ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/Phaser.java
(Generate patch)

Comparing jsr166/src/jsr166y/Phaser.java (file contents):
Revision 1.60 by dl, Sun Nov 28 15:49:49 2010 UTC vs.
Revision 1.70 by dl, Wed Dec 8 15:27:25 2010 UTC

# Line 18 | Line 18 | import java.util.concurrent.locks.LockSu
18   * but supporting more flexible usage.
19   *
20   * <p> <b>Registration.</b> Unlike the case for other barriers, the
21 < * number of parties <em>registered</em> to synchronize on a Phaser
21 > * number of parties <em>registered</em> to synchronize on a phaser
22   * may vary over time.  Tasks may be registered at any time (using
23   * methods {@link #register}, {@link #bulkRegister}, or forms of
24   * constructors establishing initial numbers of parties), and
# Line 34 | Line 34 | import java.util.concurrent.locks.LockSu
34   * Phaser} may be repeatedly awaited.  Method {@link
35   * #arriveAndAwaitAdvance} has effect analogous to {@link
36   * java.util.concurrent.CyclicBarrier#await CyclicBarrier.await}. Each
37 < * generation of a {@code Phaser} has an associated phase number. The
38 < * phase number starts at zero, and advances when all parties arrive
39 < * at the barrier, wrapping around to zero after reaching {@code
37 > * generation of a phaser has an associated phase number. The phase
38 > * number starts at zero, and advances when all parties arrive at the
39 > * phaser, wrapping around to zero after reaching {@code
40   * Integer.MAX_VALUE}. The use of phase numbers enables independent
41 < * control of actions upon arrival at a barrier and upon awaiting
41 > * control of actions upon arrival at a phaser and upon awaiting
42   * others, via two kinds of methods that may be invoked by any
43   * registered party:
44   *
45   * <ul>
46   *
47   *   <li> <b>Arrival.</b> Methods {@link #arrive} and
48 < *       {@link #arriveAndDeregister} record arrival at a
49 < *       barrier. These methods do not block, but return an associated
50 < *       <em>arrival phase number</em>; that is, the phase number of
51 < *       the barrier to which the arrival applied. When the final
52 < *       party for a given phase arrives, an optional barrier action
53 < *       is performed and the phase advances.  Barrier actions,
54 < *       performed by the party triggering a phase advance, are
55 < *       arranged by overriding method {@link #onAdvance(int, int)},
56 < *       which also controls termination. Overriding this method is
57 < *       similar to, but more flexible than, providing a barrier
58 < *       action to a {@code CyclicBarrier}.
48 > *       {@link #arriveAndDeregister} record arrival.  These methods
49 > *       do not block, but return an associated <em>arrival phase
50 > *       number</em>; that is, the phase number of the phaser to which
51 > *       the arrival applied. When the final party for a given phase
52 > *       arrives, an optional action is performed and the phase
53 > *       advances.  These actions are performed by the party
54 > *       triggering a phase advance, and are arranged by overriding
55 > *       method {@link #onAdvance(int, int)}, which also controls
56 > *       termination. Overriding this method is similar to, but more
57 > *       flexible than, providing a barrier action to a {@code
58 > *       CyclicBarrier}.
59   *
60   *   <li> <b>Waiting.</b> Method {@link #awaitAdvance} requires an
61   *       argument indicating an arrival phase number, and returns when
62 < *       the barrier advances to (or is already at) a different phase.
62 > *       the phaser advances to (or is already at) a different phase.
63   *       Unlike similar constructions using {@code CyclicBarrier},
64   *       method {@code awaitAdvance} continues to wait even if the
65   *       waiting thread is interrupted. Interruptible and timeout
66   *       versions are also available, but exceptions encountered while
67   *       tasks wait interruptibly or with timeout do not change the
68 < *       state of the barrier. If necessary, you can perform any
68 > *       state of the phaser. If necessary, you can perform any
69   *       associated recovery within handlers of those exceptions,
70   *       often after invoking {@code forceTermination}.  Phasers may
71   *       also be used by tasks executing in a {@link ForkJoinPool},
# Line 74 | Line 74 | import java.util.concurrent.locks.LockSu
74   *
75   * </ul>
76   *
77 < * <p> <b>Termination.</b> A {@code Phaser} may enter a
78 < * <em>termination</em> state in which all synchronization methods
79 < * immediately return without updating Phaser state or waiting for
80 < * advance, and indicating (via a negative phase value) that execution
81 < * is complete.  Termination is triggered when an invocation of {@code
82 < * onAdvance} returns {@code true}. The default implementation returns
83 < * {@code true} if a deregistration has caused the number of
84 < * registered parties to become zero.  As illustrated below, when
85 < * Phasers control actions with a fixed number of iterations, it is
86 < * often convenient to override this method to cause termination when
87 < * the current phase number reaches a threshold. Method {@link
88 < * #forceTermination} is also available to abruptly release waiting
89 < * threads and allow them to terminate.
77 > * <p> <b>Termination.</b> A phaser may enter a <em>termination</em>
78 > * state, that may be checked using method {@link #isTerminated}. Upon
79 > * termination, all synchronization methods immediately return without
80 > * waiting for advance, as indicated by a negative return value.
81 > * Similarly, attempts to register upon termination have no effect.
82 > * Termination is triggered when an invocation of {@code onAdvance}
83 > * returns {@code true}. The default implementation returns {@code
84 > * true} if a deregistration has caused the number of registered
85 > * parties to become zero.  As illustrated below, when phasers control
86 > * actions with a fixed number of iterations, it is often convenient
87 > * to override this method to cause termination when the current phase
88 > * number reaches a threshold. Method {@link #forceTermination} is
89 > * also available to abruptly release waiting threads and allow them
90 > * to terminate.
91   *
92   * <p> <b>Tiering.</b> Phasers may be <em>tiered</em> (i.e.,
93   * constructed in tree structures) to reduce contention. Phasers with
# Line 96 | Line 97 | import java.util.concurrent.locks.LockSu
97   * increase throughput even though it incurs greater per-operation
98   * overhead.
99   *
100 + * <p>In a tree of tiered phasers, registration and deregistration of
101 + * child phasers with their parent are managed automatically.
102 + * Whenever the number of registered parties of a child phaser becomes
103 + * non-zero (as established in the {@link #Phaser(Phaser,int)}
104 + * constructor, {@link #register}, or {@link #bulkRegister}), the
105 + * child phaser is registered with its parent.  Whenever the number of
106 + * registered parties becomes zero as the result of an invocation of
107 + * {@link #arriveAndDeregister}, the child phaser is deregistered
108 + * from its parent.
109 + *
110   * <p><b>Monitoring.</b> While synchronization methods may be invoked
111 < * only by registered parties, the current state of a Phaser may be
111 > * only by registered parties, the current state of a phaser may be
112   * monitored by any caller.  At any given moment there are {@link
113   * #getRegisteredParties} parties in total, of which {@link
114   * #getArrivedParties} have arrived at the current phase ({@link
# Line 183 | Line 194 | import java.util.concurrent.locks.LockSu
194   * }}</pre>
195   *
196   *
197 < * <p>To create a set of tasks using a tree of Phasers,
198 < * you could use code of the following form, assuming a
199 < * Task class with a constructor accepting a Phaser that
200 < * it registers with upon construction:
197 > * <p>To create a set of {@code n} tasks using a tree of phasers, you
198 > * could use code of the following form, assuming a Task class with a
199 > * constructor accepting a {@code Phaser} that it registers with upon
200 > * construction. After invocation of {@code build(new Task[n], 0, n,
201 > * new Phaser())}, these tasks could then be started, for example by
202 > * submitting to a pool:
203   *
204   *  <pre> {@code
205 < * void build(Task[] actions, int lo, int hi, Phaser ph) {
205 > * void build(Task[] tasks, int lo, int hi, Phaser ph) {
206   *   if (hi - lo > TASKS_PER_PHASER) {
207   *     for (int i = lo; i < hi; i += TASKS_PER_PHASER) {
208   *       int j = Math.min(i + TASKS_PER_PHASER, hi);
209 < *       build(actions, i, j, new Phaser(ph));
209 > *       build(tasks, i, j, new Phaser(ph));
210   *     }
211   *   } else {
212   *     for (int i = lo; i < hi; ++i)
213 < *       actions[i] = new Task(ph);
213 > *       tasks[i] = new Task(ph);
214   *       // assumes new Task(ph) performs ph.register()
215   *   }
216 < * }
204 < * // .. initially called, for n tasks via
205 < * build(new Task[n], 0, n, new Phaser());}</pre>
216 > * }}</pre>
217   *
218   * The best value of {@code TASKS_PER_PHASER} depends mainly on
219 < * expected barrier synchronization rates. A value as low as four may
220 < * be appropriate for extremely small per-barrier task bodies (thus
219 > * expected synchronization rates. A value as low as four may
220 > * be appropriate for extremely small per-phase task bodies (thus
221   * high rates), or up to hundreds for extremely large ones.
222   *
223   * <p><b>Implementation notes</b>: This implementation restricts the
224   * maximum number of parties to 65535. Attempts to register additional
225   * parties result in {@code IllegalStateException}. However, you can and
226 < * should create tiered Phasers to accommodate arbitrarily large sets
226 > * should create tiered phasers to accommodate arbitrarily large sets
227   * of participants.
228   *
229   * @since 1.7
# Line 226 | Line 237 | public class Phaser {
237       */
238  
239      /**
240 <     * Barrier state representation. Conceptually, a barrier contains
230 <     * four values:
240 >     * Primary state representation, holding four fields:
241       *
242       * * unarrived -- the number of parties yet to hit barrier (bits  0-15)
243       * * parties -- the number of parties to wait              (bits 16-31)
244       * * phase -- the generation of the barrier                (bits 32-62)
245       * * terminated -- set if barrier is terminated            (bit  63 / sign)
246       *
247 <     * However, to efficiently maintain atomicity, these values are
248 <     * packed into a single (atomic) long. Termination uses the sign
249 <     * bit of 32 bit representation of phase, so phase is set to -1 on
250 <     * termination. Good performance relies on keeping state decoding
251 <     * and encoding simple, and keeping race windows short.
247 >     * Except that a phaser with no registered parties is
248 >     * distinguished with the otherwise illegal state of having zero
249 >     * parties and one unarrived parties (encoded as EMPTY below).
250 >     *
251 >     * To efficiently maintain atomicity, these values are packed into
252 >     * a single (atomic) long. Good performance relies on keeping
253 >     * state decoding and encoding simple, and keeping race windows
254 >     * short.
255 >     *
256 >     * All state updates are performed via CAS except initial
257 >     * registration of a sub-phaser (i.e., one with a non-null
258 >     * parent).  In this (relatively rare) case, we use built-in
259 >     * synchronization to lock while first registering with its
260 >     * parent.
261 >     *
262 >     * The phase of a subphaser is allowed to lag that of its
263 >     * ancestors until it is actually accessed -- see method
264 >     * reconcileState.
265       */
266      private volatile long state;
267  
# Line 246 | Line 269 | public class Phaser {
269      private static final int  MAX_PHASE       = 0x7fffffff;
270      private static final int  PARTIES_SHIFT   = 16;
271      private static final int  PHASE_SHIFT     = 32;
272 +    private static final long PHASE_MASK      = -1L << PHASE_SHIFT;
273      private static final int  UNARRIVED_MASK  = 0xffff;      // to mask ints
274      private static final long PARTIES_MASK    = 0xffff0000L; // to mask longs
251    private static final long ONE_ARRIVAL     = 1L;
252    private static final long ONE_PARTY       = 1L << PARTIES_SHIFT;
275      private static final long TERMINATION_BIT = 1L << 63;
276  
277 +    // some special values
278 +    private static final int  ONE_ARRIVAL     = 1;
279 +    private static final int  ONE_PARTY       = 1 << PARTIES_SHIFT;
280 +    private static final int  EMPTY           = 1;
281 +
282      // The following unpacking methods are usually manually inlined
283  
284      private static int unarrivedOf(long s) {
285 <        return (int)s & UNARRIVED_MASK;
285 >        int counts = (int)s;
286 >        return (counts == EMPTY) ? 0 : counts & UNARRIVED_MASK;
287      }
288  
289      private static int partiesOf(long s) {
# Line 267 | Line 295 | public class Phaser {
295      }
296  
297      private static int arrivedOf(long s) {
298 <        return partiesOf(s) - unarrivedOf(s);
298 >        int counts = (int)s;
299 >        return (counts == EMPTY) ? 0 :
300 >            (counts >>> PARTIES_SHIFT) - (counts & UNARRIVED_MASK);
301      }
302  
303      /**
# Line 276 | Line 306 | public class Phaser {
306      private final Phaser parent;
307  
308      /**
309 <     * The root of phaser tree. Equals this if not in a tree.  Used to
280 <     * support faster state push-down.
309 >     * The root of phaser tree. Equals this if not in a tree.
310       */
311      private final Phaser root;
312  
# Line 315 | Line 344 | public class Phaser {
344       * Manually tuned to speed up and minimize race windows for the
345       * common case of just decrementing unarrived field.
346       *
347 <     * @param adj - adjustment to apply to state -- either
319 <     * ONE_ARRIVAL (for arrive) or
320 <     * ONE_ARRIVAL|ONE_PARTY (for arriveAndDeregister)
347 >     * @param deregister false for arrive, true for arriveAndDeregister
348       */
349 <    private int doArrive(long adj) {
349 >    private int doArrive(boolean deregister) {
350 >        int adj = deregister ? ONE_ARRIVAL|ONE_PARTY : ONE_ARRIVAL;
351 >        final Phaser root = this.root;
352          for (;;) {
353 <            long s = state;
325 <            int unarrived = (int)s & UNARRIVED_MASK;
353 >            long s = (root == this) ? state : reconcileState();
354              int phase = (int)(s >>> PHASE_SHIFT);
355 +            int counts = (int)s;
356 +            int unarrived = (counts & UNARRIVED_MASK) - 1;
357              if (phase < 0)
358                  return phase;
359 <            else if (unarrived == 0) {
360 <                if (reconcileState() == s)     // recheck
359 >            else if (counts == EMPTY || unarrived < 0) {
360 >                if (root == this || reconcileState() == s)
361                      throw new IllegalStateException(badArrive(s));
362              }
363              else if (UNSAFE.compareAndSwapLong(this, stateOffset, s, s-=adj)) {
364 <                if (unarrived == 1) {
365 <                    long p = s & PARTIES_MASK; // unshifted parties field
366 <                    long lu = p >>> PARTIES_SHIFT;
367 <                    int u = (int)lu;
368 <                    int nextPhase = (phase + 1) & MAX_PHASE;
369 <                    long next = ((long)nextPhase << PHASE_SHIFT) | p | lu;
370 <                    final Phaser parent = this.parent;
371 <                    if (parent == null) {
372 <                        if (onAdvance(phase, u))
373 <                            next |= TERMINATION_BIT;
374 <                        UNSAFE.compareAndSwapLong(this, stateOffset, s, next);
375 <                        releaseWaiters(phase);
376 <                    }
377 <                    else {
348 <                        parent.doArrive((u == 0) ?
349 <                                        ONE_ARRIVAL|ONE_PARTY : ONE_ARRIVAL);
350 <                        if ((int)(parent.state >>> PHASE_SHIFT) != nextPhase ||
351 <                            ((int)(state >>> PHASE_SHIFT) != nextPhase &&
352 <                             !UNSAFE.compareAndSwapLong(this, stateOffset,
353 <                                                        s, next)))
354 <                            reconcileState();
355 <                    }
364 >                if (unarrived == 0) {
365 >                    long n = s & PARTIES_MASK;  // base of next state
366 >                    int nextUnarrived = ((int)n) >>> PARTIES_SHIFT;
367 >                    if (root != this)
368 >                        return parent.doArrive(nextUnarrived == 0);
369 >                    if (onAdvance(phase, nextUnarrived))
370 >                        n |= TERMINATION_BIT;
371 >                    else if (nextUnarrived == 0)
372 >                        n |= EMPTY;
373 >                    else
374 >                        n |= nextUnarrived;
375 >                    n |= ((long)((phase + 1) & MAX_PHASE)) << PHASE_SHIFT;
376 >                    UNSAFE.compareAndSwapLong(this, stateOffset, s, n);
377 >                    releaseWaiters(phase);
378                  }
379                  return phase;
380              }
# Line 368 | Line 390 | public class Phaser {
390      private int doRegister(int registrations) {
391          // adjustment to state
392          long adj = ((long)registrations << PARTIES_SHIFT) | registrations;
393 <        final Phaser parent = this.parent;
393 >        Phaser par = parent;
394 >        int phase;
395          for (;;) {
396 <            long s = (parent == null) ? state : reconcileState();
397 <            int parties = (int)s >>> PARTIES_SHIFT;
398 <            int phase = (int)(s >>> PHASE_SHIFT);
399 <            if (phase < 0)
400 <                return phase;
378 <            else if (registrations > MAX_PARTIES - parties)
396 >            long s = state;
397 >            int counts = (int)s;
398 >            int parties = counts >>> PARTIES_SHIFT;
399 >            int unarrived = counts & UNARRIVED_MASK;
400 >            if (registrations > MAX_PARTIES - parties)
401                  throw new IllegalStateException(badRegister(s));
402 <            else if ((parties == 0 && parent == null) || // first reg of root
403 <                     ((int)s & UNARRIVED_MASK) != 0) {   // not advancing
404 <                if (UNSAFE.compareAndSwapLong(this, stateOffset, s, s + adj))
405 <                    return phase;
406 <            }
407 <            else if (parties != 0)               // wait for onAdvance
408 <                root.internalAwaitAdvance(phase, null);
409 <            else {                               // 1st registration of child
410 <                synchronized(this) {             // register parent first
411 <                    if (reconcileState() == s) { // recheck under lock
412 <                        parent.doRegister(1);    // OK if throws IllegalState
413 <                        for (;;) {               // simpler form of outer loop
414 <                            s = reconcileState();
415 <                            phase = (int)(s >>> PHASE_SHIFT);
416 <                            if (phase < 0 ||
417 <                                UNSAFE.compareAndSwapLong(this, stateOffset,
418 <                                                          s, s + adj))
419 <                                return phase;
420 <                        }
402 >            else if ((phase = (int)(s >>> PHASE_SHIFT)) < 0)
403 >                break;
404 >            else if (counts != EMPTY) {             // not 1st registration
405 >                if (par == null || reconcileState() == s) {
406 >                    if (unarrived == 0)             // wait out advance
407 >                        root.internalAwaitAdvance(phase, null);
408 >                    else if (UNSAFE.compareAndSwapLong(this, stateOffset,
409 >                                                       s, s + adj))
410 >                        break;
411 >                }
412 >            }
413 >            else if (par == null) {                 // 1st root registration
414 >                long next = (((long) phase) << PHASE_SHIFT) | adj;
415 >                if (UNSAFE.compareAndSwapLong(this, stateOffset, s, next))
416 >                    break;
417 >            }
418 >            else {
419 >                synchronized (this) {               // 1st sub registration
420 >                    if (state == s) {               // recheck under lock
421 >                        par.doRegister(1);
422 >                        do {                        // force current phase
423 >                            phase = (int)(root.state >>> PHASE_SHIFT);
424 >                            // assert phase < 0 || (int)state == EMPTY;
425 >                        } while (!UNSAFE.compareAndSwapLong
426 >                                 (this, stateOffset, state,
427 >                                  (((long) phase) << PHASE_SHIFT) | adj));
428 >                        break;
429                      }
430                  }
431              }
432          }
433 +        return phase;
434      }
435  
436      /**
437 <     * Recursively resolves lagged phase propagation from root if necessary.
437 >     * Resolves lagged phase propagation from root if necessary.
438 >     * Reconciliation normally occurs when root has advanced but
439 >     * subphasers have not yet done so, in which case they must finish
440 >     * their own advance by setting unarrived to parties (or if
441 >     * parties is zero, resetting to unregistered EMPTY state).
442 >     * However, this method may also be called when "floating"
443 >     * subphasers with possibly some unarrived parties are merely
444 >     * catching up to current phase, in which case counts are
445 >     * unaffected.
446 >     *
447 >     * @return reconciled state
448       */
449      private long reconcileState() {
450 <        Phaser par = parent;
450 >        final Phaser root = this.root;
451          long s = state;
452 <        if (par != null) {
453 <            Phaser rt = root;
454 <            int phase, rPhase;
455 <            while ((phase = (int)(s >>> PHASE_SHIFT)) >= 0 &&
456 <                   (rPhase = (int)(rt.state >>> PHASE_SHIFT)) != phase) {
457 <                if ((int)(par.state >>> PHASE_SHIFT) != rPhase)
458 <                    par.reconcileState();
459 <                else if (rPhase < 0 || ((int)s & UNARRIVED_MASK) == 0) {
460 <                    long u = s & PARTIES_MASK; // reset unarrived to parties
461 <                    long next = ((((long) rPhase) << PHASE_SHIFT) | u |
421 <                                 (u >>> PARTIES_SHIFT));
422 <                    UNSAFE.compareAndSwapLong(this, stateOffset, s, next);
423 <                }
452 >        if (root != this) {
453 >            int phase, u, p;
454 >            // CAS root phase with current parties; possibly trip unarrived
455 >            while ((phase = (int)(root.state >>> PHASE_SHIFT)) !=
456 >                   (int)(s >>> PHASE_SHIFT) &&
457 >                   !UNSAFE.compareAndSwapLong
458 >                   (this, stateOffset, s,
459 >                    s = ((((long) phase) << PHASE_SHIFT) | (s & PARTIES_MASK) |
460 >                         ((p = (int)s >>> PARTIES_SHIFT) == 0 ? EMPTY :
461 >                          (u = (int)s & UNARRIVED_MASK) == 0 ? p : u))))
462                  s = state;
425            }
463          }
464          return s;
465      }
466  
467      /**
468 <     * Creates a new Phaser without any initially registered parties,
469 <     * initial phase number 0, and no parent. Any thread using this
470 <     * Phaser will need to first register for it.
468 >     * Creates a new phaser with no initially registered parties, no
469 >     * parent, and initial phase number 0. Any thread using this
470 >     * phaser will need to first register for it.
471       */
472      public Phaser() {
473          this(null, 0);
474      }
475  
476      /**
477 <     * Creates a new Phaser with the given number of registered
478 <     * unarrived parties, initial phase number 0, and no parent.
477 >     * Creates a new phaser with the given number of registered
478 >     * unarrived parties, no parent, and initial phase number 0.
479       *
480 <     * @param parties the number of parties required to trip barrier
480 >     * @param parties the number of parties required to advance to the
481 >     * next phase
482       * @throws IllegalArgumentException if parties less than zero
483       * or greater than the maximum number of parties supported
484       */
# Line 451 | Line 489 | public class Phaser {
489      /**
490       * Equivalent to {@link #Phaser(Phaser, int) Phaser(parent, 0)}.
491       *
492 <     * @param parent the parent Phaser
492 >     * @param parent the parent phaser
493       */
494      public Phaser(Phaser parent) {
495          this(parent, 0);
496      }
497  
498      /**
499 <     * Creates a new Phaser with the given parent and number of
500 <     * registered unarrived parties. Registration and deregistration
501 <     * of this child Phaser with its parent are managed automatically.
502 <     * If the given parent is non-null, whenever this child Phaser has
503 <     * any registered parties (as established in this constructor,
504 <     * {@link #register}, or {@link #bulkRegister}), this child Phaser
505 <     * is registered with its parent. Whenever the number of
506 <     * registered parties becomes zero as the result of an invocation
469 <     * of {@link #arriveAndDeregister}, this child Phaser is
470 <     * deregistered from its parent.
471 <     *
472 <     * @param parent the parent Phaser
473 <     * @param parties the number of parties required to trip barrier
499 >     * Creates a new phaser with the given parent and number of
500 >     * registered unarrived parties.  When the given parent is non-null
501 >     * and the given number of parties is greater than zero, this
502 >     * child phaser is registered with its parent.
503 >     *
504 >     * @param parent the parent phaser
505 >     * @param parties the number of parties required to advance to the
506 >     * next phase
507       * @throws IllegalArgumentException if parties less than zero
508       * or greater than the maximum number of parties supported
509       */
510      public Phaser(Phaser parent, int parties) {
511          if (parties >>> PARTIES_SHIFT != 0)
512              throw new IllegalArgumentException("Illegal number of parties");
513 <        long s = ((long) parties) | (((long) parties) << PARTIES_SHIFT);
513 >        int phase = 0;
514          this.parent = parent;
515          if (parent != null) {
516 <            Phaser r = parent.root;
517 <            this.root = r;
518 <            this.evenQ = r.evenQ;
519 <            this.oddQ = r.oddQ;
516 >            final Phaser root = parent.root;
517 >            this.root = root;
518 >            this.evenQ = root.evenQ;
519 >            this.oddQ = root.oddQ;
520              if (parties != 0)
521 <                s |= ((long)(parent.doRegister(1))) << PHASE_SHIFT;
521 >                phase = parent.doRegister(1);
522          }
523          else {
524              this.root = this;
525              this.evenQ = new AtomicReference<QNode>();
526              this.oddQ = new AtomicReference<QNode>();
527          }
528 <        this.state = s;
528 >        this.state = (parties == 0) ? (long) EMPTY :
529 >            ((((long) phase) << PHASE_SHIFT) |
530 >             (((long) parties) << PARTIES_SHIFT) |
531 >             ((long) parties));
532      }
533  
534      /**
535 <     * Adds a new unarrived party to this Phaser.  If an ongoing
535 >     * Adds a new unarrived party to this phaser.  If an ongoing
536       * invocation of {@link #onAdvance} is in progress, this method
537 <     * may await its completion before returning.  If this Phaser has
538 <     * a parent, and this Phaser previously had no registered parties,
539 <     * this Phaser is also registered with its parent.
540 <     *
541 <     * @return the arrival phase number to which this registration applied
537 >     * may await its completion before returning.  If this phaser has
538 >     * a parent, and this phaser previously had no registered parties,
539 >     * this child phaser is also registered with its parent. If
540 >     * this phaser is terminated, the attempt to register has
541 >     * no effect, and a negative value is returned.
542 >     *
543 >     * @return the arrival phase number to which this registration
544 >     * applied.  If this value is negative, then this phaser has
545 >     * terminated, in which case registration has no effect.
546       * @throws IllegalStateException if attempting to register more
547       * than the maximum supported number of parties
548       */
# Line 511 | Line 551 | public class Phaser {
551      }
552  
553      /**
554 <     * Adds the given number of new unarrived parties to this Phaser.
554 >     * Adds the given number of new unarrived parties to this phaser.
555       * If an ongoing invocation of {@link #onAdvance} is in progress,
556       * this method may await its completion before returning.  If this
557 <     * Phaser has a parent, and the given number of parities is
558 <     * greater than zero, and this Phaser previously had no registered
559 <     * parties, this Phaser is also registered with its parent.
560 <     *
561 <     * @param parties the number of additional parties required to trip barrier
562 <     * @return the arrival phase number to which this registration applied
557 >     * phaser has a parent, and the given number of parties is greater
558 >     * than zero, and this phaser previously had no registered
559 >     * parties, this child phaser is also registered with its parent.
560 >     * If this phaser is terminated, the attempt to register has no
561 >     * effect, and a negative value is returned.
562 >     *
563 >     * @param parties the number of additional parties required to
564 >     * advance to the next phase
565 >     * @return the arrival phase number to which this registration
566 >     * applied.  If this value is negative, then this phaser has
567 >     * terminated, in which case registration has no effect.
568       * @throws IllegalStateException if attempting to register more
569       * than the maximum supported number of parties
570       * @throws IllegalArgumentException if {@code parties < 0}
# Line 533 | Line 578 | public class Phaser {
578      }
579  
580      /**
581 <     * Arrives at the barrier, without waiting for others to arrive.
581 >     * Arrives at this phaser, without waiting for others to arrive.
582       *
583       * <p>It is a usage error for an unregistered party to invoke this
584       * method.  However, this error may result in an {@code
585       * IllegalStateException} only upon some subsequent operation on
586 <     * this Phaser, if ever.
586 >     * this phaser, if ever.
587       *
588       * @return the arrival phase number, or a negative value if terminated
589       * @throws IllegalStateException if not terminated and the number
590       * of unarrived parties would become negative
591       */
592      public int arrive() {
593 <        return doArrive(ONE_ARRIVAL);
593 >        return doArrive(false);
594      }
595  
596      /**
597 <     * Arrives at the barrier and deregisters from it without waiting
597 >     * Arrives at this phaser and deregisters from it without waiting
598       * for others to arrive. Deregistration reduces the number of
599 <     * parties required to trip the barrier in future phases.  If this
600 <     * Phaser has a parent, and deregistration causes this Phaser to
601 <     * have zero parties, this Phaser is also deregistered from its
557 <     * parent.
599 >     * parties required to advance in future phases.  If this phaser
600 >     * has a parent, and deregistration causes this phaser to have
601 >     * zero parties, this phaser is also deregistered from its parent.
602       *
603       * <p>It is a usage error for an unregistered party to invoke this
604       * method.  However, this error may result in an {@code
605       * IllegalStateException} only upon some subsequent operation on
606 <     * this Phaser, if ever.
606 >     * this phaser, if ever.
607       *
608       * @return the arrival phase number, or a negative value if terminated
609       * @throws IllegalStateException if not terminated and the number
610       * of registered or unarrived parties would become negative
611       */
612      public int arriveAndDeregister() {
613 <        return doArrive(ONE_ARRIVAL|ONE_PARTY);
613 >        return doArrive(true);
614      }
615  
616      /**
617 <     * Arrives at the barrier and awaits others. Equivalent in effect
617 >     * Arrives at this phaser and awaits others. Equivalent in effect
618       * to {@code awaitAdvance(arrive())}.  If you need to await with
619       * interruption or timeout, you can arrange this with an analogous
620       * construction using one of the other forms of the {@code
# Line 580 | Line 624 | public class Phaser {
624       * <p>It is a usage error for an unregistered party to invoke this
625       * method.  However, this error may result in an {@code
626       * IllegalStateException} only upon some subsequent operation on
627 <     * this Phaser, if ever.
627 >     * this phaser, if ever.
628       *
629 <     * @return the arrival phase number, or a negative number if terminated
629 >     * @return the arrival phase number, or the (negative)
630 >     * {@linkplain #getPhase() current phase} if terminated
631       * @throws IllegalStateException if not terminated and the number
632       * of unarrived parties would become negative
633       */
634      public int arriveAndAwaitAdvance() {
635 <        return awaitAdvance(arrive());
635 >        // Specialization of doArrive+awaitAdvance eliminating some reads/paths
636 >        final Phaser root = this.root;
637 >        for (;;) {
638 >            long s = (root == this) ? state : reconcileState();
639 >            int phase = (int)(s >>> PHASE_SHIFT);
640 >            int counts = (int)s;
641 >            int unarrived = (counts & UNARRIVED_MASK) - 1;
642 >            if (phase < 0)
643 >                return phase;
644 >            else if (counts == EMPTY || unarrived < 0) {
645 >                if (reconcileState() == s)
646 >                    throw new IllegalStateException(badArrive(s));
647 >            }
648 >            else if (UNSAFE.compareAndSwapLong(this, stateOffset, s,
649 >                                               s -= ONE_ARRIVAL)) {
650 >                if (unarrived != 0)
651 >                    return root.internalAwaitAdvance(phase, null);
652 >                if (root != this)
653 >                    return parent.arriveAndAwaitAdvance();
654 >                long n = s & PARTIES_MASK;  // base of next state
655 >                int nextUnarrived = ((int)n) >>> PARTIES_SHIFT;
656 >                if (onAdvance(phase, nextUnarrived))
657 >                    n |= TERMINATION_BIT;
658 >                else if (nextUnarrived == 0)
659 >                    n |= EMPTY;
660 >                else
661 >                    n |= nextUnarrived;
662 >                int nextPhase = (phase + 1) & MAX_PHASE;
663 >                n |= (long)nextPhase << PHASE_SHIFT;
664 >                if (!UNSAFE.compareAndSwapLong(this, stateOffset, s, n))
665 >                    return (int)(state >>> PHASE_SHIFT); // terminated
666 >                releaseWaiters(phase);
667 >                return nextPhase;
668 >            }
669 >        }
670      }
671  
672      /**
673 <     * Awaits the phase of the barrier to advance from the given phase
674 <     * value, returning immediately if the current phase of the
675 <     * barrier is not equal to the given phase value or this barrier
597 <     * is terminated.
673 >     * Awaits the phase of this phaser to advance from the given phase
674 >     * value, returning immediately if the current phase is not equal
675 >     * to the given phase value or this phaser is terminated.
676       *
677       * @param phase an arrival phase number, or negative value if
678       * terminated; this argument is normally the value returned by a
679 <     * previous call to {@code arrive} or its variants
680 <     * @return the next arrival phase number, or a negative value
681 <     * if terminated or argument is negative
679 >     * previous call to {@code arrive} or {@code arriveAndDeregister}.
680 >     * @return the next arrival phase number, or the argument if it is
681 >     * negative, or the (negative) {@linkplain #getPhase() current phase}
682 >     * if terminated
683       */
684      public int awaitAdvance(int phase) {
685 <        Phaser r;
686 <        int p = (int)(state >>> PHASE_SHIFT);
685 >        final Phaser root = this.root;
686 >        long s = (root == this) ? state : reconcileState();
687 >        int p = (int)(s >>> PHASE_SHIFT);
688          if (phase < 0)
689              return phase;
690 <        if (p == phase &&
691 <            (p = (int)((r = root).state >>> PHASE_SHIFT)) == phase)
612 <            return r.internalAwaitAdvance(phase, null);
690 >        if (p == phase)
691 >            return root.internalAwaitAdvance(phase, null);
692          return p;
693      }
694  
695      /**
696 <     * Awaits the phase of the barrier to advance from the given phase
696 >     * Awaits the phase of this phaser to advance from the given phase
697       * value, throwing {@code InterruptedException} if interrupted
698 <     * while waiting, or returning immediately if the current phase of
699 <     * the barrier is not equal to the given phase value or this
700 <     * barrier is terminated.
698 >     * while waiting, or returning immediately if the current phase is
699 >     * not equal to the given phase value or this phaser is
700 >     * terminated.
701       *
702       * @param phase an arrival phase number, or negative value if
703       * terminated; this argument is normally the value returned by a
704 <     * previous call to {@code arrive} or its variants
705 <     * @return the next arrival phase number, or a negative value
706 <     * if terminated or argument is negative
704 >     * previous call to {@code arrive} or {@code arriveAndDeregister}.
705 >     * @return the next arrival phase number, or the argument if it is
706 >     * negative, or the (negative) {@linkplain #getPhase() current phase}
707 >     * if terminated
708       * @throws InterruptedException if thread interrupted while waiting
709       */
710      public int awaitAdvanceInterruptibly(int phase)
711          throws InterruptedException {
712 <        Phaser r;
713 <        int p = (int)(state >>> PHASE_SHIFT);
712 >        final Phaser root = this.root;
713 >        long s = (root == this) ? state : reconcileState();
714 >        int p = (int)(s >>> PHASE_SHIFT);
715          if (phase < 0)
716              return phase;
717 <        if (p == phase &&
637 <            (p = (int)((r = root).state >>> PHASE_SHIFT)) == phase) {
717 >        if (p == phase) {
718              QNode node = new QNode(this, phase, true, false, 0L);
719 <            p = r.internalAwaitAdvance(phase, node);
719 >            p = root.internalAwaitAdvance(phase, node);
720              if (node.wasInterrupted)
721                  throw new InterruptedException();
722          }
# Line 644 | Line 724 | public class Phaser {
724      }
725  
726      /**
727 <     * Awaits the phase of the barrier to advance from the given phase
727 >     * Awaits the phase of this phaser to advance from the given phase
728       * value or the given timeout to elapse, throwing {@code
729       * InterruptedException} if interrupted while waiting, or
730 <     * returning immediately if the current phase of the barrier is
731 <     * not equal to the given phase value or this barrier is
652 <     * terminated.
730 >     * returning immediately if the current phase is not equal to the
731 >     * given phase value or this phaser is terminated.
732       *
733       * @param phase an arrival phase number, or negative value if
734       * terminated; this argument is normally the value returned by a
735 <     * previous call to {@code arrive} or its variants
735 >     * previous call to {@code arrive} or {@code arriveAndDeregister}.
736       * @param timeout how long to wait before giving up, in units of
737       *        {@code unit}
738       * @param unit a {@code TimeUnit} determining how to interpret the
739       *        {@code timeout} parameter
740 <     * @return the next arrival phase number, or a negative value
741 <     * if terminated or argument is negative
740 >     * @return the next arrival phase number, or the argument if it is
741 >     * negative, or the (negative) {@linkplain #getPhase() current phase}
742 >     * if terminated
743       * @throws InterruptedException if thread interrupted while waiting
744       * @throws TimeoutException if timed out while waiting
745       */
# Line 667 | Line 747 | public class Phaser {
747                                           long timeout, TimeUnit unit)
748          throws InterruptedException, TimeoutException {
749          long nanos = unit.toNanos(timeout);
750 <        Phaser r;
751 <        int p = (int)(state >>> PHASE_SHIFT);
750 >        final Phaser root = this.root;
751 >        long s = (root == this) ? state : reconcileState();
752 >        int p = (int)(s >>> PHASE_SHIFT);
753          if (phase < 0)
754              return phase;
755 <        if (p == phase &&
675 <            (p = (int)((r = root).state >>> PHASE_SHIFT)) == phase) {
755 >        if (p == phase) {
756              QNode node = new QNode(this, phase, true, true, nanos);
757 <            p = r.internalAwaitAdvance(phase, node);
757 >            p = root.internalAwaitAdvance(phase, node);
758              if (node.wasInterrupted)
759                  throw new InterruptedException();
760              else if (p == phase)
# Line 684 | Line 764 | public class Phaser {
764      }
765  
766      /**
767 <     * Forces this barrier to enter termination state.  Counts of
768 <     * arrived and registered parties are unaffected.  If this Phaser
769 <     * is a member of a tiered set of Phasers, then all of the Phasers
770 <     * in the set are terminated.  If this Phaser is already
771 <     * terminated, this method has no effect.  This method may be
772 <     * useful for coordinating recovery after one or more tasks
773 <     * encounter unexpected exceptions.
767 >     * Forces this phaser to enter termination state.  Counts of
768 >     * registered parties are unaffected.  If this phaser is a member
769 >     * of a tiered set of phasers, then all of the phasers in the set
770 >     * are terminated.  If this phaser is already terminated, this
771 >     * method has no effect.  This method may be useful for
772 >     * coordinating recovery after one or more tasks encounter
773 >     * unexpected exceptions.
774       */
775      public void forceTermination() {
776          // Only need to change root state
# Line 699 | Line 779 | public class Phaser {
779          while ((s = root.state) >= 0) {
780              if (UNSAFE.compareAndSwapLong(root, stateOffset,
781                                            s, s | TERMINATION_BIT)) {
782 <                releaseWaiters(0); // signal all threads
782 >                // signal all threads
783 >                releaseWaiters(0);
784                  releaseWaiters(1);
785                  return;
786              }
# Line 709 | Line 790 | public class Phaser {
790      /**
791       * Returns the current phase number. The maximum phase number is
792       * {@code Integer.MAX_VALUE}, after which it restarts at
793 <     * zero. Upon termination, the phase number is negative.
793 >     * zero. Upon termination, the phase number is negative,
794 >     * in which case the prevailing phase prior to termination
795 >     * may be obtained via {@code getPhase() + Integer.MIN_VALUE}.
796       *
797       * @return the phase number, or a negative value if terminated
798       */
# Line 718 | Line 801 | public class Phaser {
801      }
802  
803      /**
804 <     * Returns the number of parties registered at this barrier.
804 >     * Returns the number of parties registered at this phaser.
805       *
806       * @return the number of parties
807       */
# Line 728 | Line 811 | public class Phaser {
811  
812      /**
813       * Returns the number of registered parties that have arrived at
814 <     * the current phase of this barrier.
814 >     * the current phase of this phaser. If this phaser has terminated,
815 >     * the returned value is meaningless and arbitrary.
816       *
817       * @return the number of arrived parties
818       */
819      public int getArrivedParties() {
820 <        long s = state;
737 <        int u = unarrivedOf(s); // only reconcile if possibly needed
738 <        return (u != 0 || parent == null) ?
739 <            partiesOf(s) - u :
740 <            arrivedOf(reconcileState());
820 >        return arrivedOf(reconcileState());
821      }
822  
823      /**
824       * Returns the number of registered parties that have not yet
825 <     * arrived at the current phase of this barrier.
825 >     * arrived at the current phase of this phaser. If this phaser has
826 >     * terminated, the returned value is meaningless and arbitrary.
827       *
828       * @return the number of unarrived parties
829       */
830      public int getUnarrivedParties() {
831 <        int u = unarrivedOf(state);
751 <        return (u != 0 || parent == null) ? u : unarrivedOf(reconcileState());
831 >        return unarrivedOf(reconcileState());
832      }
833  
834      /**
835 <     * Returns the parent of this Phaser, or {@code null} if none.
835 >     * Returns the parent of this phaser, or {@code null} if none.
836       *
837 <     * @return the parent of this Phaser, or {@code null} if none
837 >     * @return the parent of this phaser, or {@code null} if none
838       */
839      public Phaser getParent() {
840          return parent;
841      }
842  
843      /**
844 <     * Returns the root ancestor of this Phaser, which is the same as
845 <     * this Phaser if it has no parent.
844 >     * Returns the root ancestor of this phaser, which is the same as
845 >     * this phaser if it has no parent.
846       *
847 <     * @return the root ancestor of this Phaser
847 >     * @return the root ancestor of this phaser
848       */
849      public Phaser getRoot() {
850          return root;
851      }
852  
853      /**
854 <     * Returns {@code true} if this barrier has been terminated.
854 >     * Returns {@code true} if this phaser has been terminated.
855       *
856 <     * @return {@code true} if this barrier has been terminated
856 >     * @return {@code true} if this phaser has been terminated
857       */
858      public boolean isTerminated() {
859          return root.state < 0L;
# Line 782 | Line 862 | public class Phaser {
862      /**
863       * Overridable method to perform an action upon impending phase
864       * advance, and to control termination. This method is invoked
865 <     * upon arrival of the party tripping the barrier (when all other
865 >     * upon arrival of the party advancing this phaser (when all other
866       * waiting parties are dormant).  If this method returns {@code
867 <     * true}, then, rather than advance the phase number, this barrier
868 <     * will be set to a final termination state, and subsequent calls
869 <     * to {@link #isTerminated} will return true. Any (unchecked)
870 <     * Exception or Error thrown by an invocation of this method is
871 <     * propagated to the party attempting to trip the barrier, in
872 <     * which case no advance occurs.
867 >     * true}, this phaser will be set to a final termination state
868 >     * upon advance, and subsequent calls to {@link #isTerminated}
869 >     * will return true. Any (unchecked) Exception or Error thrown by
870 >     * an invocation of this method is propagated to the party
871 >     * attempting to advance this phaser, in which case no advance
872 >     * occurs.
873       *
874 <     * <p>The arguments to this method provide the state of the Phaser
874 >     * <p>The arguments to this method provide the state of the phaser
875       * prevailing for the current transition.  The effects of invoking
876 <     * arrival, registration, and waiting methods on this Phaser from
876 >     * arrival, registration, and waiting methods on this phaser from
877       * within {@code onAdvance} are unspecified and should not be
878       * relied on.
879       *
880 <     * <p>If this Phaser is a member of a tiered set of Phasers, then
881 <     * {@code onAdvance} is invoked only for its root Phaser on each
880 >     * <p>If this phaser is a member of a tiered set of phasers, then
881 >     * {@code onAdvance} is invoked only for its root phaser on each
882       * advance.
883       *
884       * <p>To support the most common use cases, the default
# Line 814 | Line 894 | public class Phaser {
894       *   protected boolean onAdvance(int phase, int parties) { return false; }
895       * }}</pre>
896       *
897 <     * @param phase the phase number on entering the barrier
897 >     * @param phase the current phase number on entry to this method,
898 >     * before this phaser is advanced
899       * @param registeredParties the current number of registered parties
900 <     * @return {@code true} if this barrier should terminate
900 >     * @return {@code true} if this phaser should terminate
901       */
902      protected boolean onAdvance(int phase, int registeredParties) {
903 <        return registeredParties <= 0;
903 >        return registeredParties == 0;
904      }
905  
906      /**
907 <     * Returns a string identifying this Phaser, as well as its
907 >     * Returns a string identifying this phaser, as well as its
908       * state.  The state, in brackets, includes the String {@code
909       * "phase = "} followed by the phase number, {@code "parties = "}
910       * followed by the number of registered parties, and {@code
911       * "arrived = "} followed by the number of arrived parties.
912       *
913 <     * @return a string identifying this barrier, as well as its state
913 >     * @return a string identifying this phaser, as well as its state
914       */
915      public String toString() {
916          return stateToString(reconcileState());
# Line 851 | Line 932 | public class Phaser {
932       * Removes and signals threads from queue for phase.
933       */
934      private void releaseWaiters(int phase) {
935 <        AtomicReference<QNode> head = queueFor(phase);
936 <        QNode q;
937 <        int p;
935 >        QNode q;   // first element of queue
936 >        Thread t;  // its thread
937 >        AtomicReference<QNode> head = (phase & 1) == 0 ? evenQ : oddQ;
938          while ((q = head.get()) != null &&
939 <               ((p = q.phase) == phase ||
940 <                (int)(root.state >>> PHASE_SHIFT) != p)) {
941 <            if (head.compareAndSet(q, q.next))
942 <                q.signal();
939 >               q.phase != (int)(root.state >>> PHASE_SHIFT)) {
940 >            if (head.compareAndSet(q, q.next) &&
941 >                (t = q.thread) != null) {
942 >                q.thread = null;
943 >                LockSupport.unpark(t);
944 >            }
945 >        }
946 >    }
947 >
948 >    /**
949 >     * Variant of releaseWaiters that additionally tries to remove any
950 >     * nodes no longer waiting for advance due to timeout or
951 >     * interrupt. Currently, nodes are removed only if they are at
952 >     * head of queue, which suffices to reduce memory footprint in
953 >     * most usages.
954 >     *
955 >     * @return current phase on exit
956 >     */
957 >    private int abortWait(int phase) {
958 >        AtomicReference<QNode> head = (phase & 1) == 0 ? evenQ : oddQ;
959 >        for (;;) {
960 >            Thread t;
961 >            QNode q = head.get();
962 >            int p = (int)(root.state >>> PHASE_SHIFT);
963 >            if (q == null || ((t = q.thread) != null && q.phase == p))
964 >                return p;
965 >            if (head.compareAndSet(q, q.next) && t != null) {
966 >                q.thread = null;
967 >                LockSupport.unpark(t);
968 >            }
969          }
970      }
971  
# Line 873 | Line 980 | public class Phaser {
980       * avoid it when threads regularly arrive: When a thread in
981       * internalAwaitAdvance notices another arrival before blocking,
982       * and there appear to be enough CPUs available, it spins
983 <     * SPINS_PER_ARRIVAL more times before blocking. Plus, even on
984 <     * uniprocessors, there is at least one intervening Thread.yield
878 <     * before blocking. The value trades off good-citizenship vs big
879 <     * unnecessary slowdowns.
983 >     * SPINS_PER_ARRIVAL more times before blocking. The value trades
984 >     * off good-citizenship vs big unnecessary slowdowns.
985       */
986      static final int SPINS_PER_ARRIVAL = (NCPU < 2) ? 1 : 1 << 8;
987  
# Line 890 | Line 995 | public class Phaser {
995       * @return current phase
996       */
997      private int internalAwaitAdvance(int phase, QNode node) {
998 <        boolean queued = false;      // true when node is enqueued
999 <        int lastUnarrived = -1;      // to increase spins upon change
998 >        releaseWaiters(phase-1);          // ensure old queue clean
999 >        boolean queued = false;           // true when node is enqueued
1000 >        int lastUnarrived = 0;            // to increase spins upon change
1001          int spins = SPINS_PER_ARRIVAL;
1002          long s;
1003          int p;
1004          while ((p = (int)((s = state) >>> PHASE_SHIFT)) == phase) {
1005 <            int unarrived = (int)s & UNARRIVED_MASK;
1006 <            if (unarrived != lastUnarrived) {
1007 <                if (lastUnarrived == -1) // ensure old queue clean
1008 <                    releaseWaiters(phase-1);
903 <                if ((lastUnarrived = unarrived) < NCPU)
1005 >            if (node == null) {           // spinning in noninterruptible mode
1006 >                int unarrived = (int)s & UNARRIVED_MASK;
1007 >                if (unarrived != lastUnarrived &&
1008 >                    (lastUnarrived = unarrived) < NCPU)
1009                      spins += SPINS_PER_ARRIVAL;
1010 <            }
1011 <            else if (spins > 0) {
1012 <                if (--spins == (SPINS_PER_ARRIVAL >>> 1))
1013 <                    Thread.yield();  // yield midway through spin
909 <            }
910 <            else if (node == null)   // must be noninterruptible
911 <                node = new QNode(this, phase, false, false, 0L);
912 <            else if (node.isReleasable()) {
913 <                p = (int)(state >>> PHASE_SHIFT);
914 <                break;               // aborted
915 <            }
916 <            else if (!queued) {      // push onto queue
917 <                AtomicReference<QNode> head = queueFor(phase);
918 <                QNode q = head.get();
919 <                if (q == null || q.phase == phase) {
920 <                    node.next = q;
921 <                    if ((p = (int)(state >>> PHASE_SHIFT)) != phase)
922 <                        break;       // recheck to avoid stale enqueue
923 <                    else
924 <                        queued = head.compareAndSet(q, node);
1010 >                boolean interrupted = Thread.interrupted();
1011 >                if (interrupted || --spins < 0) { // need node to record intr
1012 >                    node = new QNode(this, phase, false, false, 0L);
1013 >                    node.wasInterrupted = interrupted;
1014                  }
1015              }
1016 +            else if (node.isReleasable()) // done or aborted
1017 +                break;
1018 +            else if (!queued) {           // push onto queue
1019 +                AtomicReference<QNode> head = (phase & 1) == 0 ? evenQ : oddQ;
1020 +                QNode q = node.next = head.get();
1021 +                if ((q == null || q.phase == phase) &&
1022 +                    (int)(state >>> PHASE_SHIFT) == phase) // avoid stale enq
1023 +                    queued = head.compareAndSet(q, node);
1024 +            }
1025              else {
1026                  try {
1027                      ForkJoinPool.managedBlock(node);
# Line 935 | Line 1033 | public class Phaser {
1033  
1034          if (node != null) {
1035              if (node.thread != null)
1036 <                node.thread = null; // disable unpark() in node.signal
1037 <            if (!node.interruptible && node.wasInterrupted)
1036 >                node.thread = null;       // avoid need for unpark()
1037 >            if (node.wasInterrupted && !node.interruptible)
1038                  Thread.currentThread().interrupt();
1039 +            if (p == phase && (p = (int)(state >>> PHASE_SHIFT)) == phase)
1040 +                return abortWait(phase); // possibly clean up on abort
1041          }
1042 <        if (p != phase)
943 <            releaseWaiters(phase);
1042 >        releaseWaiters(phase);
1043          return p;
1044      }
1045  
# Line 965 | Line 1064 | public class Phaser {
1064              this.interruptible = interruptible;
1065              this.nanos = nanos;
1066              this.timed = timed;
1067 <            this.lastTime = timed? System.nanoTime() : 0L;
1067 >            this.lastTime = timed ? System.nanoTime() : 0L;
1068              thread = Thread.currentThread();
1069          }
1070  
1071          public boolean isReleasable() {
1072 <            Thread t = thread;
1073 <            if (t != null) {
1074 <                if (phaser.getPhase() != phase)
1075 <                    t = null;
1076 <                else {
1077 <                    if (Thread.interrupted())
1078 <                        wasInterrupted = true;
1079 <                    if (interruptible && wasInterrupted)
1080 <                        t = null;
982 <                    else if (timed) {
983 <                        if (nanos > 0) {
984 <                            long now = System.nanoTime();
985 <                            nanos -= now - lastTime;
986 <                            lastTime = now;
987 <                        }
988 <                        if (nanos <= 0)
989 <                            t = null;
990 <                    }
991 <                }
992 <                if (t != null)
993 <                    return false;
1072 >            if (thread == null)
1073 >                return true;
1074 >            if (phaser.getPhase() != phase) {
1075 >                thread = null;
1076 >                return true;
1077 >            }
1078 >            if (Thread.interrupted())
1079 >                wasInterrupted = true;
1080 >            if (wasInterrupted && interruptible) {
1081                  thread = null;
1082 +                return true;
1083              }
1084 <            return true;
1084 >            if (timed) {
1085 >                if (nanos > 0L) {
1086 >                    long now = System.nanoTime();
1087 >                    nanos -= now - lastTime;
1088 >                    lastTime = now;
1089 >                }
1090 >                if (nanos <= 0L) {
1091 >                    thread = null;
1092 >                    return true;
1093 >                }
1094 >            }
1095 >            return false;
1096          }
1097  
1098          public boolean block() {
# Line 1005 | Line 1104 | public class Phaser {
1104                  LockSupport.parkNanos(this, nanos);
1105              return isReleasable();
1106          }
1008
1009        void signal() {
1010            Thread t = thread;
1011            if (t != null) {
1012                thread = null;
1013                LockSupport.unpark(t);
1014            }
1015        }
1107      }
1108  
1109      // Unsafe mechanics

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines