ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/Phaser.java
(Generate patch)

Comparing jsr166/src/jsr166y/Phaser.java (file contents):
Revision 1.64 by jsr166, Mon Nov 29 20:58:06 2010 UTC vs.
Revision 1.74 by jsr166, Wed Jun 1 21:04:30 2011 UTC

# Line 1 | Line 1
1   /*
2   * Written by Doug Lea with assistance from members of JCP JSR-166
3   * Expert Group and released to the public domain, as explained at
4 < * http://creativecommons.org/licenses/publicdomain
4 > * http://creativecommons.org/publicdomain/zero/1.0/
5   */
6  
7   package jsr166y;
# Line 75 | Line 75 | import java.util.concurrent.locks.LockSu
75   * </ul>
76   *
77   * <p> <b>Termination.</b> A phaser may enter a <em>termination</em>
78 < * state in which all synchronization methods immediately return
79 < * without updating phaser state or waiting for advance, and
80 < * indicating (via a negative phase value) that execution is complete.
78 > * state, that may be checked using method {@link #isTerminated}. Upon
79 > * termination, all synchronization methods immediately return without
80 > * waiting for advance, as indicated by a negative return value.
81 > * Similarly, attempts to register upon termination have no effect.
82   * Termination is triggered when an invocation of {@code onAdvance}
83   * returns {@code true}. The default implementation returns {@code
84   * true} if a deregistration has caused the number of registered
# Line 96 | Line 97 | import java.util.concurrent.locks.LockSu
97   * increase throughput even though it incurs greater per-operation
98   * overhead.
99   *
100 + * <p>In a tree of tiered phasers, registration and deregistration of
101 + * child phasers with their parent are managed automatically.
102 + * Whenever the number of registered parties of a child phaser becomes
103 + * non-zero (as established in the {@link #Phaser(Phaser,int)}
104 + * constructor, {@link #register}, or {@link #bulkRegister}), the
105 + * child phaser is registered with its parent.  Whenever the number of
106 + * registered parties becomes zero as the result of an invocation of
107 + * {@link #arriveAndDeregister}, the child phaser is deregistered
108 + * from its parent.
109 + *
110   * <p><b>Monitoring.</b> While synchronization methods may be invoked
111   * only by registered parties, the current state of a phaser may be
112   * monitored by any caller.  At any given moment there are {@link
# Line 119 | Line 130 | import java.util.concurrent.locks.LockSu
130   * void runTasks(List<Runnable> tasks) {
131   *   final Phaser phaser = new Phaser(1); // "1" to register self
132   *   // create and start threads
133 < *   for (Runnable task : tasks) {
133 > *   for (final Runnable task : tasks) {
134   *     phaser.register();
135   *     new Thread() {
136   *       public void run() {
# Line 183 | Line 194 | import java.util.concurrent.locks.LockSu
194   * }}</pre>
195   *
196   *
197 < * <p>To create a set of tasks using a tree of phasers,
198 < * you could use code of the following form, assuming a
199 < * Task class with a constructor accepting a {@code Phaser} that
200 < * it registers with upon construction:
197 > * <p>To create a set of {@code n} tasks using a tree of phasers, you
198 > * could use code of the following form, assuming a Task class with a
199 > * constructor accepting a {@code Phaser} that it registers with upon
200 > * construction. After invocation of {@code build(new Task[n], 0, n,
201 > * new Phaser())}, these tasks could then be started, for example by
202 > * submitting to a pool:
203   *
204   *  <pre> {@code
205 < * void build(Task[] actions, int lo, int hi, Phaser ph) {
205 > * void build(Task[] tasks, int lo, int hi, Phaser ph) {
206   *   if (hi - lo > TASKS_PER_PHASER) {
207   *     for (int i = lo; i < hi; i += TASKS_PER_PHASER) {
208   *       int j = Math.min(i + TASKS_PER_PHASER, hi);
209 < *       build(actions, i, j, new Phaser(ph));
209 > *       build(tasks, i, j, new Phaser(ph));
210   *     }
211   *   } else {
212   *     for (int i = lo; i < hi; ++i)
213 < *       actions[i] = new Task(ph);
213 > *       tasks[i] = new Task(ph);
214   *       // assumes new Task(ph) performs ph.register()
215   *   }
216 < * }
204 < * // .. initially called, for n tasks via
205 < * build(new Task[n], 0, n, new Phaser());}</pre>
216 > * }}</pre>
217   *
218   * The best value of {@code TASKS_PER_PHASER} depends mainly on
219   * expected synchronization rates. A value as low as four may
# Line 226 | Line 237 | public class Phaser {
237       */
238  
239      /**
240 <     * Primary state representation, holding four fields:
240 >     * Primary state representation, holding four bit-fields:
241       *
242 <     * * unarrived -- the number of parties yet to hit barrier (bits  0-15)
243 <     * * parties -- the number of parties to wait              (bits 16-31)
244 <     * * phase -- the generation of the barrier                (bits 32-62)
245 <     * * terminated -- set if barrier is terminated            (bit  63 / sign)
246 <     *
247 <     * However, to efficiently maintain atomicity, these values are
248 <     * packed into a single (atomic) long. Termination uses the sign
249 <     * bit of 32 bit representation of phase, so phase is set to -1 on
250 <     * termination. Good performance relies on keeping state decoding
251 <     * and encoding simple, and keeping race windows short.
242 >     * unarrived  -- the number of parties yet to hit barrier (bits  0-15)
243 >     * parties    -- the number of parties to wait            (bits 16-31)
244 >     * phase      -- the generation of the barrier            (bits 32-62)
245 >     * terminated -- set if barrier is terminated             (bit  63 / sign)
246 >     *
247 >     * Except that a phaser with no registered parties is
248 >     * distinguished by the otherwise illegal state of having zero
249 >     * parties and one unarrived parties (encoded as EMPTY below).
250 >     *
251 >     * To efficiently maintain atomicity, these values are packed into
252 >     * a single (atomic) long. Good performance relies on keeping
253 >     * state decoding and encoding simple, and keeping race windows
254 >     * short.
255 >     *
256 >     * All state updates are performed via CAS except initial
257 >     * registration of a sub-phaser (i.e., one with a non-null
258 >     * parent).  In this (relatively rare) case, we use built-in
259 >     * synchronization to lock while first registering with its
260 >     * parent.
261 >     *
262 >     * The phase of a subphaser is allowed to lag that of its
263 >     * ancestors until it is actually accessed -- see method
264 >     * reconcileState.
265       */
266      private volatile long state;
267  
268      private static final int  MAX_PARTIES     = 0xffff;
269 <    private static final int  MAX_PHASE       = 0x7fffffff;
269 >    private static final int  MAX_PHASE       = Integer.MAX_VALUE;
270      private static final int  PARTIES_SHIFT   = 16;
271      private static final int  PHASE_SHIFT     = 32;
272      private static final int  UNARRIVED_MASK  = 0xffff;      // to mask ints
273      private static final long PARTIES_MASK    = 0xffff0000L; // to mask longs
250    private static final long ONE_ARRIVAL     = 1L;
251    private static final long ONE_PARTY       = 1L << PARTIES_SHIFT;
274      private static final long TERMINATION_BIT = 1L << 63;
275  
276 +    // some special values
277 +    private static final int  ONE_ARRIVAL     = 1;
278 +    private static final int  ONE_PARTY       = 1 << PARTIES_SHIFT;
279 +    private static final int  EMPTY           = 1;
280 +
281      // The following unpacking methods are usually manually inlined
282  
283      private static int unarrivedOf(long s) {
284 <        return (int)s & UNARRIVED_MASK;
284 >        int counts = (int)s;
285 >        return (counts == EMPTY) ? 0 : counts & UNARRIVED_MASK;
286      }
287  
288      private static int partiesOf(long s) {
# Line 262 | Line 290 | public class Phaser {
290      }
291  
292      private static int phaseOf(long s) {
293 <        return (int) (s >>> PHASE_SHIFT);
293 >        return (int)(s >>> PHASE_SHIFT);
294      }
295  
296      private static int arrivedOf(long s) {
297 <        return partiesOf(s) - unarrivedOf(s);
297 >        int counts = (int)s;
298 >        return (counts == EMPTY) ? 0 :
299 >            (counts >>> PARTIES_SHIFT) - (counts & UNARRIVED_MASK);
300      }
301  
302      /**
# Line 275 | Line 305 | public class Phaser {
305      private final Phaser parent;
306  
307      /**
308 <     * The root of phaser tree. Equals this if not in a tree.  Used to
279 <     * support faster state push-down.
308 >     * The root of phaser tree. Equals this if not in a tree.
309       */
310      private final Phaser root;
311  
# Line 314 | Line 343 | public class Phaser {
343       * Manually tuned to speed up and minimize race windows for the
344       * common case of just decrementing unarrived field.
345       *
346 <     * @param adj - adjustment to apply to state -- either
318 <     * ONE_ARRIVAL (for arrive) or
319 <     * ONE_ARRIVAL|ONE_PARTY (for arriveAndDeregister)
346 >     * @param deregister false for arrive, true for arriveAndDeregister
347       */
348 <    private int doArrive(long adj) {
348 >    private int doArrive(boolean deregister) {
349 >        int adj = deregister ? ONE_ARRIVAL|ONE_PARTY : ONE_ARRIVAL;
350 >        final Phaser root = this.root;
351          for (;;) {
352 <            long s = state;
324 <            int unarrived = (int)s & UNARRIVED_MASK;
352 >            long s = (root == this) ? state : reconcileState();
353              int phase = (int)(s >>> PHASE_SHIFT);
354 +            int counts = (int)s;
355 +            int unarrived = (counts & UNARRIVED_MASK) - 1;
356              if (phase < 0)
357                  return phase;
358 <            else if (unarrived == 0) {
359 <                if (reconcileState() == s)     // recheck
358 >            else if (counts == EMPTY || unarrived < 0) {
359 >                if (root == this || reconcileState() == s)
360                      throw new IllegalStateException(badArrive(s));
361              }
362              else if (UNSAFE.compareAndSwapLong(this, stateOffset, s, s-=adj)) {
363 <                if (unarrived == 1) {
364 <                    long p = s & PARTIES_MASK; // unshifted parties field
365 <                    long lu = p >>> PARTIES_SHIFT;
366 <                    int u = (int)lu;
367 <                    int nextPhase = (phase + 1) & MAX_PHASE;
368 <                    long next = ((long)nextPhase << PHASE_SHIFT) | p | lu;
369 <                    final Phaser parent = this.parent;
370 <                    if (parent == null) {
371 <                        if (onAdvance(phase, u))
372 <                            next |= TERMINATION_BIT;
373 <                        UNSAFE.compareAndSwapLong(this, stateOffset, s, next);
374 <                        releaseWaiters(phase);
375 <                    }
376 <                    else {
347 <                        parent.doArrive((u == 0) ?
348 <                                        ONE_ARRIVAL|ONE_PARTY : ONE_ARRIVAL);
349 <                        if ((int)(parent.state >>> PHASE_SHIFT) != nextPhase)
350 <                            reconcileState();
351 <                        else if (state == s)
352 <                            UNSAFE.compareAndSwapLong(this, stateOffset, s,
353 <                                                      next);
354 <                    }
363 >                if (unarrived == 0) {
364 >                    long n = s & PARTIES_MASK;  // base of next state
365 >                    int nextUnarrived = (int)n >>> PARTIES_SHIFT;
366 >                    if (root != this)
367 >                        return parent.doArrive(nextUnarrived == 0);
368 >                    if (onAdvance(phase, nextUnarrived))
369 >                        n |= TERMINATION_BIT;
370 >                    else if (nextUnarrived == 0)
371 >                        n |= EMPTY;
372 >                    else
373 >                        n |= nextUnarrived;
374 >                    n |= (long)((phase + 1) & MAX_PHASE) << PHASE_SHIFT;
375 >                    UNSAFE.compareAndSwapLong(this, stateOffset, s, n);
376 >                    releaseWaiters(phase);
377                  }
378                  return phase;
379              }
# Line 368 | Line 390 | public class Phaser {
390          // adjustment to state
391          long adj = ((long)registrations << PARTIES_SHIFT) | registrations;
392          final Phaser parent = this.parent;
393 +        int phase;
394          for (;;) {
395 <            long s = (parent == null) ? state : reconcileState();
396 <            int parties = (int)s >>> PARTIES_SHIFT;
397 <            int phase = (int)(s >>> PHASE_SHIFT);
398 <            if (phase < 0)
399 <                return phase;
377 <            else if (registrations > MAX_PARTIES - parties)
395 >            long s = state;
396 >            int counts = (int)s;
397 >            int parties = counts >>> PARTIES_SHIFT;
398 >            int unarrived = counts & UNARRIVED_MASK;
399 >            if (registrations > MAX_PARTIES - parties)
400                  throw new IllegalStateException(badRegister(s));
401 <            else if ((parties == 0 && parent == null) || // first reg of root
402 <                     ((int)s & UNARRIVED_MASK) != 0) {   // not advancing
403 <                if (UNSAFE.compareAndSwapLong(this, stateOffset, s, s + adj))
404 <                    return phase;
401 >            else if ((phase = (int)(s >>> PHASE_SHIFT)) < 0)
402 >                break;
403 >            else if (counts != EMPTY) {             // not 1st registration
404 >                if (parent == null || reconcileState() == s) {
405 >                    if (unarrived == 0)             // wait out advance
406 >                        root.internalAwaitAdvance(phase, null);
407 >                    else if (UNSAFE.compareAndSwapLong(this, stateOffset,
408 >                                                       s, s + adj))
409 >                        break;
410 >                }
411 >            }
412 >            else if (parent == null) {              // 1st root registration
413 >                long next = ((long)phase << PHASE_SHIFT) | adj;
414 >                if (UNSAFE.compareAndSwapLong(this, stateOffset, s, next))
415 >                    break;
416              }
417 <            else if (parties != 0)               // wait for onAdvance
418 <                root.internalAwaitAdvance(phase, null);
419 <            else {                               // 1st registration of child
420 <                synchronized (this) {            // register parent first
421 <                    if (reconcileState() == s) { // recheck under lock
422 <                        parent.doRegister(1);    // OK if throws IllegalState
423 <                        for (;;) {               // simpler form of outer loop
424 <                            s = reconcileState();
425 <                            phase = (int)(s >>> PHASE_SHIFT);
426 <                            if (phase < 0 ||
427 <                                UNSAFE.compareAndSwapLong(this, stateOffset,
395 <                                                          s, s + adj))
396 <                                return phase;
397 <                        }
417 >            else {
418 >                synchronized (this) {               // 1st sub registration
419 >                    if (state == s) {               // recheck under lock
420 >                        parent.doRegister(1);
421 >                        do {                        // force current phase
422 >                            phase = (int)(root.state >>> PHASE_SHIFT);
423 >                            // assert phase < 0 || (int)state == EMPTY;
424 >                        } while (!UNSAFE.compareAndSwapLong
425 >                                 (this, stateOffset, state,
426 >                                  ((long)phase << PHASE_SHIFT) | adj));
427 >                        break;
428                      }
429                  }
430              }
431          }
432 +        return phase;
433      }
434  
435      /**
436 <     * Recursively resolves lagged phase propagation from root if necessary.
436 >     * Resolves lagged phase propagation from root if necessary.
437 >     * Reconciliation normally occurs when root has advanced but
438 >     * subphasers have not yet done so, in which case they must finish
439 >     * their own advance by setting unarrived to parties (or if
440 >     * parties is zero, resetting to unregistered EMPTY state).
441 >     * However, this method may also be called when "floating"
442 >     * subphasers with possibly some unarrived parties are merely
443 >     * catching up to current phase, in which case counts are
444 >     * unaffected.
445 >     *
446 >     * @return reconciled state
447       */
448      private long reconcileState() {
449 <        Phaser par = parent;
449 >        final Phaser root = this.root;
450          long s = state;
451 <        if (par != null) {
452 <            Phaser rt = root;
453 <            int phase, rPhase;
454 <            while ((phase = (int)(s >>> PHASE_SHIFT)) >= 0 &&
455 <                   (rPhase = (int)(rt.state >>> PHASE_SHIFT)) != phase) {
456 <                if (par != rt && (int)(par.state >>> PHASE_SHIFT) != rPhase)
457 <                    par.reconcileState();
458 <                else if (rPhase < 0 || ((int)s & UNARRIVED_MASK) == 0) {
459 <                    long u = s & PARTIES_MASK; // reset unarrived to parties
460 <                    long next = ((((long) rPhase) << PHASE_SHIFT) | u |
461 <                                 (u >>> PARTIES_SHIFT));
421 <                    UNSAFE.compareAndSwapLong(this, stateOffset, s, next);
422 <                }
451 >        if (root != this) {
452 >            int phase, u, p;
453 >            // CAS root phase with current parties; possibly trip unarrived
454 >            while ((phase = (int)(root.state >>> PHASE_SHIFT)) !=
455 >                   (int)(s >>> PHASE_SHIFT) &&
456 >                   !UNSAFE.compareAndSwapLong
457 >                   (this, stateOffset, s,
458 >                    s = (((long)phase << PHASE_SHIFT) |
459 >                         (s & PARTIES_MASK) |
460 >                         ((p = (int)s >>> PARTIES_SHIFT) == 0 ? EMPTY :
461 >                          (u = (int)s & UNARRIVED_MASK) == 0 ? p : u))))
462                  s = state;
424            }
463          }
464          return s;
465      }
# Line 459 | Line 497 | public class Phaser {
497  
498      /**
499       * Creates a new phaser with the given parent and number of
500 <     * registered unarrived parties. Registration and deregistration
501 <     * of this child phaser with its parent are managed automatically.
502 <     * If the given parent is non-null, whenever this child phaser has
465 <     * any registered parties (as established in this constructor,
466 <     * {@link #register}, or {@link #bulkRegister}), this child phaser
467 <     * is registered with its parent. Whenever the number of
468 <     * registered parties becomes zero as the result of an invocation
469 <     * of {@link #arriveAndDeregister}, this child phaser is
470 <     * deregistered from its parent.
500 >     * registered unarrived parties.  When the given parent is non-null
501 >     * and the given number of parties is greater than zero, this
502 >     * child phaser is registered with its parent.
503       *
504       * @param parent the parent phaser
505       * @param parties the number of parties required to advance to the
# Line 478 | Line 510 | public class Phaser {
510      public Phaser(Phaser parent, int parties) {
511          if (parties >>> PARTIES_SHIFT != 0)
512              throw new IllegalArgumentException("Illegal number of parties");
513 <        long s = ((long) parties) | (((long) parties) << PARTIES_SHIFT);
513 >        int phase = 0;
514          this.parent = parent;
515          if (parent != null) {
516 <            Phaser r = parent.root;
517 <            this.root = r;
518 <            this.evenQ = r.evenQ;
519 <            this.oddQ = r.oddQ;
516 >            final Phaser root = parent.root;
517 >            this.root = root;
518 >            this.evenQ = root.evenQ;
519 >            this.oddQ = root.oddQ;
520              if (parties != 0)
521 <                s |= ((long)(parent.doRegister(1))) << PHASE_SHIFT;
521 >                phase = parent.doRegister(1);
522          }
523          else {
524              this.root = this;
525              this.evenQ = new AtomicReference<QNode>();
526              this.oddQ = new AtomicReference<QNode>();
527          }
528 <        this.state = s;
528 >        this.state = (parties == 0) ? (long)EMPTY :
529 >            ((long)phase << PHASE_SHIFT) |
530 >            ((long)parties << PARTIES_SHIFT) |
531 >            ((long)parties);
532      }
533  
534      /**
# Line 501 | Line 536 | public class Phaser {
536       * invocation of {@link #onAdvance} is in progress, this method
537       * may await its completion before returning.  If this phaser has
538       * a parent, and this phaser previously had no registered parties,
539 <     * this phaser is also registered with its parent.
540 <     *
541 <     * @return the arrival phase number to which this registration applied
539 >     * this child phaser is also registered with its parent. If
540 >     * this phaser is terminated, the attempt to register has
541 >     * no effect, and a negative value is returned.
542 >     *
543 >     * @return the arrival phase number to which this registration
544 >     * applied.  If this value is negative, then this phaser has
545 >     * terminated, in which case registration has no effect.
546       * @throws IllegalStateException if attempting to register more
547       * than the maximum supported number of parties
548       */
# Line 515 | Line 554 | public class Phaser {
554       * Adds the given number of new unarrived parties to this phaser.
555       * If an ongoing invocation of {@link #onAdvance} is in progress,
556       * this method may await its completion before returning.  If this
557 <     * phaser has a parent, and the given number of parities is
558 <     * greater than zero, and this phaser previously had no registered
559 <     * parties, this phaser is also registered with its parent.
557 >     * phaser has a parent, and the given number of parties is greater
558 >     * than zero, and this phaser previously had no registered
559 >     * parties, this child phaser is also registered with its parent.
560 >     * If this phaser is terminated, the attempt to register has no
561 >     * effect, and a negative value is returned.
562       *
563       * @param parties the number of additional parties required to
564       * advance to the next phase
565 <     * @return the arrival phase number to which this registration applied
565 >     * @return the arrival phase number to which this registration
566 >     * applied.  If this value is negative, then this phaser has
567 >     * terminated, in which case registration has no effect.
568       * @throws IllegalStateException if attempting to register more
569       * than the maximum supported number of parties
570       * @throws IllegalArgumentException if {@code parties < 0}
# Line 547 | Line 590 | public class Phaser {
590       * of unarrived parties would become negative
591       */
592      public int arrive() {
593 <        return doArrive(ONE_ARRIVAL);
593 >        return doArrive(false);
594      }
595  
596      /**
# Line 567 | Line 610 | public class Phaser {
610       * of registered or unarrived parties would become negative
611       */
612      public int arriveAndDeregister() {
613 <        return doArrive(ONE_ARRIVAL|ONE_PARTY);
613 >        return doArrive(true);
614      }
615  
616      /**
# Line 583 | Line 626 | public class Phaser {
626       * IllegalStateException} only upon some subsequent operation on
627       * this phaser, if ever.
628       *
629 <     * @return the arrival phase number, or a negative number if terminated
629 >     * @return the arrival phase number, or the (negative)
630 >     * {@linkplain #getPhase() current phase} if terminated
631       * @throws IllegalStateException if not terminated and the number
632       * of unarrived parties would become negative
633       */
634      public int arriveAndAwaitAdvance() {
635 <        return awaitAdvance(doArrive(ONE_ARRIVAL));
635 >        // Specialization of doArrive+awaitAdvance eliminating some reads/paths
636 >        final Phaser root = this.root;
637 >        for (;;) {
638 >            long s = (root == this) ? state : reconcileState();
639 >            int phase = (int)(s >>> PHASE_SHIFT);
640 >            int counts = (int)s;
641 >            int unarrived = (counts & UNARRIVED_MASK) - 1;
642 >            if (phase < 0)
643 >                return phase;
644 >            else if (counts == EMPTY || unarrived < 0) {
645 >                if (reconcileState() == s)
646 >                    throw new IllegalStateException(badArrive(s));
647 >            }
648 >            else if (UNSAFE.compareAndSwapLong(this, stateOffset, s,
649 >                                               s -= ONE_ARRIVAL)) {
650 >                if (unarrived != 0)
651 >                    return root.internalAwaitAdvance(phase, null);
652 >                if (root != this)
653 >                    return parent.arriveAndAwaitAdvance();
654 >                long n = s & PARTIES_MASK;  // base of next state
655 >                int nextUnarrived = (int)n >>> PARTIES_SHIFT;
656 >                if (onAdvance(phase, nextUnarrived))
657 >                    n |= TERMINATION_BIT;
658 >                else if (nextUnarrived == 0)
659 >                    n |= EMPTY;
660 >                else
661 >                    n |= nextUnarrived;
662 >                int nextPhase = (phase + 1) & MAX_PHASE;
663 >                n |= (long)nextPhase << PHASE_SHIFT;
664 >                if (!UNSAFE.compareAndSwapLong(this, stateOffset, s, n))
665 >                    return (int)(state >>> PHASE_SHIFT); // terminated
666 >                releaseWaiters(phase);
667 >                return nextPhase;
668 >            }
669 >        }
670      }
671  
672      /**
# Line 599 | Line 677 | public class Phaser {
677       * @param phase an arrival phase number, or negative value if
678       * terminated; this argument is normally the value returned by a
679       * previous call to {@code arrive} or {@code arriveAndDeregister}.
680 <     * @return the next arrival phase number, or a negative value
681 <     * if terminated or argument is negative
680 >     * @return the next arrival phase number, or the argument if it is
681 >     * negative, or the (negative) {@linkplain #getPhase() current phase}
682 >     * if terminated
683       */
684      public int awaitAdvance(int phase) {
685 <        Phaser rt;
686 <        int p = (int)(state >>> PHASE_SHIFT);
685 >        final Phaser root = this.root;
686 >        long s = (root == this) ? state : reconcileState();
687 >        int p = (int)(s >>> PHASE_SHIFT);
688          if (phase < 0)
689              return phase;
690 <        if (p == phase &&
691 <            (p = (int)((rt = root).state >>> PHASE_SHIFT)) == phase)
612 <            return rt.internalAwaitAdvance(phase, null);
690 >        if (p == phase)
691 >            return root.internalAwaitAdvance(phase, null);
692          return p;
693      }
694  
# Line 623 | Line 702 | public class Phaser {
702       * @param phase an arrival phase number, or negative value if
703       * terminated; this argument is normally the value returned by a
704       * previous call to {@code arrive} or {@code arriveAndDeregister}.
705 <     * @return the next arrival phase number, or a negative value
706 <     * if terminated or argument is negative
705 >     * @return the next arrival phase number, or the argument if it is
706 >     * negative, or the (negative) {@linkplain #getPhase() current phase}
707 >     * if terminated
708       * @throws InterruptedException if thread interrupted while waiting
709       */
710      public int awaitAdvanceInterruptibly(int phase)
711          throws InterruptedException {
712 <        Phaser rt;
713 <        int p = (int)(state >>> PHASE_SHIFT);
712 >        final Phaser root = this.root;
713 >        long s = (root == this) ? state : reconcileState();
714 >        int p = (int)(s >>> PHASE_SHIFT);
715          if (phase < 0)
716              return phase;
717 <        if (p == phase &&
637 <            (p = (int)((rt = root).state >>> PHASE_SHIFT)) == phase) {
717 >        if (p == phase) {
718              QNode node = new QNode(this, phase, true, false, 0L);
719 <            p = rt.internalAwaitAdvance(phase, node);
719 >            p = root.internalAwaitAdvance(phase, node);
720              if (node.wasInterrupted)
721                  throw new InterruptedException();
722          }
# Line 657 | Line 737 | public class Phaser {
737       *        {@code unit}
738       * @param unit a {@code TimeUnit} determining how to interpret the
739       *        {@code timeout} parameter
740 <     * @return the next arrival phase number, or a negative value
741 <     * if terminated or argument is negative
740 >     * @return the next arrival phase number, or the argument if it is
741 >     * negative, or the (negative) {@linkplain #getPhase() current phase}
742 >     * if terminated
743       * @throws InterruptedException if thread interrupted while waiting
744       * @throws TimeoutException if timed out while waiting
745       */
# Line 666 | Line 747 | public class Phaser {
747                                           long timeout, TimeUnit unit)
748          throws InterruptedException, TimeoutException {
749          long nanos = unit.toNanos(timeout);
750 <        Phaser rt;
751 <        int p = (int)(state >>> PHASE_SHIFT);
750 >        final Phaser root = this.root;
751 >        long s = (root == this) ? state : reconcileState();
752 >        int p = (int)(s >>> PHASE_SHIFT);
753          if (phase < 0)
754              return phase;
755 <        if (p == phase &&
674 <            (p = (int)((rt = root).state >>> PHASE_SHIFT)) == phase) {
755 >        if (p == phase) {
756              QNode node = new QNode(this, phase, true, true, nanos);
757 <            p = rt.internalAwaitAdvance(phase, node);
757 >            p = root.internalAwaitAdvance(phase, node);
758              if (node.wasInterrupted)
759                  throw new InterruptedException();
760              else if (p == phase)
# Line 684 | Line 765 | public class Phaser {
765  
766      /**
767       * Forces this phaser to enter termination state.  Counts of
768 <     * arrived and registered parties are unaffected.  If this phaser
769 <     * is a member of a tiered set of phasers, then all of the phasers
770 <     * in the set are terminated.  If this phaser is already
771 <     * terminated, this method has no effect.  This method may be
772 <     * useful for coordinating recovery after one or more tasks
773 <     * encounter unexpected exceptions.
768 >     * registered parties are unaffected.  If this phaser is a member
769 >     * of a tiered set of phasers, then all of the phasers in the set
770 >     * are terminated.  If this phaser is already terminated, this
771 >     * method has no effect.  This method may be useful for
772 >     * coordinating recovery after one or more tasks encounter
773 >     * unexpected exceptions.
774       */
775      public void forceTermination() {
776          // Only need to change root state
# Line 698 | Line 779 | public class Phaser {
779          while ((s = root.state) >= 0) {
780              if (UNSAFE.compareAndSwapLong(root, stateOffset,
781                                            s, s | TERMINATION_BIT)) {
782 <                releaseWaiters(0); // signal all threads
782 >                // signal all threads
783 >                releaseWaiters(0);
784                  releaseWaiters(1);
785                  return;
786              }
# Line 729 | Line 811 | public class Phaser {
811  
812      /**
813       * Returns the number of registered parties that have arrived at
814 <     * the current phase of this phaser.
814 >     * the current phase of this phaser. If this phaser has terminated,
815 >     * the returned value is meaningless and arbitrary.
816       *
817       * @return the number of arrived parties
818       */
819      public int getArrivedParties() {
820 <        long s = state;
738 <        int u = unarrivedOf(s); // only reconcile if possibly needed
739 <        return (u != 0 || parent == null) ?
740 <            partiesOf(s) - u :
741 <            arrivedOf(reconcileState());
820 >        return arrivedOf(reconcileState());
821      }
822  
823      /**
824       * Returns the number of registered parties that have not yet
825 <     * arrived at the current phase of this phaser.
825 >     * arrived at the current phase of this phaser. If this phaser has
826 >     * terminated, the returned value is meaningless and arbitrary.
827       *
828       * @return the number of unarrived parties
829       */
830      public int getUnarrivedParties() {
831 <        int u = unarrivedOf(state);
752 <        return (u != 0 || parent == null) ? u : unarrivedOf(reconcileState());
831 >        return unarrivedOf(reconcileState());
832      }
833  
834      /**
# Line 785 | Line 864 | public class Phaser {
864       * advance, and to control termination. This method is invoked
865       * upon arrival of the party advancing this phaser (when all other
866       * waiting parties are dormant).  If this method returns {@code
867 <     * true}, then, rather than advance the phase number, this phaser
868 <     * will be set to a final termination state, and subsequent calls
869 <     * to {@link #isTerminated} will return true. Any (unchecked)
870 <     * Exception or Error thrown by an invocation of this method is
871 <     * propagated to the party attempting to advance this phaser, in
872 <     * which case no advance occurs.
867 >     * true}, this phaser will be set to a final termination state
868 >     * upon advance, and subsequent calls to {@link #isTerminated}
869 >     * will return true. Any (unchecked) Exception or Error thrown by
870 >     * an invocation of this method is propagated to the party
871 >     * attempting to advance this phaser, in which case no advance
872 >     * occurs.
873       *
874       * <p>The arguments to this method provide the state of the phaser
875       * prevailing for the current transition.  The effects of invoking
# Line 854 | Line 933 | public class Phaser {
933       */
934      private void releaseWaiters(int phase) {
935          QNode q;   // first element of queue
857        int p;     // its phase
936          Thread t;  // its thread
937          AtomicReference<QNode> head = (phase & 1) == 0 ? evenQ : oddQ;
938          while ((q = head.get()) != null &&
939 <               ((p = q.phase) == phase ||
862 <                (int)(root.state >>> PHASE_SHIFT) != p)) {
939 >               q.phase != (int)(root.state >>> PHASE_SHIFT)) {
940              if (head.compareAndSet(q, q.next) &&
941                  (t = q.thread) != null) {
942                  q.thread = null;
# Line 868 | Line 945 | public class Phaser {
945          }
946      }
947  
948 +    /**
949 +     * Variant of releaseWaiters that additionally tries to remove any
950 +     * nodes no longer waiting for advance due to timeout or
951 +     * interrupt. Currently, nodes are removed only if they are at
952 +     * head of queue, which suffices to reduce memory footprint in
953 +     * most usages.
954 +     *
955 +     * @return current phase on exit
956 +     */
957 +    private int abortWait(int phase) {
958 +        AtomicReference<QNode> head = (phase & 1) == 0 ? evenQ : oddQ;
959 +        for (;;) {
960 +            Thread t;
961 +            QNode q = head.get();
962 +            int p = (int)(root.state >>> PHASE_SHIFT);
963 +            if (q == null || ((t = q.thread) != null && q.phase == p))
964 +                return p;
965 +            if (head.compareAndSet(q, q.next) && t != null) {
966 +                q.thread = null;
967 +                LockSupport.unpark(t);
968 +            }
969 +        }
970 +    }
971 +
972      /** The number of CPUs, for spin control */
973      private static final int NCPU = Runtime.getRuntime().availableProcessors();
974  
# Line 935 | Line 1036 | public class Phaser {
1036                  node.thread = null;       // avoid need for unpark()
1037              if (node.wasInterrupted && !node.interruptible)
1038                  Thread.currentThread().interrupt();
1039 <            if ((p = (int)(state >>> PHASE_SHIFT)) == phase)
1040 <                return p;                 // recheck abort
1039 >            if (p == phase && (p = (int)(state >>> PHASE_SHIFT)) == phase)
1040 >                return abortWait(phase); // possibly clean up on abort
1041          }
1042          releaseWaiters(phase);
1043          return p;
# Line 1007 | Line 1108 | public class Phaser {
1108  
1109      // Unsafe mechanics
1110  
1111 <    private static final sun.misc.Unsafe UNSAFE = getUnsafe();
1112 <    private static final long stateOffset =
1113 <        objectFieldOffset("state", Phaser.class);
1013 <
1014 <    private static long objectFieldOffset(String field, Class<?> klazz) {
1111 >    private static final sun.misc.Unsafe UNSAFE;
1112 >    private static final long stateOffset;
1113 >    static {
1114          try {
1115 <            return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
1116 <        } catch (NoSuchFieldException e) {
1117 <            // Convert Exception to corresponding Error
1118 <            NoSuchFieldError error = new NoSuchFieldError(field);
1119 <            error.initCause(e);
1120 <            throw error;
1115 >            UNSAFE = getUnsafe();
1116 >            Class<?> k = Phaser.class;
1117 >            stateOffset = UNSAFE.objectFieldOffset
1118 >                (k.getDeclaredField("state"));
1119 >        } catch (Exception e) {
1120 >            throw new Error(e);
1121          }
1122      }
1123  

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines