)s;
360 <            int unarrived = counts & UNARRIVED_MASK;
361 <            if (counts == EMPTY || unarrived == 0) {
362 <                if (reconcileState() == s)
363 <                    throw new IllegalStateException(badArrive(s));
350 <            }
351 <            else if (UNSAFE.compareAndSwapLong(this, stateOffset, s, s-=adj)) {
360 >            int unarrived = (counts == EMPTY) ? 0 : (counts & UNARRIVED_MASK);
361 >            if (unarrived <= 0)
362 >                throw new IllegalStateException(badArrive(s));
363 >            if (UNSAFE.compareAndSwapLong(this, stateOffset, s, s-=adjust)) {
364                  if (unarrived == 1) {
365 <                    long n = s & PARTIES_MASK;       // unshifted parties field
366 <                    int u = ((int)n) >>> PARTIES_SHIFT;
367 <                    Phaser par = parent;
368 <                    if (par != null) {
357 <                        par.doArrive(u == 0);
358 <                        reconcileState();
359 <                    }
360 <                    else {
361 <                        n |= (((long)((phase+1) & MAX_PHASE)) << PHASE_SHIFT);
362 <                        if (onAdvance(phase, u))
365 >                    long n = s & PARTIES_MASK;  // base of next state
366 >                    int nextUnarrived = (int)n >>> PARTIES_SHIFT;
367 >                    if (root == this) {
368 >                        if (onAdvance(phase, nextUnarrived))
369                              n |= TERMINATION_BIT;
370 <                        else if (u == 0)
371 <                            n |= EMPTY;             // reset to unregistered
370 >                        else if (nextUnarrived == 0)
371 >                            n |= EMPTY;
372                          else
373 <                            n |= (long)u;           // reset unarr to parties
374 <                        // assert state == s || isTerminated();
373 >                            n |= nextUnarrived;
374 >                        int nextPhase = (phase + 1) & MAX_PHASE;
375 >                        n |= (long)nextPhase << PHASE_SHIFT;
376                          UNSAFE.compareAndSwapLong(this, stateOffset, s, n);
377                          releaseWaiters(phase);
378                      }
379 +                    else if (nextUnarrived == 0) { // propagate deregistration
380 +                        phase = parent.doArrive(ONE_DEREGISTER);
381 +                        UNSAFE.compareAndSwapLong(this, stateOffset,
382 +                                                  s, s | EMPTY);
383 +                    }
384 +                    else
385 +                        phase = parent.doArrive(ONE_ARRIVAL);
386                  }
387 <                break;
387 >                return phase;
388              }
389          }
376        return phase;
390      }
391  
392      /**
# Line 384 | Line 397 | public class Phaser {
397       */
398      private int doRegister(int registrations) {
399          // adjustment to state
400 <        long adj = ((long)registrations << PARTIES_SHIFT) | registrations;
401 <        Phaser par = parent;
400 >        long adjust = ((long)registrations << PARTIES_SHIFT) | registrations;
401 >        final Phaser parent = this.parent;
402          int phase;
403          for (;;) {
404 <            long s = state;
404 >            long s = (parent == null) ? state : reconcileState();
405              int counts = (int)s;
406              int parties = counts >>> PARTIES_SHIFT;
407              int unarrived = counts & UNARRIVED_MASK;
408              if (registrations > MAX_PARTIES - parties)
409                  throw new IllegalStateException(badRegister(s));
410 <            else if ((phase = (int)(s >>> PHASE_SHIFT)) < 0)
410 >            phase = (int)(s >>> PHASE_SHIFT);
411 >            if (phase < 0)
412                  break;
413 <            else if (counts != EMPTY) {             // not 1st registration
414 <                if (par == null || reconcileState() == s) {
413 >            if (counts != EMPTY) {                  // not 1st registration
414 >                if (parent == null || reconcileState() == s) {
415                      if (unarrived == 0)             // wait out advance
416                          root.internalAwaitAdvance(phase, null);
417                      else if (UNSAFE.compareAndSwapLong(this, stateOffset,
418 <                                                       s, s + adj))
418 >                                                       s, s + adjust))
419                          break;
420                  }
421              }
422 <            else if (par == null) {                 // 1st root registration
423 <                long next = (((long) phase) << PHASE_SHIFT) | adj;
422 >            else if (parent == null) {              // 1st root registration
423 >                long next = ((long)phase << PHASE_SHIFT) | adjust;
424                  if (UNSAFE.compareAndSwapLong(this, stateOffset, s, next))
425                      break;
426              }
427              else {
428 <                synchronized(this) {                // 1st sub registration
428 >                synchronized (this) {               // 1st sub registration
429                      if (state == s) {               // recheck under lock
430 <                        par.doRegister(1);
431 <                        do {                        // force current phase
430 >                        phase = parent.doRegister(1);
431 >                        if (phase < 0)
432 >                            break;
433 >                        // finish registration whenever parent registration
434 >                        // succeeded, even when racing with termination,
435 >                        // since these are part of the same "transaction".
436 >                        while (!UNSAFE.compareAndSwapLong
437 >                               (this, stateOffset, s,
438 >                                ((long)phase << PHASE_SHIFT) | adjust)) {
439 >                            s = state;
440                              phase = (int)(root.state >>> PHASE_SHIFT);
441 <                            // assert phase < 0 || (int)state == EMPTY;
442 <                        } while (!UNSAFE.compareAndSwapLong
421 <                                 (this, stateOffset, state,
422 <                                  (((long) phase) << PHASE_SHIFT) | adj));
441 >                            // assert (int)s == EMPTY;
442 >                        }
443                          break;
444                      }
445                  }
# Line 430 | Line 450 | public class Phaser {
450  
451      /**
452       * Resolves lagged phase propagation from root if necessary.
453 +     * Reconciliation normally occurs when root has advanced but
454 +     * subphasers have not yet done so, in which case they must finish
455 +     * their own advance by setting unarrived to parties (or if
456 +     * parties is zero, resetting to unregistered EMPTY state).
457 +     *
458 +     * @return reconciled state
459       */
460      private long reconcileState() {
461 <        Phaser rt = root;
461 >        final Phaser root = this.root;
462          long s = state;
463 <        if (rt != this) {
464 <            int phase;
465 <            while ((phase = (int)(rt.state >>> PHASE_SHIFT)) !=
466 <                   (int)(s >>> PHASE_SHIFT)) {
467 <                // assert phase < 0 || unarrivedOf(s) == 0
468 <                long t;                             // to reread s
469 <                long p = s & PARTIES_MASK;          // unshifted parties field
470 <                long n = (((long) phase) << PHASE_SHIFT) | p;
471 <                if (phase >= 0) {
472 <                    if (p == 0L)
473 <                        n |= EMPTY;                 // reset to empty
474 <                    else
449 <                        n |= p >>> PARTIES_SHIFT;   // set unarr to parties
450 <                }
451 <                if ((t = state) == s &&
452 <                    UNSAFE.compareAndSwapLong(this, stateOffset, s, s = n))
453 <                    break;
454 <                s = t;
455 <            }
463 >        if (root != this) {
464 >            int phase, p;
465 >            // CAS to root phase with current parties, tripping unarrived
466 >            while ((phase = (int)(root.state >>> PHASE_SHIFT)) !=
467 >                   (int)(s >>> PHASE_SHIFT) &&
468 >                   !UNSAFE.compareAndSwapLong
469 >                   (this, stateOffset, s,
470 >                    s = (((long)phase << PHASE_SHIFT) |
471 >                         ((phase < 0) ? (s & COUNTS_MASK) :
472 >                          (((p = (int)s >>> PARTIES_SHIFT) == 0) ? EMPTY :
473 >                           ((s & PARTIES_MASK) | p))))))
474 >                s = state;
475          }
476          return s;
477      }
# Line 490 | Line 509 | public class Phaser {
509  
510      /**
511       * Creates a new phaser with the given parent and number of
512 <     * registered unarrived parties. Registration and deregistration
513 <     * of this child phaser with its parent are managed automatically.
514 <     * If the given parent is non-null, whenever this child phaser has
496 <     * any registered parties (as established in this constructor,
497 <     * {@link #register}, or {@link #bulkRegister}), this child phaser
498 <     * is registered with its parent. Whenever the number of
499 <     * registered parties becomes zero as the result of an invocation
500 <     * of {@link #arriveAndDeregister}, this child phaser is
501 <     * deregistered from its parent.
512 >     * registered unarrived parties.  When the given parent is non-null
513 >     * and the given number of parties is greater than zero, this
514 >     * child phaser is registered with its parent.
515       *
516       * @param parent the parent phaser
517       * @param parties the number of parties required to advance to the
# Line 512 | Line 525 | public class Phaser {
525          int phase = 0;
526          this.parent = parent;
527          if (parent != null) {
528 <            Phaser r = parent.root;
529 <            this.root = r;
530 <            this.evenQ = r.evenQ;
531 <            this.oddQ = r.oddQ;
528 >            final Phaser root = parent.root;
529 >            this.root = root;
530 >            this.evenQ = root.evenQ;
531 >            this.oddQ = root.oddQ;
532              if (parties != 0)
533                  phase = parent.doRegister(1);
534          }
# Line 524 | Line 537 | public class Phaser {
537              this.evenQ = new AtomicReference<QNode>();
538              this.oddQ = new AtomicReference<QNode>();
539          }
540 <        this.state = (parties == 0)? ((long) EMPTY) :
541 <            ((((long) phase) << PHASE_SHIFT) |
542 <             (((long) parties) << PARTIES_SHIFT) |
543 <             ((long) parties));
540 >        this.state = (parties == 0) ? (long)EMPTY :
541 >            ((long)phase << PHASE_SHIFT) |
542 >            ((long)parties << PARTIES_SHIFT) |
543 >            ((long)parties);
544      }
545  
546      /**
# Line 535 | Line 548 | public class Phaser {
548       * invocation of {@link #onAdvance} is in progress, this method
549       * may await its completion before returning.  If this phaser has
550       * a parent, and this phaser previously had no registered parties,
551 <     * this phaser is also registered with its parent.
552 <     *
553 <     * @return the arrival phase number to which this registration applied
551 >     * this child phaser is also registered with its parent. If
552 >     * this phaser is terminated, the attempt to register has
553 >     * no effect, and a negative value is returned.
554 >     *
555 >     * @return the arrival phase number to which this registration
556 >     * applied.  If this value is negative, then this phaser has
557 >     * terminated, in which case registration has no effect.
558       * @throws IllegalStateException if attempting to register more
559       * than the maximum supported number of parties
560       */
# Line 549 | Line 566 | public class Phaser {
566       * Adds the given number of new unarrived parties to this phaser.
567       * If an ongoing invocation of {@link #onAdvance} is in progress,
568       * this method may await its completion before returning.  If this
569 <     * phaser has a parent, and the given number of parities is
570 <     * greater than zero, and this phaser previously had no registered
571 <     * parties, this phaser is also registered with its parent.
569 >     * phaser has a parent, and the given number of parties is greater
570 >     * than zero, and this phaser previously had no registered
571 >     * parties, this child phaser is also registered with its parent.
572 >     * If this phaser is terminated, the attempt to register has no
573 >     * effect, and a negative value is returned.
574       *
575       * @param parties the number of additional parties required to
576       * advance to the next phase
577 <     * @return the arrival phase number to which this registration applied
577 >     * @return the arrival phase number to which this registration
578 >     * applied.  If this value is negative, then this phaser has
579 >     * terminated, in which case registration has no effect.
580       * @throws IllegalStateException if attempting to register more
581       * than the maximum supported number of parties
582       * @throws IllegalArgumentException if {@code parties < 0}
# Line 581 | Line 602 | public class Phaser {
602       * of unarrived parties would become negative
603       */
604      public int arrive() {
605 <        return doArrive(false);
605 >        return doArrive(ONE_ARRIVAL);
606      }
607  
608      /**
# Line 601 | Line 622 | public class Phaser {
622       * of registered or unarrived parties would become negative
623       */
624      public int arriveAndDeregister() {
625 <        return doArrive(true);
625 >        return doArrive(ONE_DEREGISTER);
626      }
627  
628      /**
# Line 617 | Line 638 | public class Phaser {
638       * IllegalStateException} only upon some subsequent operation on
639       * this phaser, if ever.
640       *
641 <     * @return the arrival phase number, or a negative number if terminated
641 >     * @return the arrival phase number, or the (negative)
642 >     * {@linkplain #getPhase() current phase} if terminated
643       * @throws IllegalStateException if not terminated and the number
644       * of unarrived parties would become negative
645       */
646      public int arriveAndAwaitAdvance() {
647 <        return awaitAdvance(doArrive(false));
647 >        // Specialization of doArrive+awaitAdvance eliminating some reads/paths
648 >        final Phaser root = this.root;
649 >        for (;;) {
650 >            long s = (root == this) ? state : reconcileState();
651 >            int phase = (int)(s >>> PHASE_SHIFT);
652 >            if (phase < 0)
653 >                return phase;
654 >            int counts = (int)s;
655 >            int unarrived = (counts == EMPTY) ? 0 : (counts & UNARRIVED_MASK);
656 >            if (unarrived <= 0)
657 >                throw new IllegalStateException(badArrive(s));
658 >            if (UNSAFE.compareAndSwapLong(this, stateOffset, s,
659 >                                          s -= ONE_ARRIVAL)) {
660 >                if (unarrived > 1)
661 >                    return root.internalAwaitAdvance(phase, null);
662 >                if (root != this)
663 >                    return parent.arriveAndAwaitAdvance();
664 >                long n = s & PARTIES_MASK;  // base of next state
665 >                int nextUnarrived = (int)n >>> PARTIES_SHIFT;
666 >                if (onAdvance(phase, nextUnarrived))
667 >                    n |= TERMINATION_BIT;
668 >                else if (nextUnarrived == 0)
669 >                    n |= EMPTY;
670 >                else
671 >                    n |= nextUnarrived;
672 >                int nextPhase = (phase + 1) & MAX_PHASE;
673 >                n |= (long)nextPhase << PHASE_SHIFT;
674 >                if (!UNSAFE.compareAndSwapLong(this, stateOffset, s, n))
675 >                    return (int)(state >>> PHASE_SHIFT); // terminated
676 >                releaseWaiters(phase);
677 >                return nextPhase;
678 >            }
679 >        }
680      }
681  
682      /**
# Line 633 | Line 687 | public class Phaser {
687       * @param phase an arrival phase number, or negative value if
688       * terminated; this argument is normally the value returned by a
689       * previous call to {@code arrive} or {@code arriveAndDeregister}.
690 <     * @return the next arrival phase number, or a negative value
691 <     * if terminated or argument is negative
690 >     * @return the next arrival phase number, or the argument if it is
691 >     * negative, or the (negative) {@linkplain #getPhase() current phase}
692 >     * if terminated
693       */
694      public int awaitAdvance(int phase) {
695 <        Phaser rt;
696 <        int p = (int)(state >>> PHASE_SHIFT);
695 >        final Phaser root = this.root;
696 >        long s = (root == this) ? state : reconcileState();
697 >        int p = (int)(s >>> PHASE_SHIFT);
698          if (phase < 0)
699              return phase;
700 <        if (p == phase) {
701 <            if ((p = (int)((rt = root).state >>> PHASE_SHIFT)) == phase)
646 <                return rt.internalAwaitAdvance(phase, null);
647 <            reconcileState();
648 <        }
700 >        if (p == phase)
701 >            return root.internalAwaitAdvance(phase, null);
702          return p;
703      }
704  
# Line 659 | Line 712 | public class Phaser {
712       * @param phase an arrival phase number, or negative value if
713       * terminated; this argument is normally the value returned by a
714       * previous call to {@code arrive} or {@code arriveAndDeregister}.
715 <     * @return the next arrival phase number, or a negative value
716 <     * if terminated or argument is negative
715 >     * @return the next arrival phase number, or the argument if it is
716 >     * negative, or the (negative) {@linkplain #getPhase() current phase}
717 >     * if terminated
718       * @throws InterruptedException if thread interrupted while waiting
719       */
720      public int awaitAdvanceInterruptibly(int phase)
721          throws InterruptedException {
722 <        Phaser rt;
723 <        int p = (int)(state >>> PHASE_SHIFT);
722 >        final Phaser root = this.root;
723 >        long s = (root == this) ? state : reconcileState();
724 >        int p = (int)(s >>> PHASE_SHIFT);
725          if (phase < 0)
726              return phase;
727          if (p == phase) {
728 <            if ((p = (int)((rt = root).state >>> PHASE_SHIFT)) == phase) {
729 <                QNode node = new QNode(this, phase, true, false, 0L);
730 <                p = rt.internalAwaitAdvance(phase, node);
731 <                if (node.wasInterrupted)
677 <                    throw new InterruptedException();
678 <            }
679 <            else
680 <                reconcileState();
728 >            QNode node = new QNode(this, phase, true, false, 0L);
729 >            p = root.internalAwaitAdvance(phase, node);
730 >            if (node.wasInterrupted)
731 >                throw new InterruptedException();
732          }
733          return p;
734      }
# Line 696 | Line 747 | public class Phaser {
747       *        {@code unit}
748       * @param unit a {@code TimeUnit} determining how to interpret the
749       *        {@code timeout} parameter
750 <     * @return the next arrival phase number, or a negative value
751 <     * if terminated or argument is negative
750 >     * @return the next arrival phase number, or the argument if it is
751 >     * negative, or the (negative) {@linkplain #getPhase() current phase}
752 >     * if terminated
753       * @throws InterruptedException if thread interrupted while waiting
754       * @throws TimeoutException if timed out while waiting
755       */
# Line 705 | Line 757 | public class Phaser {
757                                           long timeout, TimeUnit unit)
758          throws InterruptedException, TimeoutException {
759          long nanos = unit.toNanos(timeout);
760 <        Phaser rt;
761 <        int p = (int)(state >>> PHASE_SHIFT);
760 >        final Phaser root = this.root;
761 >        long s = (root == this) ? state : reconcileState();
762 >        int p = (int)(s >>> PHASE_SHIFT);
763          if (phase < 0)
764              return phase;
765          if (p == phase) {
766 <            if ((p = (int)((rt = root).state >>> PHASE_SHIFT)) == phase) {
767 <                QNode node = new QNode(this, phase, true, true, nanos);
768 <                p = rt.internalAwaitAdvance(phase, node);
769 <                if (node.wasInterrupted)
770 <                    throw new InterruptedException();
771 <                else if (p == phase)
719 <                    throw new TimeoutException();
720 <            }
721 <            else
722 <                reconcileState();
766 >            QNode node = new QNode(this, phase, true, true, nanos);
767 >            p = root.internalAwaitAdvance(phase, node);
768 >            if (node.wasInterrupted)
769 >                throw new InterruptedException();
770 >            else if (p == phase)
771 >                throw new TimeoutException();
772          }
773          return p;
774      }
# Line 738 | Line 787 | public class Phaser {
787          final Phaser root = this.root;
788          long s;
789          while ((s = root.state) >= 0) {
790 <            long next = (s & ~(long)(MAX_PARTIES)) | TERMINATION_BIT;
791 <            if (UNSAFE.compareAndSwapLong(root, stateOffset, s, next)) {
792 <                releaseWaiters(0); // signal all threads
793 <                releaseWaiters(1);
790 >            if (UNSAFE.compareAndSwapLong(root, stateOffset,
791 >                                          s, s | TERMINATION_BIT)) {
792 >                // signal all threads
793 >                releaseWaiters(0); // Waiters on evenQ
794 >                releaseWaiters(1); // Waiters on oddQ
795                  return;
796              }
797          }
# Line 771 | Line 821 | public class Phaser {
821  
822      /**
823       * Returns the number of registered parties that have arrived at
824 <     * the current phase of this phaser.
824 >     * the current phase of this phaser. If this phaser has terminated,
825 >     * the returned value is meaningless and arbitrary.
826       *
827       * @return the number of arrived parties
828       */
# Line 781 | Line 832 | public class Phaser {
832  
833      /**
834       * Returns the number of registered parties that have not yet
835 <     * arrived at the current phase of this phaser.
835 >     * arrived at the current phase of this phaser. If this phaser has
836 >     * terminated, the returned value is meaningless and arbitrary.
837       *
838       * @return the number of unarrived parties
839       */
# Line 891 | Line 943 | public class Phaser {
943       */
944      private void releaseWaiters(int phase) {
945          QNode q;   // first element of queue
894        int p;     // its phase
946          Thread t;  // its thread
896        //        assert phase != phaseOf(root.state);
947          AtomicReference<QNode> head = (phase & 1) == 0 ? evenQ : oddQ;
948          while ((q = head.get()) != null &&
949                 q.phase != (int)(root.state >>> PHASE_SHIFT)) {
# Line 905 | Line 955 | public class Phaser {
955          }
956      }
957  
958 +    /**
959 +     * Variant of releaseWaiters that additionally tries to remove any
960 +     * nodes no longer waiting for advance due to timeout or
961 +     * interrupt. Currently, nodes are removed only if they are at
962 +     * head of queue, which suffices to reduce memory footprint in
963 +     * most usages.
964 +     *
965 +     * @return current phase on exit
966 +     */
967 +    private int abortWait(int phase) {
968 +        AtomicReference<QNode> head = (phase & 1) == 0 ? evenQ : oddQ;
969 +        for (;;) {
970 +            Thread t;
971 +            QNode q = head.get();
972 +            int p = (int)(root.state >>> PHASE_SHIFT);
973 +            if (q == null || ((t = q.thread) != null && q.phase == p))
974 +                return p;
975 +            if (head.compareAndSet(q, q.next) && t != null) {
976 +                q.thread = null;
977 +                LockSupport.unpark(t);
978 +            }
979 +        }
980 +    }
981 +
982      /** The number of CPUs, for spin control */
983      private static final int NCPU = Runtime.getRuntime().availableProcessors();
984  
# Line 923 | Line 997 | public class Phaser {
997  
998      /**
999       * Possibly blocks and waits for phase to advance unless aborted.
1000 <     * Call only from root node.
1000 >     * Call only on root phaser.
1001       *
1002       * @param phase current phase
1003       * @param node if non-null, the wait node to track interrupt and timeout;
# Line 931 | Line 1005 | public class Phaser {
1005       * @return current phase
1006       */
1007      private int internalAwaitAdvance(int phase, QNode node) {
1008 +        // assert root == this;
1009          releaseWaiters(phase-1);          // ensure old queue clean
1010          boolean queued = false;           // true when node is enqueued
1011          int lastUnarrived = 0;            // to increase spins upon change
# Line 973 | Line 1048 | public class Phaser {
1048              if (node.wasInterrupted && !node.interruptible)
1049                  Thread.currentThread().interrupt();
1050              if (p == phase && (p = (int)(state >>> PHASE_SHIFT)) == phase)
1051 <                return p;                 // recheck abort
1051 >                return abortWait(phase); // possibly clean up on abort
1052          }
1053          releaseWaiters(phase);
1054          return p;
# Line 1044 | Line 1119 | public class Phaser {
1119  
1120      // Unsafe mechanics
1121  
1122 <    private static final sun.misc.Unsafe UNSAFE = getUnsafe();
1123 <    private static final long stateOffset =
1124 <        objectFieldOffset("state", Phaser.class);
1050 <
1051 <    private static long objectFieldOffset(String field, Class<?> klazz) {
1122 >    private static final sun.misc.Unsafe UNSAFE;
1123 >    private static final long stateOffset;
1124 >    static {
1125          try {
1126 <            return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
1127 <        } catch (NoSuchFieldException e) {
1128 <            // Convert Exception to corresponding Error
1129 <            NoSuchFieldError error = new NoSuchFieldError(field);
1130 <            error.initCause(e);
1131 <            throw error;
1126 >            UNSAFE = getUnsafe();
1127 >            Class<?> k = Phaser.class;
1128 >            stateOffset = UNSAFE.objectFieldOffset
1129 >                (k.getDeclaredField("state"));
1130 >        } catch (Exception e) {
1131 >            throw new Error(e);
1132          }
1133      }
1134  
# Line 1069 | Line 1142 | public class Phaser {
1142      private static sun.misc.Unsafe getUnsafe() {
1143          try {
1144              return sun.misc.Unsafe.getUnsafe();
1145 <        } catch (SecurityException se) {
1146 <            try {
1147 <                return java.security.AccessController.doPrivileged
1148 <                    (new java.security
1149 <                     .PrivilegedExceptionAction<sun.misc.Unsafe>() {
1150 <                        public sun.misc.Unsafe run() throws Exception {
1151 <                            java.lang.reflect.Field f = sun.misc
1152 <                                .Unsafe.class.getDeclaredField("theUnsafe");
1153 <                            f.setAccessible(true);
1154 <                            return (sun.misc.Unsafe) f.get(null);
1155 <                        }});
1156 <            } catch (java.security.PrivilegedActionException e) {
1157 <                throw new RuntimeException("Could not initialize intrinsics",
1158 <                                           e.getCause());
1159 <            }
1145 >        } catch (SecurityException tryReflectionInstead) {}
1146 >        try {
1147 >            return java.security.AccessController.doPrivileged
1148 >            (new java.security.PrivilegedExceptionAction<sun.misc.Unsafe>() {
1149 >                public sun.misc.Unsafe run() throws Exception {
1150 >                    Class<sun.misc.Unsafe> k = sun.misc.Unsafe.class;
1151 >                    for (java.lang.reflect.Field f : k.getDeclaredFields()) {
1152 >                        f.setAccessible(true);
1153 >                        Object x = f.get(null);
1154 >                        if (k.isInstance(x))
1155 >                            return k.cast(x);
1156 >                    }
1157 >                    throw new NoSuchFieldError("the Unsafe");
1158 >                }});
1159 >        } catch (java.security.PrivilegedActionException e) {
1160 >            throw new RuntimeException("Could not initialize intrinsics",
1161 >                                       e.getCause());
1162          }
1163      }
1164   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines