ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/Phaser.java
(Generate patch)

Comparing jsr166/src/jsr166y/Phaser.java (file contents):
Revision 1.66 by jsr166, Wed Dec 1 19:12:53 2010 UTC vs.
Revision 1.72 by dl, Mon May 16 11:41:14 2011 UTC

# Line 1 | Line 1
1   /*
2   * Written by Doug Lea with assistance from members of JCP JSR-166
3   * Expert Group and released to the public domain, as explained at
4 < * http://creativecommons.org/licenses/publicdomain
4 > * http://creativecommons.org/publicdomain/zero/1.0/
5   */
6  
7   package jsr166y;
# Line 75 | Line 75 | import java.util.concurrent.locks.LockSu
75   * </ul>
76   *
77   * <p> <b>Termination.</b> A phaser may enter a <em>termination</em>
78 < * state in which all synchronization methods immediately return
79 < * without updating phaser state or waiting for advance, and
80 < * indicating (via a negative phase value) that execution is complete.
78 > * state, that may be checked using method {@link #isTerminated}. Upon
79 > * termination, all synchronization methods immediately return without
80 > * waiting for advance, as indicated by a negative return value.
81 > * Similarly, attempts to register upon termination have no effect.
82   * Termination is triggered when an invocation of {@code onAdvance}
83   * returns {@code true}. The default implementation returns {@code
84   * true} if a deregistration has caused the number of registered
# Line 96 | Line 97 | import java.util.concurrent.locks.LockSu
97   * increase throughput even though it incurs greater per-operation
98   * overhead.
99   *
100 + * <p>In a tree of tiered phasers, registration and deregistration of
101 + * child phasers with their parent are managed automatically.
102 + * Whenever the number of registered parties of a child phaser becomes
103 + * non-zero (as established in the {@link #Phaser(Phaser,int)}
104 + * constructor, {@link #register}, or {@link #bulkRegister}), the
105 + * child phaser is registered with its parent.  Whenever the number of
106 + * registered parties becomes zero as the result of an invocation of
107 + * {@link #arriveAndDeregister}, the child phaser is deregistered
108 + * from its parent.
109 + *
110   * <p><b>Monitoring.</b> While synchronization methods may be invoked
111   * only by registered parties, the current state of a phaser may be
112   * monitored by any caller.  At any given moment there are {@link
# Line 119 | Line 130 | import java.util.concurrent.locks.LockSu
130   * void runTasks(List<Runnable> tasks) {
131   *   final Phaser phaser = new Phaser(1); // "1" to register self
132   *   // create and start threads
133 < *   for (Runnable task : tasks) {
133 > *   for (final Runnable task : tasks) {
134   *     phaser.register();
135   *     new Thread() {
136   *       public void run() {
# Line 249 | Line 260 | public class Phaser {
260       * parent.
261       *
262       * The phase of a subphaser is allowed to lag that of its
263 <     * ancestors until it is actually accessed.  Method reconcileState
264 <     * is usually attempted only only when the number of unarrived
254 <     * parties appears to be zero, which indicates a potential lag in
255 <     * updating phase after the root advanced.
263 >     * ancestors until it is actually accessed -- see method
264 >     * reconcileState.
265       */
266      private volatile long state;
267  
# Line 260 | Line 269 | public class Phaser {
269      private static final int  MAX_PHASE       = 0x7fffffff;
270      private static final int  PARTIES_SHIFT   = 16;
271      private static final int  PHASE_SHIFT     = 32;
272 +    private static final long PHASE_MASK      = -1L << PHASE_SHIFT;
273      private static final int  UNARRIVED_MASK  = 0xffff;      // to mask ints
274      private static final long PARTIES_MASK    = 0xffff0000L; // to mask longs
275      private static final long TERMINATION_BIT = 1L << 63;
# Line 277 | Line 287 | public class Phaser {
287      }
288  
289      private static int partiesOf(long s) {
290 <        int counts = (int)s;
281 <        return (counts == EMPTY) ? 0 : counts >>> PARTIES_SHIFT;
290 >        return (int)s >>> PARTIES_SHIFT;
291      }
292  
293      private static int phaseOf(long s) {
# Line 339 | Line 348 | public class Phaser {
348       */
349      private int doArrive(boolean deregister) {
350          int adj = deregister ? ONE_ARRIVAL|ONE_PARTY : ONE_ARRIVAL;
351 <        long s;
352 <        int phase;
353 <        while ((phase = (int)((s = state) >>> PHASE_SHIFT)) >= 0) {
351 >        final Phaser root = this.root;
352 >        for (;;) {
353 >            long s = (root == this) ? state : reconcileState();
354 >            int phase = (int)(s >>> PHASE_SHIFT);
355              int counts = (int)s;
356 <            int unarrived = counts & UNARRIVED_MASK;
357 <            if (counts == EMPTY || unarrived == 0) {
358 <                if (reconcileState() == s)
356 >            int unarrived = (counts & UNARRIVED_MASK) - 1;
357 >            if (phase < 0)
358 >                return phase;
359 >            else if (counts == EMPTY || unarrived < 0) {
360 >                if (root == this || reconcileState() == s)
361                      throw new IllegalStateException(badArrive(s));
362              }
363              else if (UNSAFE.compareAndSwapLong(this, stateOffset, s, s-=adj)) {
364 <                if (unarrived == 1) {
365 <                    long n = s & PARTIES_MASK;       // unshifted parties field
366 <                    int u = ((int)n) >>> PARTIES_SHIFT;
367 <                    Phaser par = parent;
368 <                    if (par != null) {
369 <                        par.doArrive(u == 0);
370 <                        reconcileState();
371 <                    }
372 <                    else {
373 <                        n |= (((long)((phase+1) & MAX_PHASE)) << PHASE_SHIFT);
374 <                        if (onAdvance(phase, u))
375 <                            n |= TERMINATION_BIT;
376 <                        else if (u == 0)
377 <                            n |= EMPTY;             // reset to unregistered
366 <                        else
367 <                            n |= (long)u;           // reset unarr to parties
368 <                        // assert state == s || isTerminated();
369 <                        UNSAFE.compareAndSwapLong(this, stateOffset, s, n);
370 <                        releaseWaiters(phase);
371 <                    }
364 >                if (unarrived == 0) {
365 >                    long n = s & PARTIES_MASK;  // base of next state
366 >                    int nextUnarrived = ((int)n) >>> PARTIES_SHIFT;
367 >                    if (root != this)
368 >                        return parent.doArrive(nextUnarrived == 0);
369 >                    if (onAdvance(phase, nextUnarrived))
370 >                        n |= TERMINATION_BIT;
371 >                    else if (nextUnarrived == 0)
372 >                        n |= EMPTY;
373 >                    else
374 >                        n |= nextUnarrived;
375 >                    n |= ((long)((phase + 1) & MAX_PHASE)) << PHASE_SHIFT;
376 >                    UNSAFE.compareAndSwapLong(this, stateOffset, s, n);
377 >                    releaseWaiters(phase);
378                  }
379 <                break;
379 >                return phase;
380              }
381          }
376        return phase;
382      }
383  
384      /**
# Line 430 | Line 435 | public class Phaser {
435  
436      /**
437       * Resolves lagged phase propagation from root if necessary.
438 +     * Reconciliation normally occurs when root has advanced but
439 +     * subphasers have not yet done so, in which case they must finish
440 +     * their own advance by setting unarrived to parties (or if
441 +     * parties is zero, resetting to unregistered EMPTY state).
442 +     * However, this method may also be called when "floating"
443 +     * subphasers with possibly some unarrived parties are merely
444 +     * catching up to current phase, in which case counts are
445 +     * unaffected.
446 +     *
447 +     * @return reconciled state
448       */
449      private long reconcileState() {
450 <        Phaser rt = root;
450 >        final Phaser root = this.root;
451          long s = state;
452 <        if (rt != this) {
453 <            int phase;
454 <            while ((phase = (int)(rt.state >>> PHASE_SHIFT)) !=
455 <                   (int)(s >>> PHASE_SHIFT)) {
456 <                // assert phase < 0 || unarrivedOf(s) == 0
457 <                long t;                             // to reread s
458 <                long p = s & PARTIES_MASK;          // unshifted parties field
459 <                long n = (((long) phase) << PHASE_SHIFT) | p;
460 <                if (phase >= 0) {
461 <                    if (p == 0L)
462 <                        n |= EMPTY;                 // reset to empty
448 <                    else
449 <                        n |= p >>> PARTIES_SHIFT;   // set unarr to parties
450 <                }
451 <                if ((t = state) == s &&
452 <                    UNSAFE.compareAndSwapLong(this, stateOffset, s, s = n))
453 <                    break;
454 <                s = t;
455 <            }
452 >        if (root != this) {
453 >            int phase, u, p;
454 >            // CAS root phase with current parties; possibly trip unarrived
455 >            while ((phase = (int)(root.state >>> PHASE_SHIFT)) !=
456 >                   (int)(s >>> PHASE_SHIFT) &&
457 >                   !UNSAFE.compareAndSwapLong
458 >                   (this, stateOffset, s,
459 >                    s = ((((long) phase) << PHASE_SHIFT) | (s & PARTIES_MASK) |
460 >                         ((p = (int)s >>> PARTIES_SHIFT) == 0 ? EMPTY :
461 >                          (u = (int)s & UNARRIVED_MASK) == 0 ? p : u))))
462 >                s = state;
463          }
464          return s;
465      }
# Line 490 | Line 497 | public class Phaser {
497  
498      /**
499       * Creates a new phaser with the given parent and number of
500 <     * registered unarrived parties. Registration and deregistration
501 <     * of this child phaser with its parent are managed automatically.
502 <     * If the given parent is non-null, whenever this child phaser has
496 <     * any registered parties (as established in this constructor,
497 <     * {@link #register}, or {@link #bulkRegister}), this child phaser
498 <     * is registered with its parent. Whenever the number of
499 <     * registered parties becomes zero as the result of an invocation
500 <     * of {@link #arriveAndDeregister}, this child phaser is
501 <     * deregistered from its parent.
500 >     * registered unarrived parties.  When the given parent is non-null
501 >     * and the given number of parties is greater than zero, this
502 >     * child phaser is registered with its parent.
503       *
504       * @param parent the parent phaser
505       * @param parties the number of parties required to advance to the
# Line 512 | Line 513 | public class Phaser {
513          int phase = 0;
514          this.parent = parent;
515          if (parent != null) {
516 <            Phaser r = parent.root;
517 <            this.root = r;
518 <            this.evenQ = r.evenQ;
519 <            this.oddQ = r.oddQ;
516 >            final Phaser root = parent.root;
517 >            this.root = root;
518 >            this.evenQ = root.evenQ;
519 >            this.oddQ = root.oddQ;
520              if (parties != 0)
521                  phase = parent.doRegister(1);
522          }
# Line 524 | Line 525 | public class Phaser {
525              this.evenQ = new AtomicReference<QNode>();
526              this.oddQ = new AtomicReference<QNode>();
527          }
528 <        this.state = (parties == 0) ? ((long) EMPTY) :
528 >        this.state = (parties == 0) ? (long) EMPTY :
529              ((((long) phase) << PHASE_SHIFT) |
530               (((long) parties) << PARTIES_SHIFT) |
531               ((long) parties));
# Line 535 | Line 536 | public class Phaser {
536       * invocation of {@link #onAdvance} is in progress, this method
537       * may await its completion before returning.  If this phaser has
538       * a parent, and this phaser previously had no registered parties,
539 <     * this phaser is also registered with its parent.
540 <     *
541 <     * @return the arrival phase number to which this registration applied
539 >     * this child phaser is also registered with its parent. If
540 >     * this phaser is terminated, the attempt to register has
541 >     * no effect, and a negative value is returned.
542 >     *
543 >     * @return the arrival phase number to which this registration
544 >     * applied.  If this value is negative, then this phaser has
545 >     * terminated, in which case registration has no effect.
546       * @throws IllegalStateException if attempting to register more
547       * than the maximum supported number of parties
548       */
# Line 549 | Line 554 | public class Phaser {
554       * Adds the given number of new unarrived parties to this phaser.
555       * If an ongoing invocation of {@link #onAdvance} is in progress,
556       * this method may await its completion before returning.  If this
557 <     * phaser has a parent, and the given number of parities is
558 <     * greater than zero, and this phaser previously had no registered
559 <     * parties, this phaser is also registered with its parent.
557 >     * phaser has a parent, and the given number of parties is greater
558 >     * than zero, and this phaser previously had no registered
559 >     * parties, this child phaser is also registered with its parent.
560 >     * If this phaser is terminated, the attempt to register has no
561 >     * effect, and a negative value is returned.
562       *
563       * @param parties the number of additional parties required to
564       * advance to the next phase
565 <     * @return the arrival phase number to which this registration applied
565 >     * @return the arrival phase number to which this registration
566 >     * applied.  If this value is negative, then this phaser has
567 >     * terminated, in which case registration has no effect.
568       * @throws IllegalStateException if attempting to register more
569       * than the maximum supported number of parties
570       * @throws IllegalArgumentException if {@code parties < 0}
# Line 617 | Line 626 | public class Phaser {
626       * IllegalStateException} only upon some subsequent operation on
627       * this phaser, if ever.
628       *
629 <     * @return the arrival phase number, or a negative number if terminated
629 >     * @return the arrival phase number, or the (negative)
630 >     * {@linkplain #getPhase() current phase} if terminated
631       * @throws IllegalStateException if not terminated and the number
632       * of unarrived parties would become negative
633       */
634      public int arriveAndAwaitAdvance() {
635 <        return awaitAdvance(doArrive(false));
635 >        // Specialization of doArrive+awaitAdvance eliminating some reads/paths
636 >        final Phaser root = this.root;
637 >        for (;;) {
638 >            long s = (root == this) ? state : reconcileState();
639 >            int phase = (int)(s >>> PHASE_SHIFT);
640 >            int counts = (int)s;
641 >            int unarrived = (counts & UNARRIVED_MASK) - 1;
642 >            if (phase < 0)
643 >                return phase;
644 >            else if (counts == EMPTY || unarrived < 0) {
645 >                if (reconcileState() == s)
646 >                    throw new IllegalStateException(badArrive(s));
647 >            }
648 >            else if (UNSAFE.compareAndSwapLong(this, stateOffset, s,
649 >                                               s -= ONE_ARRIVAL)) {
650 >                if (unarrived != 0)
651 >                    return root.internalAwaitAdvance(phase, null);
652 >                if (root != this)
653 >                    return parent.arriveAndAwaitAdvance();
654 >                long n = s & PARTIES_MASK;  // base of next state
655 >                int nextUnarrived = ((int)n) >>> PARTIES_SHIFT;
656 >                if (onAdvance(phase, nextUnarrived))
657 >                    n |= TERMINATION_BIT;
658 >                else if (nextUnarrived == 0)
659 >                    n |= EMPTY;
660 >                else
661 >                    n |= nextUnarrived;
662 >                int nextPhase = (phase + 1) & MAX_PHASE;
663 >                n |= (long)nextPhase << PHASE_SHIFT;
664 >                if (!UNSAFE.compareAndSwapLong(this, stateOffset, s, n))
665 >                    return (int)(state >>> PHASE_SHIFT); // terminated
666 >                releaseWaiters(phase);
667 >                return nextPhase;
668 >            }
669 >        }
670      }
671  
672      /**
# Line 633 | Line 677 | public class Phaser {
677       * @param phase an arrival phase number, or negative value if
678       * terminated; this argument is normally the value returned by a
679       * previous call to {@code arrive} or {@code arriveAndDeregister}.
680 <     * @return the next arrival phase number, or a negative value
681 <     * if terminated or argument is negative
680 >     * @return the next arrival phase number, or the argument if it is
681 >     * negative, or the (negative) {@linkplain #getPhase() current phase}
682 >     * if terminated
683       */
684      public int awaitAdvance(int phase) {
685 <        Phaser rt;
686 <        int p = (int)(state >>> PHASE_SHIFT);
685 >        final Phaser root = this.root;
686 >        long s = (root == this) ? state : reconcileState();
687 >        int p = (int)(s >>> PHASE_SHIFT);
688          if (phase < 0)
689              return phase;
690 <        if (p == phase) {
691 <            if ((p = (int)((rt = root).state >>> PHASE_SHIFT)) == phase)
646 <                return rt.internalAwaitAdvance(phase, null);
647 <            reconcileState();
648 <        }
690 >        if (p == phase)
691 >            return root.internalAwaitAdvance(phase, null);
692          return p;
693      }
694  
# Line 659 | Line 702 | public class Phaser {
702       * @param phase an arrival phase number, or negative value if
703       * terminated; this argument is normally the value returned by a
704       * previous call to {@code arrive} or {@code arriveAndDeregister}.
705 <     * @return the next arrival phase number, or a negative value
706 <     * if terminated or argument is negative
705 >     * @return the next arrival phase number, or the argument if it is
706 >     * negative, or the (negative) {@linkplain #getPhase() current phase}
707 >     * if terminated
708       * @throws InterruptedException if thread interrupted while waiting
709       */
710      public int awaitAdvanceInterruptibly(int phase)
711          throws InterruptedException {
712 <        Phaser rt;
713 <        int p = (int)(state >>> PHASE_SHIFT);
712 >        final Phaser root = this.root;
713 >        long s = (root == this) ? state : reconcileState();
714 >        int p = (int)(s >>> PHASE_SHIFT);
715          if (phase < 0)
716              return phase;
717          if (p == phase) {
718 <            if ((p = (int)((rt = root).state >>> PHASE_SHIFT)) == phase) {
719 <                QNode node = new QNode(this, phase, true, false, 0L);
720 <                p = rt.internalAwaitAdvance(phase, node);
721 <                if (node.wasInterrupted)
677 <                    throw new InterruptedException();
678 <            }
679 <            else
680 <                reconcileState();
718 >            QNode node = new QNode(this, phase, true, false, 0L);
719 >            p = root.internalAwaitAdvance(phase, node);
720 >            if (node.wasInterrupted)
721 >                throw new InterruptedException();
722          }
723          return p;
724      }
# Line 696 | Line 737 | public class Phaser {
737       *        {@code unit}
738       * @param unit a {@code TimeUnit} determining how to interpret the
739       *        {@code timeout} parameter
740 <     * @return the next arrival phase number, or a negative value
741 <     * if terminated or argument is negative
740 >     * @return the next arrival phase number, or the argument if it is
741 >     * negative, or the (negative) {@linkplain #getPhase() current phase}
742 >     * if terminated
743       * @throws InterruptedException if thread interrupted while waiting
744       * @throws TimeoutException if timed out while waiting
745       */
# Line 705 | Line 747 | public class Phaser {
747                                           long timeout, TimeUnit unit)
748          throws InterruptedException, TimeoutException {
749          long nanos = unit.toNanos(timeout);
750 <        Phaser rt;
751 <        int p = (int)(state >>> PHASE_SHIFT);
750 >        final Phaser root = this.root;
751 >        long s = (root == this) ? state : reconcileState();
752 >        int p = (int)(s >>> PHASE_SHIFT);
753          if (phase < 0)
754              return phase;
755          if (p == phase) {
756 <            if ((p = (int)((rt = root).state >>> PHASE_SHIFT)) == phase) {
757 <                QNode node = new QNode(this, phase, true, true, nanos);
758 <                p = rt.internalAwaitAdvance(phase, node);
759 <                if (node.wasInterrupted)
760 <                    throw new InterruptedException();
761 <                else if (p == phase)
719 <                    throw new TimeoutException();
720 <            }
721 <            else
722 <                reconcileState();
756 >            QNode node = new QNode(this, phase, true, true, nanos);
757 >            p = root.internalAwaitAdvance(phase, node);
758 >            if (node.wasInterrupted)
759 >                throw new InterruptedException();
760 >            else if (p == phase)
761 >                throw new TimeoutException();
762          }
763          return p;
764      }
# Line 738 | Line 777 | public class Phaser {
777          final Phaser root = this.root;
778          long s;
779          while ((s = root.state) >= 0) {
780 <            long next = (s & ~(long)(MAX_PARTIES)) | TERMINATION_BIT;
781 <            if (UNSAFE.compareAndSwapLong(root, stateOffset, s, next)) {
782 <                releaseWaiters(0); // signal all threads
780 >            if (UNSAFE.compareAndSwapLong(root, stateOffset,
781 >                                          s, s | TERMINATION_BIT)) {
782 >                // signal all threads
783 >                releaseWaiters(0);
784                  releaseWaiters(1);
785                  return;
786              }
# Line 771 | Line 811 | public class Phaser {
811  
812      /**
813       * Returns the number of registered parties that have arrived at
814 <     * the current phase of this phaser.
814 >     * the current phase of this phaser. If this phaser has terminated,
815 >     * the returned value is meaningless and arbitrary.
816       *
817       * @return the number of arrived parties
818       */
# Line 781 | Line 822 | public class Phaser {
822  
823      /**
824       * Returns the number of registered parties that have not yet
825 <     * arrived at the current phase of this phaser.
825 >     * arrived at the current phase of this phaser. If this phaser has
826 >     * terminated, the returned value is meaningless and arbitrary.
827       *
828       * @return the number of unarrived parties
829       */
# Line 891 | Line 933 | public class Phaser {
933       */
934      private void releaseWaiters(int phase) {
935          QNode q;   // first element of queue
894        int p;     // its phase
936          Thread t;  // its thread
896        //        assert phase != phaseOf(root.state);
937          AtomicReference<QNode> head = (phase & 1) == 0 ? evenQ : oddQ;
938          while ((q = head.get()) != null &&
939                 q.phase != (int)(root.state >>> PHASE_SHIFT)) {
# Line 905 | Line 945 | public class Phaser {
945          }
946      }
947  
948 +    /**
949 +     * Variant of releaseWaiters that additionally tries to remove any
950 +     * nodes no longer waiting for advance due to timeout or
951 +     * interrupt. Currently, nodes are removed only if they are at
952 +     * head of queue, which suffices to reduce memory footprint in
953 +     * most usages.
954 +     *
955 +     * @return current phase on exit
956 +     */
957 +    private int abortWait(int phase) {
958 +        AtomicReference<QNode> head = (phase & 1) == 0 ? evenQ : oddQ;
959 +        for (;;) {
960 +            Thread t;
961 +            QNode q = head.get();
962 +            int p = (int)(root.state >>> PHASE_SHIFT);
963 +            if (q == null || ((t = q.thread) != null && q.phase == p))
964 +                return p;
965 +            if (head.compareAndSet(q, q.next) && t != null) {
966 +                q.thread = null;
967 +                LockSupport.unpark(t);
968 +            }
969 +        }
970 +    }
971 +
972      /** The number of CPUs, for spin control */
973      private static final int NCPU = Runtime.getRuntime().availableProcessors();
974  
# Line 973 | Line 1037 | public class Phaser {
1037              if (node.wasInterrupted && !node.interruptible)
1038                  Thread.currentThread().interrupt();
1039              if (p == phase && (p = (int)(state >>> PHASE_SHIFT)) == phase)
1040 <                return p;                 // recheck abort
1040 >                return abortWait(phase); // possibly clean up on abort
1041          }
1042          releaseWaiters(phase);
1043          return p;

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines