ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/Phaser.java
(Generate patch)

Comparing jsr166/src/jsr166y/Phaser.java (file contents):
Revision 1.28 by jsr166, Wed Aug 12 02:24:35 2009 UTC vs.
Revision 1.66 by jsr166, Wed Dec 1 19:12:53 2010 UTC

# Line 6 | Line 6
6  
7   package jsr166y;
8  
9 < import java.util.concurrent.*;
10 <
9 > import java.util.concurrent.TimeUnit;
10 > import java.util.concurrent.TimeoutException;
11   import java.util.concurrent.atomic.AtomicReference;
12   import java.util.concurrent.locks.LockSupport;
13  
14   /**
15 < * A reusable synchronization barrier, similar in functionality to a
15 > * A reusable synchronization barrier, similar in functionality to
16   * {@link java.util.concurrent.CyclicBarrier CyclicBarrier} and
17   * {@link java.util.concurrent.CountDownLatch CountDownLatch}
18   * but supporting more flexible usage.
19   *
20 < * <ul>
21 < *
22 < * <li> The number of parties synchronizing on a phaser may vary over
23 < * time.  A task may register to be a party at any time, and may
24 < * deregister upon arriving at the barrier.  As is the case with most
25 < * basic synchronization constructs, registration and deregistration
26 < * affect only internal counts; they do not establish any further
27 < * internal bookkeeping, so tasks cannot query whether they are
28 < * registered. (However, you can introduce such bookkeeping by
29 < * subclassing this class.)
30 < *
31 < * <li> Each generation has an associated phase value, starting at
32 < * zero, and advancing when all parties reach the barrier (wrapping
33 < * around to zero after reaching {@code Integer.MAX_VALUE}).
34 < *
35 < * <li> Like a {@code CyclicBarrier}, a phaser may be repeatedly
36 < * awaited.  Method {@link #arriveAndAwaitAdvance} has effect
37 < * analogous to {@link java.util.concurrent.CyclicBarrier#await
38 < * CyclicBarrier.await}.  However, phasers separate two aspects of
39 < * coordination, which may also be invoked independently:
20 > * <p> <b>Registration.</b> Unlike the case for other barriers, the
21 > * number of parties <em>registered</em> to synchronize on a phaser
22 > * may vary over time.  Tasks may be registered at any time (using
23 > * methods {@link #register}, {@link #bulkRegister}, or forms of
24 > * constructors establishing initial numbers of parties), and
25 > * optionally deregistered upon any arrival (using {@link
26 > * #arriveAndDeregister}).  As is the case with most basic
27 > * synchronization constructs, registration and deregistration affect
28 > * only internal counts; they do not establish any further internal
29 > * bookkeeping, so tasks cannot query whether they are registered.
30 > * (However, you can introduce such bookkeeping by subclassing this
31 > * class.)
32 > *
33 > * <p> <b>Synchronization.</b> Like a {@code CyclicBarrier}, a {@code
34 > * Phaser} may be repeatedly awaited.  Method {@link
35 > * #arriveAndAwaitAdvance} has effect analogous to {@link
36 > * java.util.concurrent.CyclicBarrier#await CyclicBarrier.await}. Each
37 > * generation of a phaser has an associated phase number. The phase
38 > * number starts at zero, and advances when all parties arrive at the
39 > * phaser, wrapping around to zero after reaching {@code
40 > * Integer.MAX_VALUE}. The use of phase numbers enables independent
41 > * control of actions upon arrival at a phaser and upon awaiting
42 > * others, via two kinds of methods that may be invoked by any
43 > * registered party:
44   *
45   * <ul>
46   *
47 < *   <li> Arriving at a barrier. Methods {@link #arrive} and
48 < *       {@link #arriveAndDeregister} do not block, but return
49 < *       the phase value current upon entry to the method.
50 < *
51 < *   <li> Awaiting others. Method {@link #awaitAdvance} requires an
52 < *       argument indicating the entry phase, and returns when the
53 < *       barrier advances to a new phase.
54 < * </ul>
55 < *
56 < *
57 < * <li> Barrier actions, performed by the task triggering a phase
58 < * advance, are arranged by overriding method {@link #onAdvance(int,
59 < * int)}, which also controls termination. Overriding this method is
60 < * similar to, but more flexible than, providing a barrier action to a
61 < * {@code CyclicBarrier}.
62 < *
63 < * <li> Phasers may enter a <em>termination</em> state in which all
64 < * actions immediately return without updating phaser state or waiting
65 < * for advance, and indicating (via a negative phase value) that
66 < * execution is complete.  Termination is triggered when an invocation
67 < * of {@code onAdvance} returns {@code true}.  When a phaser is
68 < * controlling an action with a fixed number of iterations, it is
69 < * often convenient to override this method to cause termination when
70 < * the current phase number reaches a threshold. Method {@link
71 < * #forceTermination} is also available to abruptly release waiting
72 < * threads and allow them to terminate.
73 < *
70 < * <li> Phasers may be tiered to reduce contention. Phasers with large
71 < * numbers of parties that would otherwise experience heavy
72 < * synchronization contention costs may instead be arranged in trees.
73 < * This will typically greatly increase throughput even though it
74 < * incurs somewhat greater per-operation overhead.
75 < *
76 < * <li> By default, {@code awaitAdvance} continues to wait even if
77 < * the waiting thread is interrupted. And unlike the case in
78 < * {@code CyclicBarrier}, exceptions encountered while tasks wait
79 < * interruptibly or with timeout do not change the state of the
80 < * barrier. If necessary, you can perform any associated recovery
81 < * within handlers of those exceptions, often after invoking
82 < * {@code forceTermination}.
83 < *
84 < * <li>Phasers may be used to coordinate tasks executing in a {@link
85 < * ForkJoinPool}, which will ensure sufficient parallelism to execute
86 < * tasks when others are blocked waiting for a phase to advance.
47 > *   <li> <b>Arrival.</b> Methods {@link #arrive} and
48 > *       {@link #arriveAndDeregister} record arrival.  These methods
49 > *       do not block, but return an associated <em>arrival phase
50 > *       number</em>; that is, the phase number of the phaser to which
51 > *       the arrival applied. When the final party for a given phase
52 > *       arrives, an optional action is performed and the phase
53 > *       advances.  These actions are performed by the party
54 > *       triggering a phase advance, and are arranged by overriding
55 > *       method {@link #onAdvance(int, int)}, which also controls
56 > *       termination. Overriding this method is similar to, but more
57 > *       flexible than, providing a barrier action to a {@code
58 > *       CyclicBarrier}.
59 > *
60 > *   <li> <b>Waiting.</b> Method {@link #awaitAdvance} requires an
61 > *       argument indicating an arrival phase number, and returns when
62 > *       the phaser advances to (or is already at) a different phase.
63 > *       Unlike similar constructions using {@code CyclicBarrier},
64 > *       method {@code awaitAdvance} continues to wait even if the
65 > *       waiting thread is interrupted. Interruptible and timeout
66 > *       versions are also available, but exceptions encountered while
67 > *       tasks wait interruptibly or with timeout do not change the
68 > *       state of the phaser. If necessary, you can perform any
69 > *       associated recovery within handlers of those exceptions,
70 > *       often after invoking {@code forceTermination}.  Phasers may
71 > *       also be used by tasks executing in a {@link ForkJoinPool},
72 > *       which will ensure sufficient parallelism to execute tasks
73 > *       when others are blocked waiting for a phase to advance.
74   *
75   * </ul>
76   *
77 + * <p> <b>Termination.</b> A phaser may enter a <em>termination</em>
78 + * state in which all synchronization methods immediately return
79 + * without updating phaser state or waiting for advance, and
80 + * indicating (via a negative phase value) that execution is complete.
81 + * Termination is triggered when an invocation of {@code onAdvance}
82 + * returns {@code true}. The default implementation returns {@code
83 + * true} if a deregistration has caused the number of registered
84 + * parties to become zero.  As illustrated below, when phasers control
85 + * actions with a fixed number of iterations, it is often convenient
86 + * to override this method to cause termination when the current phase
87 + * number reaches a threshold. Method {@link #forceTermination} is
88 + * also available to abruptly release waiting threads and allow them
89 + * to terminate.
90 + *
91 + * <p> <b>Tiering.</b> Phasers may be <em>tiered</em> (i.e.,
92 + * constructed in tree structures) to reduce contention. Phasers with
93 + * large numbers of parties that would otherwise experience heavy
94 + * synchronization contention costs may instead be set up so that
95 + * groups of sub-phasers share a common parent.  This may greatly
96 + * increase throughput even though it incurs greater per-operation
97 + * overhead.
98 + *
99 + * <p><b>Monitoring.</b> While synchronization methods may be invoked
100 + * only by registered parties, the current state of a phaser may be
101 + * monitored by any caller.  At any given moment there are {@link
102 + * #getRegisteredParties} parties in total, of which {@link
103 + * #getArrivedParties} have arrived at the current phase ({@link
104 + * #getPhase}).  When the remaining ({@link #getUnarrivedParties})
105 + * parties arrive, the phase advances.  The values returned by these
106 + * methods may reflect transient states and so are not in general
107 + * useful for synchronization control.  Method {@link #toString}
108 + * returns snapshots of these state queries in a form convenient for
109 + * informal monitoring.
110 + *
111   * <p><b>Sample usages:</b>
112   *
113   * <p>A {@code Phaser} may be used instead of a {@code CountDownLatch}
114 < * to control a one-shot action serving a variable number of
115 < * parties. The typical idiom is for the method setting this up to
116 < * first register, then start the actions, then deregister, as in:
114 > * to control a one-shot action serving a variable number of parties.
115 > * The typical idiom is for the method setting this up to first
116 > * register, then start the actions, then deregister, as in:
117   *
118   *  <pre> {@code
119 < * void runTasks(List<Runnable> list) {
119 > * void runTasks(List<Runnable> tasks) {
120   *   final Phaser phaser = new Phaser(1); // "1" to register self
121   *   // create and start threads
122 < *   for (Runnable r : list) {
122 > *   for (Runnable task : tasks) {
123   *     phaser.register();
124   *     new Thread() {
125   *       public void run() {
126   *         phaser.arriveAndAwaitAdvance(); // await all creation
127 < *         r.run();
127 > *         task.run();
128   *       }
129   *     }.start();
130   *   }
# Line 116 | Line 137 | import java.util.concurrent.locks.LockSu
137   * for a given number of iterations is to override {@code onAdvance}:
138   *
139   *  <pre> {@code
140 < * void startTasks(List<Runnable> list, final int iterations) {
140 > * void startTasks(List<Runnable> tasks, final int iterations) {
141   *   final Phaser phaser = new Phaser() {
142 < *     public boolean onAdvance(int phase, int registeredParties) {
142 > *     protected boolean onAdvance(int phase, int registeredParties) {
143   *       return phase >= iterations || registeredParties == 0;
144   *     }
145   *   };
146   *   phaser.register();
147 < *   for (Runnable r : list) {
147 > *   for (final Runnable task : tasks) {
148   *     phaser.register();
149   *     new Thread() {
150   *       public void run() {
151   *         do {
152 < *           r.run();
152 > *           task.run();
153   *           phaser.arriveAndAwaitAdvance();
154 < *         } while(!phaser.isTerminated();
154 > *         } while (!phaser.isTerminated());
155   *       }
156   *     }.start();
157   *   }
158   *   phaser.arriveAndDeregister(); // deregister self, don't wait
159   * }}</pre>
160   *
161 < * <p>To create a set of tasks using a tree of phasers,
162 < * you could use code of the following form, assuming a
163 < * Task class with a constructor accepting a phaser that
164 < * it registers for upon construction:
161 > * If the main task must later await termination, it
162 > * may re-register and then execute a similar loop:
163 > *  <pre> {@code
164 > *   // ...
165 > *   phaser.register();
166 > *   while (!phaser.isTerminated())
167 > *     phaser.arriveAndAwaitAdvance();}</pre>
168 > *
169 > * <p>Related constructions may be used to await particular phase numbers
170 > * in contexts where you are sure that the phase will never wrap around
171 > * {@code Integer.MAX_VALUE}. For example:
172 > *
173 > *  <pre> {@code
174 > * void awaitPhase(Phaser phaser, int phase) {
175 > *   int p = phaser.register(); // assumes caller not already registered
176 > *   while (p < phase) {
177 > *     if (phaser.isTerminated())
178 > *       // ... deal with unexpected termination
179 > *     else
180 > *       p = phaser.arriveAndAwaitAdvance();
181 > *   }
182 > *   phaser.arriveAndDeregister();
183 > * }}</pre>
184 > *
185 > *
186 > * <p>To create a set of {@code n} tasks using a tree of phasers, you
187 > * could use code of the following form, assuming a Task class with a
188 > * constructor accepting a {@code Phaser} that it registers with upon
189 > * construction. After invocation of {@code build(new Task[n], 0, n,
190 > * new Phaser())}, these tasks could then be started, for example by
191 > * submitting to a pool:
192 > *
193   *  <pre> {@code
194 < * void build(Task[] actions, int lo, int hi, Phaser b) {
195 < *   int step = (hi - lo) / TASKS_PER_PHASER;
196 < *   if (step > 1) {
197 < *     int i = lo;
198 < *     while (i < hi) {
150 < *       int r = Math.min(i + step, hi);
151 < *       build(actions, i, r, new Phaser(b));
152 < *       i = r;
194 > * void build(Task[] tasks, int lo, int hi, Phaser ph) {
195 > *   if (hi - lo > TASKS_PER_PHASER) {
196 > *     for (int i = lo; i < hi; i += TASKS_PER_PHASER) {
197 > *       int j = Math.min(i + TASKS_PER_PHASER, hi);
198 > *       build(tasks, i, j, new Phaser(ph));
199   *     }
200   *   } else {
201   *     for (int i = lo; i < hi; ++i)
202 < *       actions[i] = new Task(b);
203 < *       // assumes new Task(b) performs b.register()
202 > *       tasks[i] = new Task(ph);
203 > *       // assumes new Task(ph) performs ph.register()
204   *   }
205 < * }
160 < * // .. initially called, for n tasks via
161 < * build(new Task[n], 0, n, new Phaser());}</pre>
205 > * }}</pre>
206   *
207   * The best value of {@code TASKS_PER_PHASER} depends mainly on
208 < * expected barrier synchronization rates. A value as low as four may
209 < * be appropriate for extremely small per-barrier task bodies (thus
208 > * expected synchronization rates. A value as low as four may
209 > * be appropriate for extremely small per-phase task bodies (thus
210   * high rates), or up to hundreds for extremely large ones.
211   *
168 * </pre>
169 *
212   * <p><b>Implementation notes</b>: This implementation restricts the
213   * maximum number of parties to 65535. Attempts to register additional
214 < * parties result in IllegalStateExceptions. However, you can and
214 > * parties result in {@code IllegalStateException}. However, you can and
215   * should create tiered phasers to accommodate arbitrarily large sets
216   * of participants.
217   *
# Line 184 | Line 226 | public class Phaser {
226       */
227  
228      /**
229 <     * Barrier state representation. Conceptually, a barrier contains
188 <     * four values:
229 >     * Primary state representation, holding four fields:
230       *
231 <     * * parties -- the number of parties to wait (16 bits)
232 <     * * unarrived -- the number of parties yet to hit barrier (16 bits)
233 <     * * phase -- the generation of the barrier (31 bits)
234 <     * * terminated -- set if barrier is terminated (1 bit)
235 <     *
236 <     * However, to efficiently maintain atomicity, these values are
237 <     * packed into a single (atomic) long. Termination uses the sign
238 <     * bit of 32 bit representation of phase, so phase is set to -1 on
239 <     * termination. Good performance relies on keeping state decoding
240 <     * and encoding simple, and keeping race windows short.
241 <     *
242 <     * Note: there are some cheats in arrive() that rely on unarrived
243 <     * count being lowest 16 bits.
231 >     * * unarrived -- the number of parties yet to hit barrier (bits  0-15)
232 >     * * parties -- the number of parties to wait              (bits 16-31)
233 >     * * phase -- the generation of the barrier                (bits 32-62)
234 >     * * terminated -- set if barrier is terminated            (bit  63 / sign)
235 >     *
236 >     * Except that a phaser with no registered parties is
237 >     * distinguished with the otherwise illegal state of having zero
238 >     * parties and one unarrived parties (encoded as EMPTY below).
239 >     *
240 >     * To efficiently maintain atomicity, these values are packed into
241 >     * a single (atomic) long. Good performance relies on keeping
242 >     * state decoding and encoding simple, and keeping race windows
243 >     * short.
244 >     *
245 >     * All state updates are performed via CAS except initial
246 >     * registration of a sub-phaser (i.e., one with a non-null
247 >     * parent).  In this (relatively rare) case, we use built-in
248 >     * synchronization to lock while first registering with its
249 >     * parent.
250 >     *
251 >     * The phase of a subphaser is allowed to lag that of its
252 >     * ancestors until it is actually accessed.  Method reconcileState
253 >     * is usually attempted only only when the number of unarrived
254 >     * parties appears to be zero, which indicates a potential lag in
255 >     * updating phase after the root advanced.
256       */
257      private volatile long state;
258  
259 <    private static final int ushortBits = 16;
260 <    private static final int ushortMask = 0xffff;
261 <    private static final int phaseMask  = 0x7fffffff;
259 >    private static final int  MAX_PARTIES     = 0xffff;
260 >    private static final int  MAX_PHASE       = 0x7fffffff;
261 >    private static final int  PARTIES_SHIFT   = 16;
262 >    private static final int  PHASE_SHIFT     = 32;
263 >    private static final int  UNARRIVED_MASK  = 0xffff;      // to mask ints
264 >    private static final long PARTIES_MASK    = 0xffff0000L; // to mask longs
265 >    private static final long TERMINATION_BIT = 1L << 63;
266 >
267 >    // some special values
268 >    private static final int  ONE_ARRIVAL     = 1;
269 >    private static final int  ONE_PARTY       = 1 << PARTIES_SHIFT;
270 >    private static final int  EMPTY           = 1;
271 >
272 >    // The following unpacking methods are usually manually inlined
273  
274      private static int unarrivedOf(long s) {
275 <        return (int) (s & ushortMask);
275 >        int counts = (int)s;
276 >        return (counts == EMPTY) ? 0 : counts & UNARRIVED_MASK;
277      }
278  
279      private static int partiesOf(long s) {
280 <        return ((int) s) >>> 16;
280 >        int counts = (int)s;
281 >        return (counts == EMPTY) ? 0 : counts >>> PARTIES_SHIFT;
282      }
283  
284      private static int phaseOf(long s) {
285 <        return (int) (s >>> 32);
285 >        return (int) (s >>> PHASE_SHIFT);
286      }
287  
288      private static int arrivedOf(long s) {
289 <        return partiesOf(s) - unarrivedOf(s);
290 <    }
291 <
226 <    private static long stateFor(int phase, int parties, int unarrived) {
227 <        return ((((long) phase) << 32) | (((long) parties) << 16) |
228 <                (long) unarrived);
229 <    }
230 <
231 <    private static long trippedStateFor(int phase, int parties) {
232 <        long lp = (long) parties;
233 <        return (((long) phase) << 32) | (lp << 16) | lp;
234 <    }
235 <
236 <    /**
237 <     * Returns message string for bad bounds exceptions.
238 <     */
239 <    private static String badBounds(int parties, int unarrived) {
240 <        return ("Attempt to set " + unarrived +
241 <                " unarrived of " + parties + " parties");
289 >        int counts = (int)s;
290 >        return (counts == EMPTY) ? 0 :
291 >            (counts >>> PARTIES_SHIFT) - (counts & UNARRIVED_MASK);
292      }
293  
294      /**
# Line 247 | Line 297 | public class Phaser {
297      private final Phaser parent;
298  
299      /**
300 <     * The root of phaser tree. Equals this if not in a tree.  Used to
251 <     * support faster state push-down.
300 >     * The root of phaser tree. Equals this if not in a tree.
301       */
302      private final Phaser root;
303  
255    // Wait queues
256
304      /**
305       * Heads of Treiber stacks for waiting threads. To eliminate
306 <     * contention while releasing some threads while adding others, we
306 >     * contention when releasing some threads while adding others, we
307       * use two of them, alternating across even and odd phases.
308 +     * Subphasers share queues with root to speed up releases.
309       */
310 <    private final AtomicReference<QNode> evenQ = new AtomicReference<QNode>();
311 <    private final AtomicReference<QNode> oddQ  = new AtomicReference<QNode>();
310 >    private final AtomicReference<QNode> evenQ;
311 >    private final AtomicReference<QNode> oddQ;
312  
313      private AtomicReference<QNode> queueFor(int phase) {
314          return ((phase & 1) == 0) ? evenQ : oddQ;
315      }
316  
317      /**
318 <     * Returns current state, first resolving lagged propagation from
271 <     * root if necessary.
318 >     * Returns message string for bounds exceptions on arrival.
319       */
320 <    private long getReconciledState() {
321 <        return (parent == null) ? state : reconcileState();
320 >    private String badArrive(long s) {
321 >        return "Attempted arrival of unregistered party for " +
322 >            stateToString(s);
323      }
324  
325      /**
326 <     * Recursively resolves state.
326 >     * Returns message string for bounds exceptions on registration.
327       */
328 <    private long reconcileState() {
329 <        Phaser p = parent;
330 <        long s = state;
331 <        if (p != null) {
332 <            while (unarrivedOf(s) == 0 && phaseOf(s) != phaseOf(root.state)) {
333 <                long parentState = p.getReconciledState();
334 <                int parentPhase = phaseOf(parentState);
335 <                int phase = phaseOf(s = state);
336 <                if (phase != parentPhase) {
337 <                    long next = trippedStateFor(parentPhase, partiesOf(s));
338 <                    if (casState(s, next)) {
328 >    private String badRegister(long s) {
329 >        return "Attempt to register more than " +
330 >            MAX_PARTIES + " parties for " + stateToString(s);
331 >    }
332 >
333 >    /**
334 >     * Main implementation for methods arrive and arriveAndDeregister.
335 >     * Manually tuned to speed up and minimize race windows for the
336 >     * common case of just decrementing unarrived field.
337 >     *
338 >     * @param deregister false for arrive, true for arriveAndDeregister
339 >     */
340 >    private int doArrive(boolean deregister) {
341 >        int adj = deregister ? ONE_ARRIVAL|ONE_PARTY : ONE_ARRIVAL;
342 >        long s;
343 >        int phase;
344 >        while ((phase = (int)((s = state) >>> PHASE_SHIFT)) >= 0) {
345 >            int counts = (int)s;
346 >            int unarrived = counts & UNARRIVED_MASK;
347 >            if (counts == EMPTY || unarrived == 0) {
348 >                if (reconcileState() == s)
349 >                    throw new IllegalStateException(badArrive(s));
350 >            }
351 >            else if (UNSAFE.compareAndSwapLong(this, stateOffset, s, s-=adj)) {
352 >                if (unarrived == 1) {
353 >                    long n = s & PARTIES_MASK;       // unshifted parties field
354 >                    int u = ((int)n) >>> PARTIES_SHIFT;
355 >                    Phaser par = parent;
356 >                    if (par != null) {
357 >                        par.doArrive(u == 0);
358 >                        reconcileState();
359 >                    }
360 >                    else {
361 >                        n |= (((long)((phase+1) & MAX_PHASE)) << PHASE_SHIFT);
362 >                        if (onAdvance(phase, u))
363 >                            n |= TERMINATION_BIT;
364 >                        else if (u == 0)
365 >                            n |= EMPTY;             // reset to unregistered
366 >                        else
367 >                            n |= (long)u;           // reset unarr to parties
368 >                        // assert state == s || isTerminated();
369 >                        UNSAFE.compareAndSwapLong(this, stateOffset, s, n);
370                          releaseWaiters(phase);
292                        s = next;
371                      }
372                  }
373 +                break;
374 +            }
375 +        }
376 +        return phase;
377 +    }
378 +
379 +    /**
380 +     * Implementation of register, bulkRegister
381 +     *
382 +     * @param registrations number to add to both parties and
383 +     * unarrived fields. Must be greater than zero.
384 +     */
385 +    private int doRegister(int registrations) {
386 +        // adjustment to state
387 +        long adj = ((long)registrations << PARTIES_SHIFT) | registrations;
388 +        Phaser par = parent;
389 +        int phase;
390 +        for (;;) {
391 +            long s = state;
392 +            int counts = (int)s;
393 +            int parties = counts >>> PARTIES_SHIFT;
394 +            int unarrived = counts & UNARRIVED_MASK;
395 +            if (registrations > MAX_PARTIES - parties)
396 +                throw new IllegalStateException(badRegister(s));
397 +            else if ((phase = (int)(s >>> PHASE_SHIFT)) < 0)
398 +                break;
399 +            else if (counts != EMPTY) {             // not 1st registration
400 +                if (par == null || reconcileState() == s) {
401 +                    if (unarrived == 0)             // wait out advance
402 +                        root.internalAwaitAdvance(phase, null);
403 +                    else if (UNSAFE.compareAndSwapLong(this, stateOffset,
404 +                                                       s, s + adj))
405 +                        break;
406 +                }
407 +            }
408 +            else if (par == null) {                 // 1st root registration
409 +                long next = (((long) phase) << PHASE_SHIFT) | adj;
410 +                if (UNSAFE.compareAndSwapLong(this, stateOffset, s, next))
411 +                    break;
412 +            }
413 +            else {
414 +                synchronized (this) {               // 1st sub registration
415 +                    if (state == s) {               // recheck under lock
416 +                        par.doRegister(1);
417 +                        do {                        // force current phase
418 +                            phase = (int)(root.state >>> PHASE_SHIFT);
419 +                            // assert phase < 0 || (int)state == EMPTY;
420 +                        } while (!UNSAFE.compareAndSwapLong
421 +                                 (this, stateOffset, state,
422 +                                  (((long) phase) << PHASE_SHIFT) | adj));
423 +                        break;
424 +                    }
425 +                }
426 +            }
427 +        }
428 +        return phase;
429 +    }
430 +
431 +    /**
432 +     * Resolves lagged phase propagation from root if necessary.
433 +     */
434 +    private long reconcileState() {
435 +        Phaser rt = root;
436 +        long s = state;
437 +        if (rt != this) {
438 +            int phase;
439 +            while ((phase = (int)(rt.state >>> PHASE_SHIFT)) !=
440 +                   (int)(s >>> PHASE_SHIFT)) {
441 +                // assert phase < 0 || unarrivedOf(s) == 0
442 +                long t;                             // to reread s
443 +                long p = s & PARTIES_MASK;          // unshifted parties field
444 +                long n = (((long) phase) << PHASE_SHIFT) | p;
445 +                if (phase >= 0) {
446 +                    if (p == 0L)
447 +                        n |= EMPTY;                 // reset to empty
448 +                    else
449 +                        n |= p >>> PARTIES_SHIFT;   // set unarr to parties
450 +                }
451 +                if ((t = state) == s &&
452 +                    UNSAFE.compareAndSwapLong(this, stateOffset, s, s = n))
453 +                    break;
454 +                s = t;
455              }
456          }
457          return s;
458      }
459  
460      /**
461 <     * Creates a new phaser without any initially registered parties,
462 <     * initial phase number 0, and no parent. Any thread using this
461 >     * Creates a new phaser with no initially registered parties, no
462 >     * parent, and initial phase number 0. Any thread using this
463       * phaser will need to first register for it.
464       */
465      public Phaser() {
466 <        this(null);
466 >        this(null, 0);
467      }
468  
469      /**
470 <     * Creates a new phaser with the given numbers of registered
471 <     * unarrived parties, initial phase number 0, and no parent.
470 >     * Creates a new phaser with the given number of registered
471 >     * unarrived parties, no parent, and initial phase number 0.
472       *
473 <     * @param parties the number of parties required to trip barrier
473 >     * @param parties the number of parties required to advance to the
474 >     * next phase
475       * @throws IllegalArgumentException if parties less than zero
476       * or greater than the maximum number of parties supported
477       */
# Line 319 | Line 480 | public class Phaser {
480      }
481  
482      /**
483 <     * Creates a new phaser with the given parent, without any
323 <     * initially registered parties. If parent is non-null this phaser
324 <     * is registered with the parent and its initial phase number is
325 <     * the same as that of parent phaser.
483 >     * Equivalent to {@link #Phaser(Phaser, int) Phaser(parent, 0)}.
484       *
485       * @param parent the parent phaser
486       */
487      public Phaser(Phaser parent) {
488 <        int phase = 0;
331 <        this.parent = parent;
332 <        if (parent != null) {
333 <            this.root = parent.root;
334 <            phase = parent.register();
335 <        }
336 <        else
337 <            this.root = this;
338 <        this.state = trippedStateFor(phase, 0);
488 >        this(parent, 0);
489      }
490  
491      /**
492 <     * Creates a new phaser with the given parent and numbers of
493 <     * registered unarrived parties. If parent is non-null, this phaser
494 <     * is registered with the parent and its initial phase number is
495 <     * the same as that of parent phaser.
492 >     * Creates a new phaser with the given parent and number of
493 >     * registered unarrived parties. Registration and deregistration
494 >     * of this child phaser with its parent are managed automatically.
495 >     * If the given parent is non-null, whenever this child phaser has
496 >     * any registered parties (as established in this constructor,
497 >     * {@link #register}, or {@link #bulkRegister}), this child phaser
498 >     * is registered with its parent. Whenever the number of
499 >     * registered parties becomes zero as the result of an invocation
500 >     * of {@link #arriveAndDeregister}, this child phaser is
501 >     * deregistered from its parent.
502       *
503       * @param parent the parent phaser
504 <     * @param parties the number of parties required to trip barrier
504 >     * @param parties the number of parties required to advance to the
505 >     * next phase
506       * @throws IllegalArgumentException if parties less than zero
507       * or greater than the maximum number of parties supported
508       */
509      public Phaser(Phaser parent, int parties) {
510 <        if (parties < 0 || parties > ushortMask)
510 >        if (parties >>> PARTIES_SHIFT != 0)
511              throw new IllegalArgumentException("Illegal number of parties");
512          int phase = 0;
513          this.parent = parent;
514          if (parent != null) {
515 <            this.root = parent.root;
516 <            phase = parent.register();
515 >            Phaser r = parent.root;
516 >            this.root = r;
517 >            this.evenQ = r.evenQ;
518 >            this.oddQ = r.oddQ;
519 >            if (parties != 0)
520 >                phase = parent.doRegister(1);
521          }
522 <        else
522 >        else {
523              this.root = this;
524 <        this.state = trippedStateFor(phase, parties);
524 >            this.evenQ = new AtomicReference<QNode>();
525 >            this.oddQ = new AtomicReference<QNode>();
526 >        }
527 >        this.state = (parties == 0) ? ((long) EMPTY) :
528 >            ((((long) phase) << PHASE_SHIFT) |
529 >             (((long) parties) << PARTIES_SHIFT) |
530 >             ((long) parties));
531      }
532  
533      /**
534 <     * Adds a new unarrived party to this phaser.
534 >     * Adds a new unarrived party to this phaser.  If an ongoing
535 >     * invocation of {@link #onAdvance} is in progress, this method
536 >     * may await its completion before returning.  If this phaser has
537 >     * a parent, and this phaser previously had no registered parties,
538 >     * this phaser is also registered with its parent.
539       *
540 <     * @return the current barrier phase number upon registration
540 >     * @return the arrival phase number to which this registration applied
541       * @throws IllegalStateException if attempting to register more
542       * than the maximum supported number of parties
543       */
# Line 376 | Line 547 | public class Phaser {
547  
548      /**
549       * Adds the given number of new unarrived parties to this phaser.
550 <     *
551 <     * @param parties the number of parties required to trip barrier
552 <     * @return the current barrier phase number upon registration
550 >     * If an ongoing invocation of {@link #onAdvance} is in progress,
551 >     * this method may await its completion before returning.  If this
552 >     * phaser has a parent, and the given number of parities is
553 >     * greater than zero, and this phaser previously had no registered
554 >     * parties, this phaser is also registered with its parent.
555 >     *
556 >     * @param parties the number of additional parties required to
557 >     * advance to the next phase
558 >     * @return the arrival phase number to which this registration applied
559       * @throws IllegalStateException if attempting to register more
560       * than the maximum supported number of parties
561 +     * @throws IllegalArgumentException if {@code parties < 0}
562       */
563      public int bulkRegister(int parties) {
564          if (parties < 0)
# Line 391 | Line 569 | public class Phaser {
569      }
570  
571      /**
572 <     * Shared code for register, bulkRegister
573 <     */
574 <    private int doRegister(int registrations) {
575 <        int phase;
576 <        for (;;) {
577 <            long s = getReconciledState();
400 <            phase = phaseOf(s);
401 <            int unarrived = unarrivedOf(s) + registrations;
402 <            int parties = partiesOf(s) + registrations;
403 <            if (phase < 0)
404 <                break;
405 <            if (parties > ushortMask || unarrived > ushortMask)
406 <                throw new IllegalStateException(badBounds(parties, unarrived));
407 <            if (phase == phaseOf(root.state) &&
408 <                casState(s, stateFor(phase, parties, unarrived)))
409 <                break;
410 <        }
411 <        return phase;
412 <    }
413 <
414 <    /**
415 <     * Arrives at the barrier, but does not wait for others.  (You can
416 <     * in turn wait for others via {@link #awaitAdvance}).
572 >     * Arrives at this phaser, without waiting for others to arrive.
573 >     *
574 >     * <p>It is a usage error for an unregistered party to invoke this
575 >     * method.  However, this error may result in an {@code
576 >     * IllegalStateException} only upon some subsequent operation on
577 >     * this phaser, if ever.
578       *
579 <     * @return the barrier phase number upon entry to this method, or a
419 <     * negative value if terminated
579 >     * @return the arrival phase number, or a negative value if terminated
580       * @throws IllegalStateException if not terminated and the number
581       * of unarrived parties would become negative
582       */
583      public int arrive() {
584 <        int phase;
425 <        for (;;) {
426 <            long s = state;
427 <            phase = phaseOf(s);
428 <            if (phase < 0)
429 <                break;
430 <            int parties = partiesOf(s);
431 <            int unarrived = unarrivedOf(s) - 1;
432 <            if (unarrived > 0) {        // Not the last arrival
433 <                if (casState(s, s - 1)) // s-1 adds one arrival
434 <                    break;
435 <            }
436 <            else if (unarrived == 0) {  // the last arrival
437 <                Phaser par = parent;
438 <                if (par == null) {      // directly trip
439 <                    if (casState
440 <                        (s,
441 <                         trippedStateFor(onAdvance(phase, parties) ? -1 :
442 <                                         ((phase + 1) & phaseMask), parties))) {
443 <                        releaseWaiters(phase);
444 <                        break;
445 <                    }
446 <                }
447 <                else {                  // cascade to parent
448 <                    if (casState(s, s - 1)) { // zeroes unarrived
449 <                        par.arrive();
450 <                        reconcileState();
451 <                        break;
452 <                    }
453 <                }
454 <            }
455 <            else if (phase != phaseOf(root.state)) // or if unreconciled
456 <                reconcileState();
457 <            else
458 <                throw new IllegalStateException(badBounds(parties, unarrived));
459 <        }
460 <        return phase;
584 >        return doArrive(false);
585      }
586  
587      /**
588 <     * Arrives at the barrier and deregisters from it without waiting
589 <     * for others. Deregistration reduces the number of parties
590 <     * required to trip the barrier in future phases.  If this phaser
588 >     * Arrives at this phaser and deregisters from it without waiting
589 >     * for others to arrive. Deregistration reduces the number of
590 >     * parties required to advance in future phases.  If this phaser
591       * has a parent, and deregistration causes this phaser to have
592 <     * zero parties, this phaser also arrives at and is deregistered
593 <     * from its parent.
592 >     * zero parties, this phaser is also deregistered from its parent.
593 >     *
594 >     * <p>It is a usage error for an unregistered party to invoke this
595 >     * method.  However, this error may result in an {@code
596 >     * IllegalStateException} only upon some subsequent operation on
597 >     * this phaser, if ever.
598       *
599 <     * @return the current barrier phase number upon entry to
472 <     * this method, or a negative value if terminated
599 >     * @return the arrival phase number, or a negative value if terminated
600       * @throws IllegalStateException if not terminated and the number
601       * of registered or unarrived parties would become negative
602       */
603      public int arriveAndDeregister() {
604 <        // similar code to arrive, but too different to merge
478 <        Phaser par = parent;
479 <        int phase;
480 <        for (;;) {
481 <            long s = state;
482 <            phase = phaseOf(s);
483 <            if (phase < 0)
484 <                break;
485 <            int parties = partiesOf(s) - 1;
486 <            int unarrived = unarrivedOf(s) - 1;
487 <            if (parties >= 0) {
488 <                if (unarrived > 0 || (unarrived == 0 && par != null)) {
489 <                    if (casState
490 <                        (s,
491 <                         stateFor(phase, parties, unarrived))) {
492 <                        if (unarrived == 0) {
493 <                            par.arriveAndDeregister();
494 <                            reconcileState();
495 <                        }
496 <                        break;
497 <                    }
498 <                    continue;
499 <                }
500 <                if (unarrived == 0) {
501 <                    if (casState
502 <                        (s,
503 <                         trippedStateFor(onAdvance(phase, parties) ? -1 :
504 <                                         ((phase + 1) & phaseMask), parties))) {
505 <                        releaseWaiters(phase);
506 <                        break;
507 <                    }
508 <                    continue;
509 <                }
510 <                if (par != null && phase != phaseOf(root.state)) {
511 <                    reconcileState();
512 <                    continue;
513 <                }
514 <            }
515 <            throw new IllegalStateException(badBounds(parties, unarrived));
516 <        }
517 <        return phase;
604 >        return doArrive(true);
605      }
606  
607      /**
608 <     * Arrives at the barrier and awaits others. Equivalent in effect
608 >     * Arrives at this phaser and awaits others. Equivalent in effect
609       * to {@code awaitAdvance(arrive())}.  If you need to await with
610       * interruption or timeout, you can arrange this with an analogous
611 <     * construction using one of the other forms of the awaitAdvance
612 <     * method.  If instead you need to deregister upon arrival use
613 <     * {@code arriveAndDeregister}.
611 >     * construction using one of the other forms of the {@code
612 >     * awaitAdvance} method.  If instead you need to deregister upon
613 >     * arrival, use {@code awaitAdvance(arriveAndDeregister())}.
614 >     *
615 >     * <p>It is a usage error for an unregistered party to invoke this
616 >     * method.  However, this error may result in an {@code
617 >     * IllegalStateException} only upon some subsequent operation on
618 >     * this phaser, if ever.
619       *
620 <     * @return the phase on entry to this method
620 >     * @return the arrival phase number, or a negative number if terminated
621       * @throws IllegalStateException if not terminated and the number
622       * of unarrived parties would become negative
623       */
624      public int arriveAndAwaitAdvance() {
625 <        return awaitAdvance(arrive());
625 >        return awaitAdvance(doArrive(false));
626      }
627  
628      /**
629 <     * Awaits the phase of the barrier to advance from the given phase
630 <     * value, or returns immediately if the current phase of the barrier
631 <     * is not equal to the given phase value or this barrier is
540 <     * terminated.
629 >     * Awaits the phase of this phaser to advance from the given phase
630 >     * value, returning immediately if the current phase is not equal
631 >     * to the given phase value or this phaser is terminated.
632       *
633 <     * @param phase the phase on entry to this method
634 <     * @return the phase on exit from this method
633 >     * @param phase an arrival phase number, or negative value if
634 >     * terminated; this argument is normally the value returned by a
635 >     * previous call to {@code arrive} or {@code arriveAndDeregister}.
636 >     * @return the next arrival phase number, or a negative value
637 >     * if terminated or argument is negative
638       */
639      public int awaitAdvance(int phase) {
640 +        Phaser rt;
641 +        int p = (int)(state >>> PHASE_SHIFT);
642          if (phase < 0)
643              return phase;
644 <        long s = getReconciledState();
645 <        int p = phaseOf(s);
646 <        if (p != phase)
647 <            return p;
648 <        if (unarrivedOf(s) == 0 && parent != null)
649 <            parent.awaitAdvance(phase);
554 <        // Fall here even if parent waited, to reconcile and help release
555 <        return untimedWait(phase);
644 >        if (p == phase) {
645 >            if ((p = (int)((rt = root).state >>> PHASE_SHIFT)) == phase)
646 >                return rt.internalAwaitAdvance(phase, null);
647 >            reconcileState();
648 >        }
649 >        return p;
650      }
651  
652      /**
653 <     * Awaits the phase of the barrier to advance from the given
654 <     * value, or returns immediately if argument is negative or this
655 <     * barrier is terminated, or throws InterruptedException if
656 <     * interrupted while waiting.
653 >     * Awaits the phase of this phaser to advance from the given phase
654 >     * value, throwing {@code InterruptedException} if interrupted
655 >     * while waiting, or returning immediately if the current phase is
656 >     * not equal to the given phase value or this phaser is
657 >     * terminated.
658       *
659 <     * @param phase the phase on entry to this method
660 <     * @return the phase on exit from this method
659 >     * @param phase an arrival phase number, or negative value if
660 >     * terminated; this argument is normally the value returned by a
661 >     * previous call to {@code arrive} or {@code arriveAndDeregister}.
662 >     * @return the next arrival phase number, or a negative value
663 >     * if terminated or argument is negative
664       * @throws InterruptedException if thread interrupted while waiting
665       */
666      public int awaitAdvanceInterruptibly(int phase)
667          throws InterruptedException {
668 +        Phaser rt;
669 +        int p = (int)(state >>> PHASE_SHIFT);
670          if (phase < 0)
671              return phase;
672 <        long s = getReconciledState();
673 <        int p = phaseOf(s);
674 <        if (p != phase)
675 <            return p;
676 <        if (unarrivedOf(s) == 0 && parent != null)
677 <            parent.awaitAdvanceInterruptibly(phase);
678 <        return interruptibleWait(phase);
672 >        if (p == phase) {
673 >            if ((p = (int)((rt = root).state >>> PHASE_SHIFT)) == phase) {
674 >                QNode node = new QNode(this, phase, true, false, 0L);
675 >                p = rt.internalAwaitAdvance(phase, node);
676 >                if (node.wasInterrupted)
677 >                    throw new InterruptedException();
678 >            }
679 >            else
680 >                reconcileState();
681 >        }
682 >        return p;
683      }
684  
685      /**
686 <     * Awaits the phase of the barrier to advance from the given value
687 <     * or the given timeout elapses, or returns immediately if
688 <     * argument is negative or this barrier is terminated.
689 <     *
690 <     * @param phase the phase on entry to this method
691 <     * @return the phase on exit from this method
686 >     * Awaits the phase of this phaser to advance from the given phase
687 >     * value or the given timeout to elapse, throwing {@code
688 >     * InterruptedException} if interrupted while waiting, or
689 >     * returning immediately if the current phase is not equal to the
690 >     * given phase value or this phaser is terminated.
691 >     *
692 >     * @param phase an arrival phase number, or negative value if
693 >     * terminated; this argument is normally the value returned by a
694 >     * previous call to {@code arrive} or {@code arriveAndDeregister}.
695 >     * @param timeout how long to wait before giving up, in units of
696 >     *        {@code unit}
697 >     * @param unit a {@code TimeUnit} determining how to interpret the
698 >     *        {@code timeout} parameter
699 >     * @return the next arrival phase number, or a negative value
700 >     * if terminated or argument is negative
701       * @throws InterruptedException if thread interrupted while waiting
702       * @throws TimeoutException if timed out while waiting
703       */
704      public int awaitAdvanceInterruptibly(int phase,
705                                           long timeout, TimeUnit unit)
706          throws InterruptedException, TimeoutException {
707 +        long nanos = unit.toNanos(timeout);
708 +        Phaser rt;
709 +        int p = (int)(state >>> PHASE_SHIFT);
710          if (phase < 0)
711              return phase;
712 <        long s = getReconciledState();
713 <        int p = phaseOf(s);
714 <        if (p != phase)
715 <            return p;
716 <        if (unarrivedOf(s) == 0 && parent != null)
717 <            parent.awaitAdvanceInterruptibly(phase, timeout, unit);
718 <        return timedWait(phase, unit.toNanos(timeout));
712 >        if (p == phase) {
713 >            if ((p = (int)((rt = root).state >>> PHASE_SHIFT)) == phase) {
714 >                QNode node = new QNode(this, phase, true, true, nanos);
715 >                p = rt.internalAwaitAdvance(phase, node);
716 >                if (node.wasInterrupted)
717 >                    throw new InterruptedException();
718 >                else if (p == phase)
719 >                    throw new TimeoutException();
720 >            }
721 >            else
722 >                reconcileState();
723 >        }
724 >        return p;
725      }
726  
727      /**
728 <     * Forces this barrier to enter termination state. Counts of
729 <     * arrived and registered parties are unaffected. If this phaser
730 <     * has a parent, it too is terminated. This method may be useful
731 <     * for coordinating recovery after one or more tasks encounter
728 >     * Forces this phaser to enter termination state.  Counts of
729 >     * registered parties are unaffected.  If this phaser is a member
730 >     * of a tiered set of phasers, then all of the phasers in the set
731 >     * are terminated.  If this phaser is already terminated, this
732 >     * method has no effect.  This method may be useful for
733 >     * coordinating recovery after one or more tasks encounter
734       * unexpected exceptions.
735       */
736      public void forceTermination() {
737 <        for (;;) {
738 <            long s = getReconciledState();
739 <            int phase = phaseOf(s);
740 <            int parties = partiesOf(s);
741 <            int unarrived = unarrivedOf(s);
742 <            if (phase < 0 ||
743 <                casState(s, stateFor(-1, parties, unarrived))) {
620 <                releaseWaiters(0);
737 >        // Only need to change root state
738 >        final Phaser root = this.root;
739 >        long s;
740 >        while ((s = root.state) >= 0) {
741 >            long next = (s & ~(long)(MAX_PARTIES)) | TERMINATION_BIT;
742 >            if (UNSAFE.compareAndSwapLong(root, stateOffset, s, next)) {
743 >                releaseWaiters(0); // signal all threads
744                  releaseWaiters(1);
622                if (parent != null)
623                    parent.forceTermination();
745                  return;
746              }
747          }
# Line 629 | Line 750 | public class Phaser {
750      /**
751       * Returns the current phase number. The maximum phase number is
752       * {@code Integer.MAX_VALUE}, after which it restarts at
753 <     * zero. Upon termination, the phase number is negative.
753 >     * zero. Upon termination, the phase number is negative,
754 >     * in which case the prevailing phase prior to termination
755 >     * may be obtained via {@code getPhase() + Integer.MIN_VALUE}.
756       *
757       * @return the phase number, or a negative value if terminated
758       */
759      public final int getPhase() {
760 <        return phaseOf(getReconciledState());
760 >        return (int)(root.state >>> PHASE_SHIFT);
761      }
762  
763      /**
764 <     * Returns the number of parties registered at this barrier.
764 >     * Returns the number of parties registered at this phaser.
765       *
766       * @return the number of parties
767       */
# Line 647 | Line 770 | public class Phaser {
770      }
771  
772      /**
773 <     * Returns the number of parties that have arrived at the current
774 <     * phase of this barrier.
773 >     * Returns the number of registered parties that have arrived at
774 >     * the current phase of this phaser.
775       *
776       * @return the number of arrived parties
777       */
778      public int getArrivedParties() {
779 <        return arrivedOf(state);
779 >        return arrivedOf(reconcileState());
780      }
781  
782      /**
783       * Returns the number of registered parties that have not yet
784 <     * arrived at the current phase of this barrier.
784 >     * arrived at the current phase of this phaser.
785       *
786       * @return the number of unarrived parties
787       */
788      public int getUnarrivedParties() {
789 <        return unarrivedOf(state);
789 >        return unarrivedOf(reconcileState());
790      }
791  
792      /**
# Line 686 | Line 809 | public class Phaser {
809      }
810  
811      /**
812 <     * Returns {@code true} if this barrier has been terminated.
812 >     * Returns {@code true} if this phaser has been terminated.
813       *
814 <     * @return {@code true} if this barrier has been terminated
814 >     * @return {@code true} if this phaser has been terminated
815       */
816      public boolean isTerminated() {
817 <        return getPhase() < 0;
817 >        return root.state < 0L;
818      }
819  
820      /**
821 <     * Overridable method to perform an action upon phase advance, and
822 <     * to control termination. This method is invoked whenever the
823 <     * barrier is tripped (and thus all other waiting parties are
824 <     * dormant). If it returns {@code true}, then, rather than advance
825 <     * the phase number, this barrier will be set to a final
826 <     * termination state, and subsequent calls to {@link #isTerminated}
827 <     * will return true.
828 <     *
829 <     * <p>The default version returns {@code true} when the number of
830 <     * registered parties is zero. Normally, overrides that arrange
831 <     * termination for other reasons should also preserve this
832 <     * property.
833 <     *
834 <     * <p>You may override this method to perform an action with side
835 <     * effects visible to participating tasks, but it is in general
836 <     * only sensible to do so in designs where all parties register
837 <     * before any arrive, and all {@link #awaitAdvance} at each phase.
838 <     * Otherwise, you cannot ensure lack of interference from other
839 <     * parties during the the invocation of this method.
821 >     * Overridable method to perform an action upon impending phase
822 >     * advance, and to control termination. This method is invoked
823 >     * upon arrival of the party advancing this phaser (when all other
824 >     * waiting parties are dormant).  If this method returns {@code
825 >     * true}, this phaser will be set to a final termination state
826 >     * upon advance, and subsequent calls to {@link #isTerminated}
827 >     * will return true. Any (unchecked) Exception or Error thrown by
828 >     * an invocation of this method is propagated to the party
829 >     * attempting to advance this phaser, in which case no advance
830 >     * occurs.
831 >     *
832 >     * <p>The arguments to this method provide the state of the phaser
833 >     * prevailing for the current transition.  The effects of invoking
834 >     * arrival, registration, and waiting methods on this phaser from
835 >     * within {@code onAdvance} are unspecified and should not be
836 >     * relied on.
837 >     *
838 >     * <p>If this phaser is a member of a tiered set of phasers, then
839 >     * {@code onAdvance} is invoked only for its root phaser on each
840 >     * advance.
841 >     *
842 >     * <p>To support the most common use cases, the default
843 >     * implementation of this method returns {@code true} when the
844 >     * number of registered parties has become zero as the result of a
845 >     * party invoking {@code arriveAndDeregister}.  You can disable
846 >     * this behavior, thus enabling continuation upon future
847 >     * registrations, by overriding this method to always return
848 >     * {@code false}:
849 >     *
850 >     * <pre> {@code
851 >     * Phaser phaser = new Phaser() {
852 >     *   protected boolean onAdvance(int phase, int parties) { return false; }
853 >     * }}</pre>
854       *
855 <     * @param phase the phase number on entering the barrier
855 >     * @param phase the current phase number on entry to this method,
856 >     * before this phaser is advanced
857       * @param registeredParties the current number of registered parties
858 <     * @return {@code true} if this barrier should terminate
858 >     * @return {@code true} if this phaser should terminate
859       */
860      protected boolean onAdvance(int phase, int registeredParties) {
861 <        return registeredParties <= 0;
861 >        return registeredParties == 0;
862      }
863  
864      /**
# Line 730 | Line 868 | public class Phaser {
868       * followed by the number of registered parties, and {@code
869       * "arrived = "} followed by the number of arrived parties.
870       *
871 <     * @return a string identifying this barrier, as well as its state
871 >     * @return a string identifying this phaser, as well as its state
872       */
873      public String toString() {
874 <        long s = getReconciledState();
874 >        return stateToString(reconcileState());
875 >    }
876 >
877 >    /**
878 >     * Implementation of toString and string-based error messages
879 >     */
880 >    private String stateToString(long s) {
881          return super.toString() +
882              "[phase = " + phaseOf(s) +
883              " parties = " + partiesOf(s) +
884              " arrived = " + arrivedOf(s) + "]";
885      }
886  
887 <    // methods for waiting
887 >    // Waiting mechanics
888  
889      /**
890 <     * Wait nodes for Treiber stack representing wait queue
890 >     * Removes and signals threads from queue for phase.
891       */
892 <    static final class QNode implements ForkJoinPool.ManagedBlocker {
893 <        final Phaser phaser;
894 <        final int phase;
895 <        final long startTime;
896 <        final long nanos;
897 <        final boolean timed;
898 <        final boolean interruptible;
899 <        volatile boolean wasInterrupted = false;
900 <        volatile Thread thread; // nulled to cancel wait
901 <        QNode next;
902 <        QNode(Phaser phaser, int phase, boolean interruptible,
759 <              boolean timed, long startTime, long nanos) {
760 <            this.phaser = phaser;
761 <            this.phase = phase;
762 <            this.timed = timed;
763 <            this.interruptible = interruptible;
764 <            this.startTime = startTime;
765 <            this.nanos = nanos;
766 <            thread = Thread.currentThread();
767 <        }
768 <        public boolean isReleasable() {
769 <            return (thread == null ||
770 <                    phaser.getPhase() != phase ||
771 <                    (interruptible && wasInterrupted) ||
772 <                    (timed && (nanos - (System.nanoTime() - startTime)) <= 0));
773 <        }
774 <        public boolean block() {
775 <            if (Thread.interrupted()) {
776 <                wasInterrupted = true;
777 <                if (interruptible)
778 <                    return true;
779 <            }
780 <            if (!timed)
781 <                LockSupport.park(this);
782 <            else {
783 <                long waitTime = nanos - (System.nanoTime() - startTime);
784 <                if (waitTime <= 0)
785 <                    return true;
786 <                LockSupport.parkNanos(this, waitTime);
787 <            }
788 <            return isReleasable();
789 <        }
790 <        void signal() {
791 <            Thread t = thread;
792 <            if (t != null) {
793 <                thread = null;
892 >    private void releaseWaiters(int phase) {
893 >        QNode q;   // first element of queue
894 >        int p;     // its phase
895 >        Thread t;  // its thread
896 >        //        assert phase != phaseOf(root.state);
897 >        AtomicReference<QNode> head = (phase & 1) == 0 ? evenQ : oddQ;
898 >        while ((q = head.get()) != null &&
899 >               q.phase != (int)(root.state >>> PHASE_SHIFT)) {
900 >            if (head.compareAndSet(q, q.next) &&
901 >                (t = q.thread) != null) {
902 >                q.thread = null;
903                  LockSupport.unpark(t);
904              }
905          }
797        boolean doWait() {
798            if (thread != null) {
799                try {
800                    ForkJoinPool.managedBlock(this, false);
801                } catch (InterruptedException ie) {
802                }
803            }
804            return wasInterrupted;
805        }
806
906      }
907  
908 <    /**
909 <     * Removes and signals waiting threads from wait queue.
811 <     */
812 <    private void releaseWaiters(int phase) {
813 <        AtomicReference<QNode> head = queueFor(phase);
814 <        QNode q;
815 <        while ((q = head.get()) != null) {
816 <            if (head.compareAndSet(q, q.next))
817 <                q.signal();
818 <        }
819 <    }
908 >    /** The number of CPUs, for spin control */
909 >    private static final int NCPU = Runtime.getRuntime().availableProcessors();
910  
911      /**
912 <     * Tries to enqueue given node in the appropriate wait queue.
913 <     *
914 <     * @return true if successful
912 >     * The number of times to spin before blocking while waiting for
913 >     * advance, per arrival while waiting. On multiprocessors, fully
914 >     * blocking and waking up a large number of threads all at once is
915 >     * usually a very slow process, so we use rechargeable spins to
916 >     * avoid it when threads regularly arrive: When a thread in
917 >     * internalAwaitAdvance notices another arrival before blocking,
918 >     * and there appear to be enough CPUs available, it spins
919 >     * SPINS_PER_ARRIVAL more times before blocking. The value trades
920 >     * off good-citizenship vs big unnecessary slowdowns.
921       */
922 <    private boolean tryEnqueue(QNode node) {
827 <        AtomicReference<QNode> head = queueFor(node.phase);
828 <        return head.compareAndSet(node.next = head.get(), node);
829 <    }
922 >    static final int SPINS_PER_ARRIVAL = (NCPU < 2) ? 1 : 1 << 8;
923  
924      /**
925 <     * Enqueues node and waits unless aborted or signalled.
925 >     * Possibly blocks and waits for phase to advance unless aborted.
926 >     * Call only from root node.
927       *
928 +     * @param phase current phase
929 +     * @param node if non-null, the wait node to track interrupt and timeout;
930 +     * if null, denotes noninterruptible wait
931       * @return current phase
932       */
933 <    private int untimedWait(int phase) {
934 <        QNode node = null;
935 <        boolean queued = false;
936 <        boolean interrupted = false;
933 >    private int internalAwaitAdvance(int phase, QNode node) {
934 >        releaseWaiters(phase-1);          // ensure old queue clean
935 >        boolean queued = false;           // true when node is enqueued
936 >        int lastUnarrived = 0;            // to increase spins upon change
937 >        int spins = SPINS_PER_ARRIVAL;
938 >        long s;
939          int p;
940 <        while ((p = getPhase()) == phase) {
941 <            if (Thread.interrupted())
942 <                interrupted = true;
943 <            else if (node == null)
944 <                node = new QNode(this, phase, false, false, 0, 0);
945 <            else if (!queued)
946 <                queued = tryEnqueue(node);
947 <            else
948 <                interrupted = node.doWait();
940 >        while ((p = (int)((s = state) >>> PHASE_SHIFT)) == phase) {
941 >            if (node == null) {           // spinning in noninterruptible mode
942 >                int unarrived = (int)s & UNARRIVED_MASK;
943 >                if (unarrived != lastUnarrived &&
944 >                    (lastUnarrived = unarrived) < NCPU)
945 >                    spins += SPINS_PER_ARRIVAL;
946 >                boolean interrupted = Thread.interrupted();
947 >                if (interrupted || --spins < 0) { // need node to record intr
948 >                    node = new QNode(this, phase, false, false, 0L);
949 >                    node.wasInterrupted = interrupted;
950 >                }
951 >            }
952 >            else if (node.isReleasable()) // done or aborted
953 >                break;
954 >            else if (!queued) {           // push onto queue
955 >                AtomicReference<QNode> head = (phase & 1) == 0 ? evenQ : oddQ;
956 >                QNode q = node.next = head.get();
957 >                if ((q == null || q.phase == phase) &&
958 >                    (int)(state >>> PHASE_SHIFT) == phase) // avoid stale enq
959 >                    queued = head.compareAndSet(q, node);
960 >            }
961 >            else {
962 >                try {
963 >                    ForkJoinPool.managedBlock(node);
964 >                } catch (InterruptedException ie) {
965 >                    node.wasInterrupted = true;
966 >                }
967 >            }
968 >        }
969 >
970 >        if (node != null) {
971 >            if (node.thread != null)
972 >                node.thread = null;       // avoid need for unpark()
973 >            if (node.wasInterrupted && !node.interruptible)
974 >                Thread.currentThread().interrupt();
975 >            if (p == phase && (p = (int)(state >>> PHASE_SHIFT)) == phase)
976 >                return p;                 // recheck abort
977          }
851        if (node != null)
852            node.thread = null;
978          releaseWaiters(phase);
854        if (interrupted)
855            Thread.currentThread().interrupt();
979          return p;
980      }
981  
982      /**
983 <     * Interruptible version
861 <     * @return current phase
983 >     * Wait nodes for Treiber stack representing wait queue
984       */
985 <    private int interruptibleWait(int phase) throws InterruptedException {
986 <        QNode node = null;
987 <        boolean queued = false;
988 <        boolean interrupted = false;
989 <        int p;
990 <        while ((p = getPhase()) == phase && !interrupted) {
991 <            if (Thread.interrupted())
992 <                interrupted = true;
993 <            else if (node == null)
994 <                node = new QNode(this, phase, true, false, 0, 0);
995 <            else if (!queued)
996 <                queued = tryEnqueue(node);
997 <            else
998 <                interrupted = node.doWait();
985 >    static final class QNode implements ForkJoinPool.ManagedBlocker {
986 >        final Phaser phaser;
987 >        final int phase;
988 >        final boolean interruptible;
989 >        final boolean timed;
990 >        boolean wasInterrupted;
991 >        long nanos;
992 >        long lastTime;
993 >        volatile Thread thread; // nulled to cancel wait
994 >        QNode next;
995 >
996 >        QNode(Phaser phaser, int phase, boolean interruptible,
997 >              boolean timed, long nanos) {
998 >            this.phaser = phaser;
999 >            this.phase = phase;
1000 >            this.interruptible = interruptible;
1001 >            this.nanos = nanos;
1002 >            this.timed = timed;
1003 >            this.lastTime = timed ? System.nanoTime() : 0L;
1004 >            thread = Thread.currentThread();
1005          }
878        if (node != null)
879            node.thread = null;
880        if (p != phase || (p = getPhase()) != phase)
881            releaseWaiters(phase);
882        if (interrupted)
883            throw new InterruptedException();
884        return p;
885    }
1006  
1007 <    /**
1008 <     * Timeout version.
1009 <     * @return current phase
1010 <     */
1011 <    private int timedWait(int phase, long nanos)
1012 <        throws InterruptedException, TimeoutException {
1013 <        long startTime = System.nanoTime();
894 <        QNode node = null;
895 <        boolean queued = false;
896 <        boolean interrupted = false;
897 <        int p;
898 <        while ((p = getPhase()) == phase && !interrupted) {
1007 >        public boolean isReleasable() {
1008 >            if (thread == null)
1009 >                return true;
1010 >            if (phaser.getPhase() != phase) {
1011 >                thread = null;
1012 >                return true;
1013 >            }
1014              if (Thread.interrupted())
1015 <                interrupted = true;
1016 <            else if (nanos - (System.nanoTime() - startTime) <= 0)
1017 <                break;
1018 <            else if (node == null)
1019 <                node = new QNode(this, phase, true, true, startTime, nanos);
1020 <            else if (!queued)
1021 <                queued = tryEnqueue(node);
1022 <            else
1023 <                interrupted = node.doWait();
1015 >                wasInterrupted = true;
1016 >            if (wasInterrupted && interruptible) {
1017 >                thread = null;
1018 >                return true;
1019 >            }
1020 >            if (timed) {
1021 >                if (nanos > 0L) {
1022 >                    long now = System.nanoTime();
1023 >                    nanos -= now - lastTime;
1024 >                    lastTime = now;
1025 >                }
1026 >                if (nanos <= 0L) {
1027 >                    thread = null;
1028 >                    return true;
1029 >                }
1030 >            }
1031 >            return false;
1032 >        }
1033 >
1034 >        public boolean block() {
1035 >            if (isReleasable())
1036 >                return true;
1037 >            else if (!timed)
1038 >                LockSupport.park(this);
1039 >            else if (nanos > 0)
1040 >                LockSupport.parkNanos(this, nanos);
1041 >            return isReleasable();
1042          }
910        if (node != null)
911            node.thread = null;
912        if (p != phase || (p = getPhase()) != phase)
913            releaseWaiters(phase);
914        if (interrupted)
915            throw new InterruptedException();
916        if (p == phase)
917            throw new TimeoutException();
918        return p;
1043      }
1044  
1045      // Unsafe mechanics
# Line 924 | Line 1048 | public class Phaser {
1048      private static final long stateOffset =
1049          objectFieldOffset("state", Phaser.class);
1050  
927    private final boolean casState(long cmp, long val) {
928        return UNSAFE.compareAndSwapLong(this, stateOffset, cmp, val);
929    }
930
1051      private static long objectFieldOffset(String field, Class<?> klazz) {
1052          try {
1053              return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines