ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/Phaser.java
(Generate patch)

Comparing jsr166/src/jsr166y/Phaser.java (file contents):
Revision 1.7 by jsr166, Mon Jan 5 03:53:26 2009 UTC vs.
Revision 1.48 by dl, Sun Oct 24 21:45:39 2010 UTC

# Line 5 | Line 5
5   */
6  
7   package jsr166y;
8 +
9   import java.util.concurrent.*;
10 < import java.util.concurrent.atomic.*;
10 >
11 > import java.util.concurrent.atomic.AtomicReference;
12   import java.util.concurrent.locks.LockSupport;
11 import sun.misc.Unsafe;
12 import java.lang.reflect.*;
13  
14   /**
15 < * A reusable synchronization barrier, similar in functionality to a
16 < * {@link java.util.concurrent.CyclicBarrier} and {@link
17 < * java.util.concurrent.CountDownLatch} but supporting more flexible
18 < * usage.
15 > * A reusable synchronization barrier, similar in functionality to
16 > * {@link java.util.concurrent.CyclicBarrier CyclicBarrier} and
17 > * {@link java.util.concurrent.CountDownLatch CountDownLatch}
18 > * but supporting more flexible usage.
19 > *
20 > * <p> <b>Registration.</b> Unlike the case for other barriers, the
21 > * number of parties <em>registered</em> to synchronize on a phaser
22 > * may vary over time.  Tasks may be registered at any time (using
23 > * methods {@link #register}, {@link #bulkRegister}, or forms of
24 > * constructors establishing initial numbers of parties), and
25 > * optionally deregistered upon any arrival (using {@link
26 > * #arriveAndDeregister}).  As is the case with most basic
27 > * synchronization constructs, registration and deregistration affect
28 > * only internal counts; they do not establish any further internal
29 > * bookkeeping, so tasks cannot query whether they are registered.
30 > * (However, you can introduce such bookkeeping by subclassing this
31 > * class.)
32 > *
33 > * <p> <b>Synchronization.</b> Like a {@code CyclicBarrier}, a {@code
34 > * Phaser} may be repeatedly awaited.  Method {@link
35 > * #arriveAndAwaitAdvance} has effect analogous to {@link
36 > * java.util.concurrent.CyclicBarrier#await CyclicBarrier.await}. Each
37 > * generation of a {@code Phaser} has an associated phase number. The
38 > * phase number starts at zero, and advances when all parties arrive
39 > * at the barrier, wrapping around to zero after reaching {@code
40 > * Integer.MAX_VALUE}. The use of phase numbers enables independent
41 > * control of actions upon arrival at a barrier and upon awaiting
42 > * others, via two kinds of methods that may be invoked by any
43 > * registered party:
44   *
45   * <ul>
46   *
47 < * <li> The number of parties synchronizing on a phaser may vary over
48 < * time.  A task may register to be a party at any time, and may
49 < * deregister upon arriving at the barrier.  As is the case with most
50 < * basic synchronization constructs, registration and deregistration
51 < * affect only internal counts; they do not establish any further
52 < * internal bookkeeping, so tasks cannot query whether they are
53 < * registered. (However, you can introduce such bookkeeping in by
54 < * subclassing this class.)
55 < *
56 < * <li> Each generation has an associated phase value, starting at
57 < * zero, and advancing when all parties reach the barrier (wrapping
58 < * around to zero after reaching {@code Integer.MAX_VALUE}).
59 < *
60 < * <li> Like a CyclicBarrier, a Phaser may be repeatedly awaited.
61 < * Method {@code arriveAndAwaitAdvance} has effect analogous to
62 < * {@code CyclicBarrier.await}.  However, Phasers separate two
63 < * aspects of coordination, that may also be invoked independently:
64 < *
65 < * <ul>
47 > *   <li> <b>Arrival.</b> Methods {@link #arrive} and
48 > *       {@link #arriveAndDeregister} record arrival at a
49 > *       barrier. These methods do not block, but return an associated
50 > *       <em>arrival phase number</em>; that is, the phase number of
51 > *       the barrier to which the arrival applied. When the final
52 > *       party for a given phase arrives, an optional barrier action
53 > *       is performed and the phase advances.  Barrier actions,
54 > *       performed by the party triggering a phase advance, are
55 > *       arranged by overriding method {@link #onAdvance(int, int)},
56 > *       which also controls termination. Overriding this method is
57 > *       similar to, but more flexible than, providing a barrier
58 > *       action to a {@code CyclicBarrier}.
59 > *
60 > *   <li> <b>Waiting.</b> Method {@link #awaitAdvance} requires an
61 > *       argument indicating an arrival phase number, and returns when
62 > *       the barrier advances to (or is already at) a different phase.
63 > *       Unlike similar constructions using {@code CyclicBarrier},
64 > *       method {@code awaitAdvance} continues to wait even if the
65 > *       waiting thread is interrupted. Interruptible and timeout
66 > *       versions are also available, but exceptions encountered while
67 > *       tasks wait interruptibly or with timeout do not change the
68 > *       state of the barrier. If necessary, you can perform any
69 > *       associated recovery within handlers of those exceptions,
70 > *       often after invoking {@code forceTermination}.  Phasers may
71 > *       also be used by tasks executing in a {@link ForkJoinPool},
72 > *       which will ensure sufficient parallelism to execute tasks
73 > *       when others are blocked waiting for a phase to advance.
74   *
42 *   <li> Arriving at a barrier. Methods {@code arrive} and
43 *       {@code arriveAndDeregister} do not block, but return
44 *       the phase value current upon entry to the method.
45 *
46 *   <li> Awaiting others. Method {@code awaitAdvance} requires an
47 *       argument indicating the entry phase, and returns when the
48 *       barrier advances to a new phase.
75   * </ul>
76   *
77 < *
78 < * <li> Barrier actions, performed by the task triggering a phase
79 < * advance while others may be waiting, are arranged by overriding
80 < * method {@code onAdvance}, that also controls termination.
81 < * Overriding this method may be used to similar but more flexible
82 < * effect as providing a barrier action to a CyclicBarrier.
83 < *
58 < * <li> Phasers may enter a <em>termination</em> state in which all
59 < * await actions immediately return, indicating (via a negative phase
60 < * value) that execution is complete.  Termination is triggered by
61 < * executing the overridable {@code onAdvance} method that is invoked
62 < * each time the barrier is about to be tripped. When a Phaser is
63 < * controlling an action with a fixed number of iterations, it is
77 > * <p> <b>Termination.</b> A {@code Phaser} may enter a
78 > * <em>termination</em> state in which all synchronization methods
79 > * immediately return without updating phaser state or waiting for
80 > * advance, and indicating (via a negative phase value) that execution
81 > * is complete.  Termination is triggered when an invocation of {@code
82 > * onAdvance} returns {@code true}.  As illustrated below, when
83 > * phasers control actions with a fixed number of iterations, it is
84   * often convenient to override this method to cause termination when
85 < * the current phase number reaches a threshold. Method
86 < * {@code forceTermination} is also available to abruptly release
87 < * waiting threads and allow them to terminate.
85 > * the current phase number reaches a threshold. Method {@link
86 > * #forceTermination} is also available to abruptly release waiting
87 > * threads and allow them to terminate.
88   *
89 < * <li> Phasers may be tiered to reduce contention. Phasers with large
89 > * <p> <b>Tiering.</b> Phasers may be <em>tiered</em> (i.e., arranged
90 > * in tree structures) to reduce contention. Phasers with large
91   * numbers of parties that would otherwise experience heavy
92 < * synchronization contention costs may instead be arranged in trees.
93 < * This will typically greatly increase throughput even though it
94 < * incurs somewhat greater per-operation overhead.
95 < *
96 < * <li> By default, {@code awaitAdvance} continues to wait even if
97 < * the waiting thread is interrupted. And unlike the case in
98 < * CyclicBarriers, exceptions encountered while tasks wait
99 < * interruptibly or with timeout do not change the state of the
100 < * barrier. If necessary, you can perform any associated recovery
101 < * within handlers of those exceptions, often after invoking
102 < * {@code forceTermination}.
103 < *
104 < * </ul>
92 > * synchronization contention costs may instead be set up so that
93 > * groups of sub-phasers share a common parent.  This may greatly
94 > * increase throughput even though it incurs greater per-operation
95 > * overhead.
96 > *
97 > * <p><b>Monitoring.</b> While synchronization methods may be invoked
98 > * only by registered parties, the current state of a phaser may be
99 > * monitored by any caller.  At any given moment there are {@link
100 > * #getRegisteredParties} parties in total, of which {@link
101 > * #getArrivedParties} have arrived at the current phase ({@link
102 > * #getPhase}).  When the remaining ({@link #getUnarrivedParties})
103 > * parties arrive, the phase advances.  The values returned by these
104 > * methods may reflect transient states and so are not in general
105 > * useful for synchronization control.  Method {@link #toString}
106 > * returns snapshots of these state queries in a form convenient for
107 > * informal monitoring.
108   *
109   * <p><b>Sample usages:</b>
110   *
111 < * <p>A Phaser may be used instead of a {@code CountdownLatch} to control
112 < * a one-shot action serving a variable number of parties. The typical
113 < * idiom is for the method setting this up to first register, then
114 < * start the actions, then deregister, as in:
115 < *
116 < * <pre>
117 < *  void runTasks(List&lt;Runnable&gt; list) {
118 < *    final Phaser phaser = new Phaser(1); // "1" to register self
119 < *    for (Runnable r : list) {
120 < *      phaser.register();
121 < *      new Thread() {
122 < *        public void run() {
123 < *          phaser.arriveAndAwaitAdvance(); // await all creation
124 < *          r.run();
125 < *          phaser.arriveAndDeregister();   // signal completion
126 < *        }
127 < *      }.start();
111 > * <p>A {@code Phaser} may be used instead of a {@code CountDownLatch}
112 > * to control a one-shot action serving a variable number of parties.
113 > * The typical idiom is for the method setting this up to first
114 > * register, then start the actions, then deregister, as in:
115 > *
116 > *  <pre> {@code
117 > * void runTasks(List<Runnable> tasks) {
118 > *   final Phaser phaser = new Phaser(1); // "1" to register self
119 > *   // create and start threads
120 > *   for (Runnable task : tasks) {
121 > *     phaser.register();
122 > *     new Thread() {
123 > *       public void run() {
124 > *         phaser.arriveAndAwaitAdvance(); // await all creation
125 > *         task.run();
126 > *       }
127 > *     }.start();
128   *   }
129   *
130 < *   doSomethingOnBehalfOfWorkers();
131 < *   phaser.arrive(); // allow threads to start
132 < *   int p = phaser.arriveAndDeregister(); // deregister self  ...
109 < *   p = phaser.awaitAdvance(p); // ... and await arrival
110 < *   otherActions(); // do other things while tasks execute
111 < *   phaser.awaitAdvance(p); // awit final completion
112 < * }
113 < * </pre>
130 > *   // allow threads to start and deregister self
131 > *   phaser.arriveAndDeregister();
132 > * }}</pre>
133   *
134   * <p>One way to cause a set of threads to repeatedly perform actions
135   * for a given number of iterations is to override {@code onAdvance}:
136   *
137 < * <pre>
138 < *  void startTasks(List&lt;Runnable&gt; list, final int iterations) {
139 < *    final Phaser phaser = new Phaser() {
140 < *       public boolean onAdvance(int phase, int registeredParties) {
141 < *         return phase &gt;= iterations || registeredParties == 0;
137 > *  <pre> {@code
138 > * void startTasks(List<Runnable> tasks, final int iterations) {
139 > *   final Phaser phaser = new Phaser() {
140 > *     protected boolean onAdvance(int phase, int registeredParties) {
141 > *       return phase >= iterations || registeredParties == 0;
142 > *     }
143 > *   };
144 > *   phaser.register();
145 > *   for (final Runnable task : tasks) {
146 > *     phaser.register();
147 > *     new Thread() {
148 > *       public void run() {
149 > *         do {
150 > *           task.run();
151 > *           phaser.arriveAndAwaitAdvance();
152 > *         } while (!phaser.isTerminated());
153   *       }
154 < *    };
125 < *    phaser.register();
126 < *    for (Runnable r : list) {
127 < *      phaser.register();
128 < *      new Thread() {
129 < *        public void run() {
130 < *           do {
131 < *             r.run();
132 < *             phaser.arriveAndAwaitAdvance();
133 < *           } while(!phaser.isTerminated();
134 < *        }
135 < *      }.start();
154 > *     }.start();
155   *   }
156   *   phaser.arriveAndDeregister(); // deregister self, don't wait
157 < * }
158 < * </pre>
157 > * }}</pre>
158 > *
159 > * If the main task must later await termination, it
160 > * may re-register and then execute a similar loop:
161 > *  <pre> {@code
162 > *   // ...
163 > *   phaser.register();
164 > *   while (!phaser.isTerminated())
165 > *     phaser.arriveAndAwaitAdvance();}</pre>
166 > *
167 > * <p>Related constructions may be used to await particular phase numbers
168 > * in contexts where you are sure that the phase will never wrap around
169 > * {@code Integer.MAX_VALUE}. For example:
170 > *
171 > *  <pre> {@code
172 > * void awaitPhase(Phaser phaser, int phase) {
173 > *   int p = phaser.register(); // assumes caller not already registered
174 > *   while (p < phase) {
175 > *     if (phaser.isTerminated())
176 > *       // ... deal with unexpected termination
177 > *     else
178 > *       p = phaser.arriveAndAwaitAdvance();
179 > *   }
180 > *   phaser.arriveAndDeregister();
181 > * }}</pre>
182   *
183 < * <p> To create a set of tasks using a tree of Phasers,
183 > *
184 > * <p>To create a set of tasks using a tree of phasers,
185   * you could use code of the following form, assuming a
186 < * Task class with a constructor accepting a Phaser that
187 < * it registers for upon construction:
188 < * <pre>
189 < *  void build(Task[] actions, int lo, int hi, Phaser b) {
190 < *    int step = (hi - lo) / TASKS_PER_PHASER;
191 < *    if (step &gt; 1) {
192 < *       int i = lo;
193 < *       while (i &lt; hi) {
194 < *         int r = Math.min(i + step, hi);
195 < *         build(actions, i, r, new Phaser(b));
196 < *         i = r;
197 < *       }
198 < *    }
199 < *    else {
200 < *      for (int i = lo; i &lt; hi; ++i)
201 < *        actions[i] = new Task(b);
202 < *        // assumes new Task(b) performs b.register()
203 < *    }
161 < *  }
162 < *  // .. initially called, for n tasks via
163 < *  build(new Task[n], 0, n, new Phaser());
164 < * </pre>
186 > * Task class with a constructor accepting a phaser that
187 > * it registers with upon construction:
188 > *
189 > *  <pre> {@code
190 > * void build(Task[] actions, int lo, int hi, Phaser ph) {
191 > *   if (hi - lo > TASKS_PER_PHASER) {
192 > *     for (int i = lo; i < hi; i += TASKS_PER_PHASER) {
193 > *       int j = Math.min(i + TASKS_PER_PHASER, hi);
194 > *       build(actions, i, j, new Phaser(ph));
195 > *     }
196 > *   } else {
197 > *     for (int i = lo; i < hi; ++i)
198 > *       actions[i] = new Task(ph);
199 > *       // assumes new Task(ph) performs ph.register()
200 > *   }
201 > * }
202 > * // .. initially called, for n tasks via
203 > * build(new Task[n], 0, n, new Phaser());}</pre>
204   *
205   * The best value of {@code TASKS_PER_PHASER} depends mainly on
206   * expected barrier synchronization rates. A value as low as four may
207   * be appropriate for extremely small per-barrier task bodies (thus
208   * high rates), or up to hundreds for extremely large ones.
209   *
171 * </pre>
172 *
210   * <p><b>Implementation notes</b>: This implementation restricts the
211   * maximum number of parties to 65535. Attempts to register additional
212 < * parties result in IllegalStateExceptions. However, you can and
212 > * parties result in {@code IllegalStateException}. However, you can and
213   * should create tiered phasers to accommodate arbitrarily large sets
214   * of participants.
215 + *
216 + * @since 1.7
217 + * @author Doug Lea
218   */
219   public class Phaser {
220      /*
# Line 195 | Line 235 | public class Phaser {
235       * However, to efficiently maintain atomicity, these values are
236       * packed into a single (atomic) long. Termination uses the sign
237       * bit of 32 bit representation of phase, so phase is set to -1 on
238 <     * termination. Good performace relies on keeping state decoding
238 >     * termination. Good performance relies on keeping state decoding
239       * and encoding simple, and keeping race windows short.
240       *
241       * Note: there are some cheats in arrive() that rely on unarrived
242 <     * being lowest 16 bits.
242 >     * count being lowest 16 bits.
243       */
244      private volatile long state;
245  
246 <    private static final int ushortBits = 16;
247 <    private static final int ushortMask =  (1 << ushortBits) - 1;
208 <    private static final int phaseMask = 0x7fffffff;
246 >    private static final int ushortMask = 0xffff;
247 >    private static final int phaseMask  = 0x7fffffff;
248  
249      private static int unarrivedOf(long s) {
250 <        return (int)(s & ushortMask);
250 >        return (int) (s & ushortMask);
251      }
252  
253      private static int partiesOf(long s) {
254 <        return (int)(s & (ushortMask << 16)) >>> 16;
254 >        return ((int) s) >>> 16;
255      }
256  
257      private static int phaseOf(long s) {
258 <        return (int)(s >>> 32);
258 >        return (int) (s >>> 32);
259      }
260  
261      private static int arrivedOf(long s) {
# Line 224 | Line 263 | public class Phaser {
263      }
264  
265      private static long stateFor(int phase, int parties, int unarrived) {
266 <        return (((long)phase) << 32) | ((parties << 16) | unarrived);
266 >        return ((((long) phase) << 32) | (((long) parties) << 16) |
267 >                (long) unarrived);
268      }
269  
270      private static long trippedStateFor(int phase, int parties) {
271 <        return (((long)phase) << 32) | ((parties << 16) | parties);
271 >        long lp = (long) parties;
272 >        return (((long) phase) << 32) | (lp << 16) | lp;
273      }
274  
275 <    private static IllegalStateException badBounds(int parties, int unarrived) {
276 <        return new IllegalStateException
277 <            ("Attempt to set " + unarrived +
278 <             " unarrived of " + parties + " parties");
275 >    /**
276 >     * Returns message string for bad bounds exceptions.
277 >     */
278 >    private static String badBounds(int parties, int unarrived) {
279 >        return ("Attempt to set " + unarrived +
280 >                " unarrived of " + parties + " parties");
281      }
282  
283      /**
# Line 243 | Line 286 | public class Phaser {
286      private final Phaser parent;
287  
288      /**
289 <     * The root of Phaser tree. Equals this if not in a tree.  Used to
289 >     * The root of phaser tree. Equals this if not in a tree.  Used to
290       * support faster state push-down.
291       */
292      private final Phaser root;
# Line 251 | Line 294 | public class Phaser {
294      // Wait queues
295  
296      /**
297 <     * Heads of Treiber stacks waiting for nonFJ threads. To eliminate
297 >     * Heads of Treiber stacks for waiting threads. To eliminate
298       * contention while releasing some threads while adding others, we
299       * use two of them, alternating across even and odd phases.
300       */
# Line 259 | Line 302 | public class Phaser {
302      private final AtomicReference<QNode> oddQ  = new AtomicReference<QNode>();
303  
304      private AtomicReference<QNode> queueFor(int phase) {
305 <        return (phase & 1) == 0? evenQ : oddQ;
305 >        return ((phase & 1) == 0) ? evenQ : oddQ;
306      }
307  
308      /**
# Line 267 | Line 310 | public class Phaser {
310       * root if necessary.
311       */
312      private long getReconciledState() {
313 <        return parent == null? state : reconcileState();
313 >        return (parent == null) ? state : reconcileState();
314      }
315  
316      /**
# Line 294 | Line 337 | public class Phaser {
337      }
338  
339      /**
340 <     * Creates a new Phaser without any initially registered parties,
341 <     * initial phase number 0, and no parent.
340 >     * Creates a new phaser without any initially registered parties,
341 >     * initial phase number 0, and no parent. Any thread using this
342 >     * phaser will need to first register for it.
343       */
344      public Phaser() {
345          this(null);
346      }
347  
348      /**
349 <     * Creates a new Phaser with the given numbers of registered
349 >     * Creates a new phaser with the given number of registered
350       * unarrived parties, initial phase number 0, and no parent.
351 <     * @param parties the number of parties required to trip barrier.
351 >     *
352 >     * @param parties the number of parties required to trip barrier
353       * @throws IllegalArgumentException if parties less than zero
354 <     * or greater than the maximum number of parties supported.
354 >     * or greater than the maximum number of parties supported
355       */
356      public Phaser(int parties) {
357          this(null, parties);
358      }
359  
360      /**
361 <     * Creates a new Phaser with the given parent, without any
361 >     * Creates a new phaser with the given parent, without any
362       * initially registered parties. If parent is non-null this phaser
363       * is registered with the parent and its initial phase number is
364       * the same as that of parent phaser.
365 <     * @param parent the parent phaser.
365 >     *
366 >     * @param parent the parent phaser
367       */
368      public Phaser(Phaser parent) {
369          int phase = 0;
# Line 332 | Line 378 | public class Phaser {
378      }
379  
380      /**
381 <     * Creates a new Phaser with the given parent and numbers of
382 <     * registered unarrived parties. If parent is non-null this phaser
381 >     * Creates a new phaser with the given parent and number of
382 >     * registered unarrived parties. If parent is non-null, this phaser
383       * is registered with the parent and its initial phase number is
384       * the same as that of parent phaser.
385 <     * @param parent the parent phaser.
386 <     * @param parties the number of parties required to trip barrier.
385 >     *
386 >     * @param parent the parent phaser
387 >     * @param parties the number of parties required to trip barrier
388       * @throws IllegalArgumentException if parties less than zero
389 <     * or greater than the maximum number of parties supported.
389 >     * or greater than the maximum number of parties supported
390       */
391      public Phaser(Phaser parent, int parties) {
392          if (parties < 0 || parties > ushortMask)
# Line 357 | Line 404 | public class Phaser {
404  
405      /**
406       * Adds a new unarrived party to this phaser.
407 <     * @return the current barrier phase number upon registration
407 >     *
408 >     * @return the arrival phase number to which this registration applied
409       * @throws IllegalStateException if attempting to register more
410 <     * than the maximum supported number of parties.
410 >     * than the maximum supported number of parties
411       */
412      public int register() {
413          return doRegister(1);
# Line 367 | Line 415 | public class Phaser {
415  
416      /**
417       * Adds the given number of new unarrived parties to this phaser.
418 <     * @param parties the number of parties required to trip barrier.
419 <     * @return the current barrier phase number upon registration
418 >     *
419 >     * @param parties the number of additional parties required to trip barrier
420 >     * @return the arrival phase number to which this registration applied
421       * @throws IllegalStateException if attempting to register more
422 <     * than the maximum supported number of parties.
422 >     * than the maximum supported number of parties
423 >     * @throws IllegalArgumentException if {@code parties < 0}
424       */
425      public int bulkRegister(int parties) {
426          if (parties < 0)
# Line 393 | Line 443 | public class Phaser {
443              if (phase < 0)
444                  break;
445              if (parties > ushortMask || unarrived > ushortMask)
446 <                throw badBounds(parties, unarrived);
446 >                throw new IllegalStateException(badBounds(parties, unarrived));
447              if (phase == phaseOf(root.state) &&
448                  casState(s, stateFor(phase, parties, unarrived)))
449                  break;
# Line 403 | Line 453 | public class Phaser {
453  
454      /**
455       * Arrives at the barrier, but does not wait for others.  (You can
456 <     * in turn wait for others via {@link #awaitAdvance}).
456 >     * in turn wait for others via {@link #awaitAdvance}).  It is an
457 >     * unenforced usage error for an unregistered party to invoke this
458 >     * method.
459       *
460 <     * @return the barrier phase number upon entry to this method, or a
409 <     * negative value if terminated;
460 >     * @return the arrival phase number, or a negative value if terminated
461       * @throws IllegalStateException if not terminated and the number
462 <     * of unarrived parties would become negative.
462 >     * of unarrived parties would become negative
463       */
464      public int arrive() {
465          int phase;
466          for (;;) {
467              long s = state;
468              phase = phaseOf(s);
469 +            if (phase < 0)
470 +                break;
471              int parties = partiesOf(s);
472              int unarrived = unarrivedOf(s) - 1;
473              if (unarrived > 0) {        // Not the last arrival
# Line 426 | Line 479 | public class Phaser {
479                  if (par == null) {      // directly trip
480                      if (casState
481                          (s,
482 <                         trippedStateFor(onAdvance(phase, parties)? -1 :
482 >                         trippedStateFor(onAdvance(phase, parties) ? -1 :
483                                           ((phase + 1) & phaseMask), parties))) {
484                          releaseWaiters(phase);
485                          break;
# Line 440 | Line 493 | public class Phaser {
493                      }
494                  }
495              }
443            else if (phase < 0) // Don't throw exception if terminated
444                break;
496              else if (phase != phaseOf(root.state)) // or if unreconciled
497                  reconcileState();
498              else
499 <                throw badBounds(parties, unarrived);
499 >                throw new IllegalStateException(badBounds(parties, unarrived));
500          }
501          return phase;
502      }
503  
504      /**
505 <     * Arrives at the barrier, and deregisters from it, without
506 <     * waiting for others. Deregistration reduces number of parties
505 >     * Arrives at the barrier and deregisters from it without waiting
506 >     * for others. Deregistration reduces the number of parties
507       * required to trip the barrier in future phases.  If this phaser
508       * has a parent, and deregistration causes this phaser to have
509 <     * zero parties, this phaser is also deregistered from its parent.
509 >     * zero parties, this phaser also arrives at and is deregistered
510 >     * from its parent.  It is an unenforced usage error for an
511 >     * unregistered party to invoke this method.
512       *
513 <     * @return the current barrier phase number upon entry to
461 <     * this method, or a negative value if terminated;
513 >     * @return the arrival phase number, or a negative value if terminated
514       * @throws IllegalStateException if not terminated and the number
515 <     * of registered or unarrived parties would become negative.
515 >     * of registered or unarrived parties would become negative
516       */
517      public int arriveAndDeregister() {
518          // similar code to arrive, but too different to merge
# Line 469 | Line 521 | public class Phaser {
521          for (;;) {
522              long s = state;
523              phase = phaseOf(s);
524 +            if (phase < 0)
525 +                break;
526              int parties = partiesOf(s) - 1;
527              int unarrived = unarrivedOf(s) - 1;
528              if (parties >= 0) {
# Line 487 | Line 541 | public class Phaser {
541                  if (unarrived == 0) {
542                      if (casState
543                          (s,
544 <                         trippedStateFor(onAdvance(phase, parties)? -1 :
544 >                         trippedStateFor(onAdvance(phase, parties) ? -1 :
545                                           ((phase + 1) & phaseMask), parties))) {
546                          releaseWaiters(phase);
547                          break;
548                      }
549                      continue;
550                  }
497                if (phase < 0)
498                    break;
551                  if (par != null && phase != phaseOf(root.state)) {
552                      reconcileState();
553                      continue;
554                  }
555              }
556 <            throw badBounds(parties, unarrived);
556 >            throw new IllegalStateException(badBounds(parties, unarrived));
557          }
558          return phase;
559      }
560  
561      /**
562       * Arrives at the barrier and awaits others. Equivalent in effect
563 <     * to {@code awaitAdvance(arrive())}.  If you instead need to
564 <     * await with interruption of timeout, and/or deregister upon
565 <     * arrival, you can arrange them using analogous constructions.
566 <     * @return the phase on entry to this method
563 >     * to {@code awaitAdvance(arrive())}.  If you need to await with
564 >     * interruption or timeout, you can arrange this with an analogous
565 >     * construction using one of the other forms of the {@code
566 >     * awaitAdvance} method.  If instead you need to deregister upon
567 >     * arrival, use {@link #arriveAndDeregister}. It is an unenforced
568 >     * usage error for an unregistered party to invoke this method.
569 >     *
570 >     * @return the arrival phase number, or a negative number if terminated
571       * @throws IllegalStateException if not terminated and the number
572 <     * of unarrived parties would become negative.
572 >     * of unarrived parties would become negative
573       */
574      public int arriveAndAwaitAdvance() {
575          return awaitAdvance(arrive());
576      }
577  
578      /**
579 <     * Awaits the phase of the barrier to advance from the given
580 <     * value, or returns immediately if argument is negative or this
581 <     * barrier is terminated.
582 <     * @param phase the phase on entry to this method
583 <     * @return the phase on exit from this method
579 >     * Awaits the phase of the barrier to advance from the given phase
580 >     * value, returning immediately if the current phase of the
581 >     * barrier is not equal to the given phase value or this barrier
582 >     * is terminated.  It is an unenforced usage error for an
583 >     * unregistered party to invoke this method.
584 >     *
585 >     * @param phase an arrival phase number, or negative value if
586 >     * terminated; this argument is normally the value returned by a
587 >     * previous call to {@code arrive} or its variants
588 >     * @return the next arrival phase number, or a negative value
589 >     * if terminated or argument is negative
590       */
591      public int awaitAdvance(int phase) {
592          if (phase < 0)
# Line 533 | Line 595 | public class Phaser {
595          int p = phaseOf(s);
596          if (p != phase)
597              return p;
598 <        if (unarrivedOf(s) == 0)
598 >        if (unarrivedOf(s) == 0 && parent != null)
599              parent.awaitAdvance(phase);
600          // Fall here even if parent waited, to reconcile and help release
601          return untimedWait(phase);
602      }
603  
604      /**
605 <     * Awaits the phase of the barrier to advance from the given
606 <     * value, or returns immediately if argumet is negative or this
607 <     * barrier is terminated, or throws InterruptedException if
608 <     * interrupted while waiting.
609 <     * @param phase the phase on entry to this method
610 <     * @return the phase on exit from this method
605 >     * Awaits the phase of the barrier to advance from the given phase
606 >     * value, throwing {@code InterruptedException} if interrupted
607 >     * while waiting, or returning immediately if the current phase of
608 >     * the barrier is not equal to the given phase value or this
609 >     * barrier is terminated. It is an unenforced usage error for an
610 >     * unregistered party to invoke this method.
611 >     *
612 >     * @param phase an arrival phase number, or negative value if
613 >     * terminated; this argument is normally the value returned by a
614 >     * previous call to {@code arrive} or its variants
615 >     * @return the next arrival phase number, or a negative value
616 >     * if terminated or argument is negative
617       * @throws InterruptedException if thread interrupted while waiting
618       */
619 <    public int awaitAdvanceInterruptibly(int phase) throws InterruptedException {
619 >    public int awaitAdvanceInterruptibly(int phase)
620 >        throws InterruptedException {
621          if (phase < 0)
622              return phase;
623          long s = getReconciledState();
624          int p = phaseOf(s);
625          if (p != phase)
626              return p;
627 <        if (unarrivedOf(s) != 0)
627 >        if (unarrivedOf(s) == 0 && parent != null)
628              parent.awaitAdvanceInterruptibly(phase);
629          return interruptibleWait(phase);
630      }
631  
632      /**
633 <     * Awaits the phase of the barrier to advance from the given value
634 <     * or the given timeout elapses, or returns immediately if
635 <     * argument is negative or this barrier is terminated.
636 <     * @param phase the phase on entry to this method
637 <     * @return the phase on exit from this method
633 >     * Awaits the phase of the barrier to advance from the given phase
634 >     * value or the given timeout to elapse, throwing {@code
635 >     * InterruptedException} if interrupted while waiting, or
636 >     * returning immediately if the current phase of the barrier is
637 >     * not equal to the given phase value or this barrier is
638 >     * terminated.  It is an unenforced usage error for an
639 >     * unregistered party to invoke this method.
640 >     *
641 >     * @param phase an arrival phase number, or negative value if
642 >     * terminated; this argument is normally the value returned by a
643 >     * previous call to {@code arrive} or its variants
644 >     * @param timeout how long to wait before giving up, in units of
645 >     *        {@code unit}
646 >     * @param unit a {@code TimeUnit} determining how to interpret the
647 >     *        {@code timeout} parameter
648 >     * @return the next arrival phase number, or a negative value
649 >     * if terminated or argument is negative
650       * @throws InterruptedException if thread interrupted while waiting
651       * @throws TimeoutException if timed out while waiting
652       */
653 <    public int awaitAdvanceInterruptibly(int phase, long timeout, TimeUnit unit)
653 >    public int awaitAdvanceInterruptibly(int phase,
654 >                                         long timeout, TimeUnit unit)
655          throws InterruptedException, TimeoutException {
656          if (phase < 0)
657              return phase;
# Line 577 | Line 659 | public class Phaser {
659          int p = phaseOf(s);
660          if (p != phase)
661              return p;
662 <        if (unarrivedOf(s) == 0)
662 >        if (unarrivedOf(s) == 0 && parent != null)
663              parent.awaitAdvanceInterruptibly(phase, timeout, unit);
664          return timedWait(phase, unit.toNanos(timeout));
665      }
# Line 610 | Line 692 | public class Phaser {
692       * Returns the current phase number. The maximum phase number is
693       * {@code Integer.MAX_VALUE}, after which it restarts at
694       * zero. Upon termination, the phase number is negative.
695 +     *
696       * @return the phase number, or a negative value if terminated
697       */
698      public final int getPhase() {
# Line 617 | Line 700 | public class Phaser {
700      }
701  
702      /**
620     * Returns true if the current phase number equals the given phase.
621     * @param phase the phase
622     * @return true if the current phase number equals the given phase.
623     */
624    public final boolean hasPhase(int phase) {
625        return phaseOf(getReconciledState()) == phase;
626    }
627
628    /**
703       * Returns the number of parties registered at this barrier.
704 +     *
705       * @return the number of parties
706       */
707      public int getRegisteredParties() {
# Line 634 | Line 709 | public class Phaser {
709      }
710  
711      /**
712 <     * Returns the number of parties that have arrived at the current
713 <     * phase of this barrier.
712 >     * Returns the number of registered parties that have arrived at
713 >     * the current phase of this barrier.
714 >     *
715       * @return the number of arrived parties
716       */
717      public int getArrivedParties() {
# Line 645 | Line 721 | public class Phaser {
721      /**
722       * Returns the number of registered parties that have not yet
723       * arrived at the current phase of this barrier.
724 +     *
725       * @return the number of unarrived parties
726       */
727      public int getUnarrivedParties() {
# Line 652 | Line 729 | public class Phaser {
729      }
730  
731      /**
732 <     * Returns the parent of this phaser, or null if none.
733 <     * @return the parent of this phaser, or null if none.
732 >     * Returns the parent of this phaser, or {@code null} if none.
733 >     *
734 >     * @return the parent of this phaser, or {@code null} if none
735       */
736      public Phaser getParent() {
737          return parent;
# Line 662 | Line 740 | public class Phaser {
740      /**
741       * Returns the root ancestor of this phaser, which is the same as
742       * this phaser if it has no parent.
743 <     * @return the root ancestor of this phaser.
743 >     *
744 >     * @return the root ancestor of this phaser
745       */
746      public Phaser getRoot() {
747          return root;
748      }
749  
750      /**
751 <     * Returns true if this barrier has been terminated.
752 <     * @return true if this barrier has been terminated
751 >     * Returns {@code true} if this barrier has been terminated.
752 >     *
753 >     * @return {@code true} if this barrier has been terminated
754       */
755      public boolean isTerminated() {
756          return getPhase() < 0;
757      }
758  
759      /**
760 <     * Overridable method to perform an action upon phase advance, and
761 <     * to control termination. This method is invoked whenever the
762 <     * barrier is tripped (and thus all other waiting parties are
763 <     * dormant). If it returns true, then, rather than advance the
764 <     * phase number, this barrier will be set to a final termination
765 <     * state, and subsequent calls to {@code isTerminated} will
766 <     * return true.
760 >     * Overridable method to perform an action upon impending phase
761 >     * advance, and to control termination. This method is invoked
762 >     * upon arrival of the party tripping the barrier (when all other
763 >     * waiting parties are dormant).  If this method returns {@code
764 >     * true}, then, rather than advance the phase number, this barrier
765 >     * will be set to a final termination state, and subsequent calls
766 >     * to {@link #isTerminated} will return true. Any (unchecked)
767 >     * Exception or Error thrown by an invocation of this method is
768 >     * propagated to the party attempting to trip the barrier, in
769 >     * which case no advance occurs.
770       *
771 <     * <p> The default version returns true when the number of
771 >     * <p>The arguments to this method provide the state of the phaser
772 >     * prevailing for the current transition. (When called from within
773 >     * an implementation of {@code onAdvance} the values returned by
774 >     * methods such as {@code getPhase} may or may not reliably
775 >     * indicate the state to which this transition applies.)
776 >     *
777 >     * <p>The default version returns {@code true} when the number of
778       * registered parties is zero. Normally, overrides that arrange
779       * termination for other reasons should also preserve this
780       * property.
781       *
782 <     * <p> You may override this method to perform an action with side
783 <     * effects visible to participating tasks, but it is in general
784 <     * only sensible to do so in designs where all parties register
785 <     * before any arrive, and all {@code awaitAdvance} at each phase.
786 <     * Otherwise, you cannot ensure lack of interference. In
787 <     * particular, this method may be invoked more than once per
788 <     * transition if other parties successfully register while the
789 <     * invocation of this method is in progress, thus postponing the
701 <     * transition until those parties also arrive, re-triggering this
702 <     * method.
782 >     * <p>You may override this method to perform an action with side
783 >     * effects visible to participating tasks, but it is only sensible
784 >     * to do so in designs where all parties register before any
785 >     * arrive, and all {@link #awaitAdvance} at each phase.
786 >     * Otherwise, you cannot ensure lack of interference from other
787 >     * parties during the invocation of this method. Additionally,
788 >     * method {@code onAdvance} may be invoked more than once per
789 >     * transition if registrations are intermixed with arrivals.
790       *
791       * @param phase the phase number on entering the barrier
792 <     * @param registeredParties the current number of registered
793 <     * parties.
707 <     * @return true if this barrier should terminate
792 >     * @param registeredParties the current number of registered parties
793 >     * @return {@code true} if this barrier should terminate
794       */
795      protected boolean onAdvance(int phase, int registeredParties) {
796          return registeredParties <= 0;
# Line 713 | Line 799 | public class Phaser {
799      /**
800       * Returns a string identifying this phaser, as well as its
801       * state.  The state, in brackets, includes the String {@code
802 <     * "phase ="} followed by the phase number, {@code "parties ="}
802 >     * "phase = "} followed by the phase number, {@code "parties = "}
803       * followed by the number of registered parties, and {@code
804 <     * "arrived ="} followed by the number of arrived parties
804 >     * "arrived = "} followed by the number of arrived parties.
805       *
806       * @return a string identifying this barrier, as well as its state
807       */
808      public String toString() {
809          long s = getReconciledState();
810 <        return super.toString() + "[phase = " + phaseOf(s) + " parties = " + partiesOf(s) + " arrived = " + arrivedOf(s) + "]";
810 >        return super.toString() +
811 >            "[phase = " + phaseOf(s) +
812 >            " parties = " + partiesOf(s) +
813 >            " arrived = " + arrivedOf(s) + "]";
814      }
815  
816      // methods for waiting
817  
729    /** The number of CPUs, for spin control */
730    static final int NCPUS = Runtime.getRuntime().availableProcessors();
731
818      /**
819 <     * The number of times to spin before blocking in timed waits.
734 <     * The value is empirically derived.
819 >     * Wait nodes for Treiber stack representing wait queue
820       */
821 <    static final int maxTimedSpins = (NCPUS < 2)? 0 : 32;
821 >    static final class QNode implements ForkJoinPool.ManagedBlocker {
822 >        final Phaser phaser;
823 >        final int phase;
824 >        final long startTime;
825 >        final long nanos;
826 >        final boolean timed;
827 >        final boolean interruptible;
828 >        volatile boolean wasInterrupted = false;
829 >        volatile Thread thread; // nulled to cancel wait
830 >        QNode next;
831  
832 <    /**
833 <     * The number of times to spin before blocking in untimed waits.
834 <     * This is greater than timed value because untimed waits spin
835 <     * faster since they don't need to check times on each spin.
836 <     */
837 <    static final int maxUntimedSpins = maxTimedSpins * 32;
832 >        QNode(Phaser phaser, int phase, boolean interruptible,
833 >              boolean timed, long startTime, long nanos) {
834 >            this.phaser = phaser;
835 >            this.phase = phase;
836 >            this.timed = timed;
837 >            this.interruptible = interruptible;
838 >            this.startTime = startTime;
839 >            this.nanos = nanos;
840 >            thread = Thread.currentThread();
841 >        }
842  
843 <    /**
844 <     * The number of nanoseconds for which it is faster to spin
845 <     * rather than to use timed park. A rough estimate suffices.
846 <     */
847 <    static final long spinForTimeoutThreshold = 1000L;
843 >        public boolean isReleasable() {
844 >            return (thread == null ||
845 >                    phaser.getPhase() != phase ||
846 >                    (interruptible && wasInterrupted) ||
847 >                    (timed && (nanos - (System.nanoTime() - startTime)) <= 0));
848 >        }
849  
850 <    /**
851 <     * Wait nodes for Treiber stack representing wait queue for non-FJ
852 <     * tasks.
853 <     */
854 <    static final class QNode {
855 <        QNode next;
856 <        volatile Thread thread; // nulled to cancel wait
857 <        QNode() {
858 <            thread = Thread.currentThread();
850 >        public boolean block() {
851 >            if (Thread.interrupted()) {
852 >                wasInterrupted = true;
853 >                if (interruptible)
854 >                    return true;
855 >            }
856 >            if (!timed)
857 >                LockSupport.park(this);
858 >            else {
859 >                long waitTime = nanos - (System.nanoTime() - startTime);
860 >                if (waitTime <= 0)
861 >                    return true;
862 >                LockSupport.parkNanos(this, waitTime);
863 >            }
864 >            return isReleasable();
865          }
866 +
867          void signal() {
868              Thread t = thread;
869              if (t != null) {
# Line 765 | Line 871 | public class Phaser {
871                  LockSupport.unpark(t);
872              }
873          }
874 +
875 +        boolean doWait() {
876 +            if (thread != null) {
877 +                try {
878 +                    ForkJoinPool.managedBlock(this);
879 +                } catch (InterruptedException ie) {
880 +                    wasInterrupted = true; // can't currently happen
881 +                }
882 +            }
883 +            return wasInterrupted;
884 +        }
885      }
886  
887      /**
888 <     * Removes and signals waiting threads from wait queue
888 >     * Removes and signals waiting threads from wait queue.
889       */
890      private void releaseWaiters(int phase) {
891          AtomicReference<QNode> head = queueFor(phase);
# Line 780 | Line 897 | public class Phaser {
897      }
898  
899      /**
900 +     * Tries to enqueue given node in the appropriate wait queue.
901 +     *
902 +     * @return true if successful
903 +     */
904 +    private boolean tryEnqueue(QNode node) {
905 +        AtomicReference<QNode> head = queueFor(node.phase);
906 +        return head.compareAndSet(node.next = head.get(), node);
907 +    }
908 +
909 +    /**
910       * Enqueues node and waits unless aborted or signalled.
911 +     *
912 +     * @return current phase
913       */
914      private int untimedWait(int phase) {
786        int spins = maxUntimedSpins;
915          QNode node = null;
788        boolean interrupted = false;
916          boolean queued = false;
917 +        boolean interrupted = false;
918          int p;
919          while ((p = getPhase()) == phase) {
920 <            interrupted = Thread.interrupted();
921 <            if (node != null) {
922 <                if (!queued) {
923 <                    AtomicReference<QNode> head = queueFor(phase);
924 <                    queued = head.compareAndSet(node.next = head.get(), node);
925 <                }
926 <                else if (node.thread != null)
927 <                    LockSupport.park(this);
800 <            }
801 <            else if (spins <= 0)
802 <                node = new QNode();
803 <            else
804 <                --spins;
920 >            if (Thread.interrupted())
921 >                interrupted = true;
922 >            else if (node == null)
923 >                node = new QNode(this, phase, false, false, 0, 0);
924 >            else if (!queued)
925 >                queued = tryEnqueue(node);
926 >            else if (node.doWait())
927 >                interrupted = true;
928          }
929          if (node != null)
930              node.thread = null;
931 +        releaseWaiters(phase);
932          if (interrupted)
933              Thread.currentThread().interrupt();
810        releaseWaiters(phase);
934          return p;
935      }
936  
937      /**
938 <     * Messier interruptible version
938 >     * Interruptible version
939 >     * @return current phase
940       */
941      private int interruptibleWait(int phase) throws InterruptedException {
818        int spins = maxUntimedSpins;
942          QNode node = null;
943          boolean queued = false;
944          boolean interrupted = false;
945          int p;
946 <        while ((p = getPhase()) == phase) {
947 <            if (interrupted = Thread.interrupted())
948 <                break;
949 <            if (node != null) {
950 <                if (!queued) {
951 <                    AtomicReference<QNode> head = queueFor(phase);
952 <                    queued = head.compareAndSet(node.next = head.get(), node);
953 <                }
954 <                else if (node.thread != null)
832 <                    LockSupport.park(this);
833 <            }
834 <            else if (spins <= 0)
835 <                node = new QNode();
836 <            else
837 <                --spins;
946 >        while ((p = getPhase()) == phase && !interrupted) {
947 >            if (Thread.interrupted())
948 >                interrupted = true;
949 >            else if (node == null)
950 >                node = new QNode(this, phase, true, false, 0, 0);
951 >            else if (!queued)
952 >                queued = tryEnqueue(node);
953 >            else if (node.doWait())
954 >                interrupted = true;
955          }
956          if (node != null)
957              node.thread = null;
958 +        if (p != phase || (p = getPhase()) != phase)
959 +            releaseWaiters(phase);
960          if (interrupted)
961              throw new InterruptedException();
843        releaseWaiters(phase);
962          return p;
963      }
964  
965      /**
966 <     * Even messier timeout version.
966 >     * Timeout version.
967 >     * @return current phase
968       */
969      private int timedWait(int phase, long nanos)
970          throws InterruptedException, TimeoutException {
971 +        long startTime = System.nanoTime();
972 +        QNode node = null;
973 +        boolean queued = false;
974 +        boolean interrupted = false;
975          int p;
976 <        if ((p = getPhase()) == phase) {
977 <            long lastTime = System.nanoTime();
978 <            int spins = maxTimedSpins;
979 <            QNode node = null;
980 <            boolean queued = false;
981 <            boolean interrupted = false;
982 <            while ((p = getPhase()) == phase) {
983 <                if (interrupted = Thread.interrupted())
984 <                    break;
985 <                long now = System.nanoTime();
986 <                if ((nanos -= now - lastTime) <= 0)
864 <                    break;
865 <                lastTime = now;
866 <                if (node != null) {
867 <                    if (!queued) {
868 <                        AtomicReference<QNode> head = queueFor(phase);
869 <                        queued = head.compareAndSet(node.next = head.get(), node);
870 <                    }
871 <                    else if (node.thread != null &&
872 <                             nanos > spinForTimeoutThreshold) {
873 <                        LockSupport.parkNanos(this, nanos);
874 <                    }
875 <                }
876 <                else if (spins <= 0)
877 <                    node = new QNode();
878 <                else
879 <                    --spins;
880 <            }
881 <            if (node != null)
882 <                node.thread = null;
883 <            if (interrupted)
884 <                throw new InterruptedException();
885 <            if (p == phase && (p = getPhase()) == phase)
886 <                throw new TimeoutException();
976 >        while ((p = getPhase()) == phase && !interrupted) {
977 >            if (Thread.interrupted())
978 >                interrupted = true;
979 >            else if (nanos - (System.nanoTime() - startTime) <= 0)
980 >                break;
981 >            else if (node == null)
982 >                node = new QNode(this, phase, true, true, startTime, nanos);
983 >            else if (!queued)
984 >                queued = tryEnqueue(node);
985 >            else if (node.doWait())
986 >                interrupted = true;
987          }
988 <        releaseWaiters(phase);
988 >        if (node != null)
989 >            node.thread = null;
990 >        if (p != phase || (p = getPhase()) != phase)
991 >            releaseWaiters(phase);
992 >        if (interrupted)
993 >            throw new InterruptedException();
994 >        if (p == phase)
995 >            throw new TimeoutException();
996          return p;
997      }
998  
999 <    // Temporary Unsafe mechanics for preliminary release
999 >    // Unsafe mechanics
1000  
1001 <    static final Unsafe _unsafe;
1002 <    static final long stateOffset;
1001 >    private static final sun.misc.Unsafe UNSAFE = getUnsafe();
1002 >    private static final long stateOffset =
1003 >        objectFieldOffset("state", Phaser.class);
1004  
1005 <    static {
1005 >    private final boolean casState(long cmp, long val) {
1006 >        return UNSAFE.compareAndSwapLong(this, stateOffset, cmp, val);
1007 >    }
1008 >
1009 >    private static long objectFieldOffset(String field, Class<?> klazz) {
1010          try {
1011 <            if (Phaser.class.getClassLoader() != null) {
1012 <                Field f = Unsafe.class.getDeclaredField("theUnsafe");
1013 <                f.setAccessible(true);
1014 <                _unsafe = (Unsafe)f.get(null);
1015 <            }
1016 <            else
905 <                _unsafe = Unsafe.getUnsafe();
906 <            stateOffset = _unsafe.objectFieldOffset
907 <                (Phaser.class.getDeclaredField("state"));
908 <        } catch (Exception e) {
909 <            throw new RuntimeException("Could not initialize intrinsics", e);
1011 >            return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
1012 >        } catch (NoSuchFieldException e) {
1013 >            // Convert Exception to corresponding Error
1014 >            NoSuchFieldError error = new NoSuchFieldError(field);
1015 >            error.initCause(e);
1016 >            throw error;
1017          }
1018      }
1019  
1020 <    final boolean casState(long cmp, long val) {
1021 <        return _unsafe.compareAndSwapLong(this, stateOffset, cmp, val);
1020 >    /**
1021 >     * Returns a sun.misc.Unsafe.  Suitable for use in a 3rd party package.
1022 >     * Replace with a simple call to Unsafe.getUnsafe when integrating
1023 >     * into a jdk.
1024 >     *
1025 >     * @return a sun.misc.Unsafe
1026 >     */
1027 >    private static sun.misc.Unsafe getUnsafe() {
1028 >        try {
1029 >            return sun.misc.Unsafe.getUnsafe();
1030 >        } catch (SecurityException se) {
1031 >            try {
1032 >                return java.security.AccessController.doPrivileged
1033 >                    (new java.security
1034 >                     .PrivilegedExceptionAction<sun.misc.Unsafe>() {
1035 >                        public sun.misc.Unsafe run() throws Exception {
1036 >                            java.lang.reflect.Field f = sun.misc
1037 >                                .Unsafe.class.getDeclaredField("theUnsafe");
1038 >                            f.setAccessible(true);
1039 >                            return (sun.misc.Unsafe) f.get(null);
1040 >                        }});
1041 >            } catch (java.security.PrivilegedActionException e) {
1042 >                throw new RuntimeException("Could not initialize intrinsics",
1043 >                                           e.getCause());
1044 >            }
1045 >        }
1046      }
1047   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines