ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/Phaser.java
(Generate patch)

Comparing jsr166/src/jsr166y/Phaser.java (file contents):
Revision 1.57 by dl, Fri Nov 19 16:03:24 2010 UTC vs.
Revision 1.77 by jsr166, Mon Oct 17 23:37:19 2011 UTC

# Line 1 | Line 1
1   /*
2   * Written by Doug Lea with assistance from members of JCP JSR-166
3   * Expert Group and released to the public domain, as explained at
4 < * http://creativecommons.org/licenses/publicdomain
4 > * http://creativecommons.org/publicdomain/zero/1.0/
5   */
6  
7   package jsr166y;
# Line 34 | Line 34 | import java.util.concurrent.locks.LockSu
34   * Phaser} may be repeatedly awaited.  Method {@link
35   * #arriveAndAwaitAdvance} has effect analogous to {@link
36   * java.util.concurrent.CyclicBarrier#await CyclicBarrier.await}. Each
37 < * generation of a {@code Phaser} has an associated phase number. The
38 < * phase number starts at zero, and advances when all parties arrive
39 < * at the barrier, wrapping around to zero after reaching {@code
37 > * generation of a phaser has an associated phase number. The phase
38 > * number starts at zero, and advances when all parties arrive at the
39 > * phaser, wrapping around to zero after reaching {@code
40   * Integer.MAX_VALUE}. The use of phase numbers enables independent
41 < * control of actions upon arrival at a barrier and upon awaiting
41 > * control of actions upon arrival at a phaser and upon awaiting
42   * others, via two kinds of methods that may be invoked by any
43   * registered party:
44   *
45   * <ul>
46   *
47   *   <li> <b>Arrival.</b> Methods {@link #arrive} and
48 < *       {@link #arriveAndDeregister} record arrival at a
49 < *       barrier. These methods do not block, but return an associated
50 < *       <em>arrival phase number</em>; that is, the phase number of
51 < *       the barrier to which the arrival applied. When the final
52 < *       party for a given phase arrives, an optional barrier action
53 < *       is performed and the phase advances.  Barrier actions,
54 < *       performed by the party triggering a phase advance, are
55 < *       arranged by overriding method {@link #onAdvance(int, int)},
56 < *       which also controls termination. Overriding this method is
57 < *       similar to, but more flexible than, providing a barrier
58 < *       action to a {@code CyclicBarrier}.
48 > *       {@link #arriveAndDeregister} record arrival.  These methods
49 > *       do not block, but return an associated <em>arrival phase
50 > *       number</em>; that is, the phase number of the phaser to which
51 > *       the arrival applied. When the final party for a given phase
52 > *       arrives, an optional action is performed and the phase
53 > *       advances.  These actions are performed by the party
54 > *       triggering a phase advance, and are arranged by overriding
55 > *       method {@link #onAdvance(int, int)}, which also controls
56 > *       termination. Overriding this method is similar to, but more
57 > *       flexible than, providing a barrier action to a {@code
58 > *       CyclicBarrier}.
59   *
60   *   <li> <b>Waiting.</b> Method {@link #awaitAdvance} requires an
61   *       argument indicating an arrival phase number, and returns when
62 < *       the barrier advances to (or is already at) a different phase.
62 > *       the phaser advances to (or is already at) a different phase.
63   *       Unlike similar constructions using {@code CyclicBarrier},
64   *       method {@code awaitAdvance} continues to wait even if the
65   *       waiting thread is interrupted. Interruptible and timeout
66   *       versions are also available, but exceptions encountered while
67   *       tasks wait interruptibly or with timeout do not change the
68 < *       state of the barrier. If necessary, you can perform any
68 > *       state of the phaser. If necessary, you can perform any
69   *       associated recovery within handlers of those exceptions,
70   *       often after invoking {@code forceTermination}.  Phasers may
71   *       also be used by tasks executing in a {@link ForkJoinPool},
# Line 74 | Line 74 | import java.util.concurrent.locks.LockSu
74   *
75   * </ul>
76   *
77 < * <p> <b>Termination.</b> A {@code Phaser} may enter a
78 < * <em>termination</em> state in which all synchronization methods
79 < * immediately return without updating phaser state or waiting for
80 < * advance, and indicating (via a negative phase value) that execution
81 < * is complete.  Termination is triggered when an invocation of {@code
82 < * onAdvance} returns {@code true}.  As illustrated below, when
83 < * phasers control actions with a fixed number of iterations, it is
84 < * often convenient to override this method to cause termination when
85 < * the current phase number reaches a threshold. Method {@link
86 < * #forceTermination} is also available to abruptly release waiting
87 < * threads and allow them to terminate.
88 < *
89 < * <p> <b>Tiering.</b> Phasers may be <em>tiered</em> (i.e., arranged
90 < * in tree structures) to reduce contention. Phasers with large
91 < * numbers of parties that would otherwise experience heavy
77 > * <p> <b>Termination.</b> A phaser may enter a <em>termination</em>
78 > * state, that may be checked using method {@link #isTerminated}. Upon
79 > * termination, all synchronization methods immediately return without
80 > * waiting for advance, as indicated by a negative return value.
81 > * Similarly, attempts to register upon termination have no effect.
82 > * Termination is triggered when an invocation of {@code onAdvance}
83 > * returns {@code true}. The default implementation returns {@code
84 > * true} if a deregistration has caused the number of registered
85 > * parties to become zero.  As illustrated below, when phasers control
86 > * actions with a fixed number of iterations, it is often convenient
87 > * to override this method to cause termination when the current phase
88 > * number reaches a threshold. Method {@link #forceTermination} is
89 > * also available to abruptly release waiting threads and allow them
90 > * to terminate.
91 > *
92 > * <p> <b>Tiering.</b> Phasers may be <em>tiered</em> (i.e.,
93 > * constructed in tree structures) to reduce contention. Phasers with
94 > * large numbers of parties that would otherwise experience heavy
95   * synchronization contention costs may instead be set up so that
96   * groups of sub-phasers share a common parent.  This may greatly
97   * increase throughput even though it incurs greater per-operation
98   * overhead.
99   *
100 + * <p>In a tree of tiered phasers, registration and deregistration of
101 + * child phasers with their parent are managed automatically.
102 + * Whenever the number of registered parties of a child phaser becomes
103 + * non-zero (as established in the {@link #Phaser(Phaser,int)}
104 + * constructor, {@link #register}, or {@link #bulkRegister}), the
105 + * child phaser is registered with its parent.  Whenever the number of
106 + * registered parties becomes zero as the result of an invocation of
107 + * {@link #arriveAndDeregister}, the child phaser is deregistered
108 + * from its parent.
109 + *
110   * <p><b>Monitoring.</b> While synchronization methods may be invoked
111   * only by registered parties, the current state of a phaser may be
112   * monitored by any caller.  At any given moment there are {@link
# Line 117 | Line 130 | import java.util.concurrent.locks.LockSu
130   * void runTasks(List<Runnable> tasks) {
131   *   final Phaser phaser = new Phaser(1); // "1" to register self
132   *   // create and start threads
133 < *   for (Runnable task : tasks) {
133 > *   for (final Runnable task : tasks) {
134   *     phaser.register();
135   *     new Thread() {
136   *       public void run() {
# Line 181 | Line 194 | import java.util.concurrent.locks.LockSu
194   * }}</pre>
195   *
196   *
197 < * <p>To create a set of tasks using a tree of phasers,
198 < * you could use code of the following form, assuming a
199 < * Task class with a constructor accepting a phaser that
200 < * it registers with upon construction:
197 > * <p>To create a set of {@code n} tasks using a tree of phasers, you
198 > * could use code of the following form, assuming a Task class with a
199 > * constructor accepting a {@code Phaser} that it registers with upon
200 > * construction. After invocation of {@code build(new Task[n], 0, n,
201 > * new Phaser())}, these tasks could then be started, for example by
202 > * submitting to a pool:
203   *
204   *  <pre> {@code
205 < * void build(Task[] actions, int lo, int hi, Phaser ph) {
205 > * void build(Task[] tasks, int lo, int hi, Phaser ph) {
206   *   if (hi - lo > TASKS_PER_PHASER) {
207   *     for (int i = lo; i < hi; i += TASKS_PER_PHASER) {
208   *       int j = Math.min(i + TASKS_PER_PHASER, hi);
209 < *       build(actions, i, j, new Phaser(ph));
209 > *       build(tasks, i, j, new Phaser(ph));
210   *     }
211   *   } else {
212   *     for (int i = lo; i < hi; ++i)
213 < *       actions[i] = new Task(ph);
213 > *       tasks[i] = new Task(ph);
214   *       // assumes new Task(ph) performs ph.register()
215   *   }
216 < * }
202 < * // .. initially called, for n tasks via
203 < * build(new Task[n], 0, n, new Phaser());}</pre>
216 > * }}</pre>
217   *
218   * The best value of {@code TASKS_PER_PHASER} depends mainly on
219 < * expected barrier synchronization rates. A value as low as four may
220 < * be appropriate for extremely small per-barrier task bodies (thus
219 > * expected synchronization rates. A value as low as four may
220 > * be appropriate for extremely small per-phase task bodies (thus
221   * high rates), or up to hundreds for extremely large ones.
222   *
223   * <p><b>Implementation notes</b>: This implementation restricts the
# Line 224 | Line 237 | public class Phaser {
237       */
238  
239      /**
240 <     * Barrier state representation. Conceptually, a barrier contains
228 <     * four values:
240 >     * Primary state representation, holding four bit-fields:
241       *
242 <     * * unarrived -- the number of parties yet to hit barrier (bits  0-15)
243 <     * * parties -- the number of parties to wait              (bits 16-31)
244 <     * * phase -- the generation of the barrier                (bits 32-62)
245 <     * * terminated -- set if barrier is terminated            (bit  63 / sign)
246 <     *
247 <     * However, to efficiently maintain atomicity, these values are
248 <     * packed into a single (atomic) long. Termination uses the sign
249 <     * bit of 32 bit representation of phase, so phase is set to -1 on
250 <     * termination. Good performance relies on keeping state decoding
251 <     * and encoding simple, and keeping race windows short.
242 >     * unarrived  -- the number of parties yet to hit barrier (bits  0-15)
243 >     * parties    -- the number of parties to wait            (bits 16-31)
244 >     * phase      -- the generation of the barrier            (bits 32-62)
245 >     * terminated -- set if barrier is terminated             (bit  63 / sign)
246 >     *
247 >     * Except that a phaser with no registered parties is
248 >     * distinguished by the otherwise illegal state of having zero
249 >     * parties and one unarrived parties (encoded as EMPTY below).
250 >     *
251 >     * To efficiently maintain atomicity, these values are packed into
252 >     * a single (atomic) long. Good performance relies on keeping
253 >     * state decoding and encoding simple, and keeping race windows
254 >     * short.
255 >     *
256 >     * All state updates are performed via CAS except initial
257 >     * registration of a sub-phaser (i.e., one with a non-null
258 >     * parent).  In this (relatively rare) case, we use built-in
259 >     * synchronization to lock while first registering with its
260 >     * parent.
261 >     *
262 >     * The phase of a subphaser is allowed to lag that of its
263 >     * ancestors until it is actually accessed -- see method
264 >     * reconcileState.
265       */
266      private volatile long state;
267  
268 <    private static final int  MAX_PARTIES    = 0xffff;
269 <    private static final int  MAX_PHASE      = 0x7fffffff;
270 <    private static final int  PARTIES_SHIFT  = 16;
271 <    private static final int  PHASE_SHIFT    = 32;
272 <    private static final int  UNARRIVED_MASK = 0xffff;
273 <    private static final long PARTIES_MASK   = 0xffff0000L; // for masking long
274 <    private static final long ONE_ARRIVAL    = 1L;
275 <    private static final long ONE_PARTY      = 1L << PARTIES_SHIFT;
276 <    private static final long TERMINATION_PHASE  = -1L << PHASE_SHIFT;
268 >    private static final int  MAX_PARTIES     = 0xffff;
269 >    private static final int  MAX_PHASE       = Integer.MAX_VALUE;
270 >    private static final int  PARTIES_SHIFT   = 16;
271 >    private static final int  PHASE_SHIFT     = 32;
272 >    private static final int  UNARRIVED_MASK  = 0xffff;      // to mask ints
273 >    private static final long PARTIES_MASK    = 0xffff0000L; // to mask longs
274 >    private static final long COUNTS_MASK     = 0xffffffffL;
275 >    private static final long TERMINATION_BIT = 1L << 63;
276 >
277 >    // some special values
278 >    private static final int  ONE_ARRIVAL     = 1;
279 >    private static final int  ONE_PARTY       = 1 << PARTIES_SHIFT;
280 >    private static final int  ONE_DEREGISTER  = ONE_ARRIVAL|ONE_PARTY;
281 >    private static final int  EMPTY           = 1;
282  
283      // The following unpacking methods are usually manually inlined
284  
285      private static int unarrivedOf(long s) {
286 <        return (int)s & UNARRIVED_MASK;
286 >        int counts = (int)s;
287 >        return (counts == EMPTY) ? 0 : (counts & UNARRIVED_MASK);
288      }
289  
290      private static int partiesOf(long s) {
# Line 261 | Line 292 | public class Phaser {
292      }
293  
294      private static int phaseOf(long s) {
295 <        return (int) (s >>> PHASE_SHIFT);
295 >        return (int)(s >>> PHASE_SHIFT);
296      }
297  
298      private static int arrivedOf(long s) {
299 <        return partiesOf(s) - unarrivedOf(s);
299 >        int counts = (int)s;
300 >        return (counts == EMPTY) ? 0 :
301 >            (counts >>> PARTIES_SHIFT) - (counts & UNARRIVED_MASK);
302      }
303  
304      /**
# Line 274 | Line 307 | public class Phaser {
307      private final Phaser parent;
308  
309      /**
310 <     * The root of phaser tree. Equals this if not in a tree.  Used to
278 <     * support faster state push-down.
310 >     * The root of phaser tree. Equals this if not in a tree.
311       */
312      private final Phaser root;
313  
# Line 293 | Line 325 | public class Phaser {
325      }
326  
327      /**
328 +     * Returns message string for bounds exceptions on arrival.
329 +     */
330 +    private String badArrive(long s) {
331 +        return "Attempted arrival of unregistered party for " +
332 +            stateToString(s);
333 +    }
334 +
335 +    /**
336 +     * Returns message string for bounds exceptions on registration.
337 +     */
338 +    private String badRegister(long s) {
339 +        return "Attempt to register more than " +
340 +            MAX_PARTIES + " parties for " + stateToString(s);
341 +    }
342 +
343 +    /**
344       * Main implementation for methods arrive and arriveAndDeregister.
345       * Manually tuned to speed up and minimize race windows for the
346       * common case of just decrementing unarrived field.
347       *
348 <     * @param adj - adjustment to apply to state -- either
349 <     * ONE_ARRIVAL (for arrive) or
350 <     * ONE_ARRIVAL|ONE_PARTY (for arriveAndDeregister)
348 >     * @param adjust value to subtract from state;
349 >     *               ONE_ARRIVAL for arrive,
350 >     *               ONE_DEREGISTER for arriveAndDeregister
351       */
352 <    private int doArrive(long adj) {
352 >    private int doArrive(int adjust) {
353 >        final Phaser root = this.root;
354          for (;;) {
355 <            long s = state;
355 >            long s = (root == this) ? state : reconcileState();
356              int phase = (int)(s >>> PHASE_SHIFT);
357              if (phase < 0)
358                  return phase;
359 <            int unarrived = (int)s & UNARRIVED_MASK;
360 <            if (unarrived == 0)
361 <                checkBadArrive(s);
362 <            else if (UNSAFE.compareAndSwapLong(this, stateOffset, s, s-=adj)) {
359 >            int counts = (int)s;
360 >            int unarrived = (counts == EMPTY) ? 0 : (counts & UNARRIVED_MASK);
361 >            if (unarrived <= 0)
362 >                throw new IllegalStateException(badArrive(s));
363 >            if (UNSAFE.compareAndSwapLong(this, stateOffset, s, s-=adjust)) {
364                  if (unarrived == 1) {
365 <                    long p = s & PARTIES_MASK; // unshifted parties field
366 <                    long lu = p >>> PARTIES_SHIFT;
367 <                    int u = (int)lu;
368 <                    int nextPhase = (phase + 1) & MAX_PHASE;
369 <                    long next = ((long)nextPhase << PHASE_SHIFT) | p | lu;
370 <                    final Phaser parent = this.parent;
371 <                    if (parent == null) {
372 <                        if (onAdvance(phase, u))
373 <                            next |= TERMINATION_PHASE; // obliterate phase
374 <                        UNSAFE.compareAndSwapLong(this, stateOffset, s, next);
365 >                    long n = s & PARTIES_MASK;  // base of next state
366 >                    int nextUnarrived = (int)n >>> PARTIES_SHIFT;
367 >                    if (root == this) {
368 >                        if (onAdvance(phase, nextUnarrived))
369 >                            n |= TERMINATION_BIT;
370 >                        else if (nextUnarrived == 0)
371 >                            n |= EMPTY;
372 >                        else
373 >                            n |= nextUnarrived;
374 >                        int nextPhase = (phase + 1) & MAX_PHASE;
375 >                        n |= (long)nextPhase << PHASE_SHIFT;
376 >                        UNSAFE.compareAndSwapLong(this, stateOffset, s, n);
377                          releaseWaiters(phase);
378                      }
379 <                    else {
380 <                        parent.doArrive((u == 0) ?
381 <                                        ONE_ARRIVAL|ONE_PARTY : ONE_ARRIVAL);
382 <                        if ((int)(parent.state >>> PHASE_SHIFT) != nextPhase ||
331 <                            ((int)(state >>> PHASE_SHIFT) != nextPhase &&
332 <                             !UNSAFE.compareAndSwapLong(this, stateOffset,
333 <                                                        s, next)))
334 <                            reconcileState();
379 >                    else if (nextUnarrived == 0) { // propagate deregistration
380 >                        phase = parent.doArrive(ONE_DEREGISTER);
381 >                        UNSAFE.compareAndSwapLong(this, stateOffset,
382 >                                                  s, s | EMPTY);
383                      }
384 +                    else
385 +                        phase = parent.doArrive(ONE_ARRIVAL);
386                  }
387                  return phase;
388              }
# Line 340 | Line 390 | public class Phaser {
390      }
391  
392      /**
343     * Rechecks state and throws bounds exceptions on arrival -- called
344     * only if unarrived is apparently zero.
345     */
346    private void checkBadArrive(long s) {
347        if (reconcileState() == s)
348            throw new IllegalStateException
349                ("Attempted arrival of unregistered party for " +
350                 stateToString(s));
351    }
352
353    /**
393       * Implementation of register, bulkRegister
394       *
395 <     * @param registrations number to add to both parties and unarrived fields
395 >     * @param registrations number to add to both parties and
396 >     * unarrived fields. Must be greater than zero.
397       */
398      private int doRegister(int registrations) {
359        // assert registrations > 0;
399          // adjustment to state
400 <        long adj = ((long)registrations << PARTIES_SHIFT) | registrations;
400 >        long adjust = ((long)registrations << PARTIES_SHIFT) | registrations;
401          final Phaser parent = this.parent;
402 +        int phase;
403          for (;;) {
404              long s = (parent == null) ? state : reconcileState();
405 <            int phase = (int)(s >>> PHASE_SHIFT);
406 <            if (phase < 0)
407 <                return phase;
408 <            int parties = (int)s >>> PARTIES_SHIFT;
369 <            if (parties != 0 && ((int)s & UNARRIVED_MASK) == 0)
370 <                internalAwaitAdvance(phase, null); // wait for onAdvance
371 <            else if (registrations > MAX_PARTIES - parties)
405 >            int counts = (int)s;
406 >            int parties = counts >>> PARTIES_SHIFT;
407 >            int unarrived = counts & UNARRIVED_MASK;
408 >            if (registrations > MAX_PARTIES - parties)
409                  throw new IllegalStateException(badRegister(s));
410 <            else if (UNSAFE.compareAndSwapLong(this, stateOffset, s, s + adj))
411 <                return phase;
410 >            phase = (int)(s >>> PHASE_SHIFT);
411 >            if (phase < 0)
412 >                break;
413 >            if (counts != EMPTY) {                  // not 1st registration
414 >                if (parent == null || reconcileState() == s) {
415 >                    if (unarrived == 0)             // wait out advance
416 >                        root.internalAwaitAdvance(phase, null);
417 >                    else if (UNSAFE.compareAndSwapLong(this, stateOffset,
418 >                                                       s, s + adjust))
419 >                        break;
420 >                }
421 >            }
422 >            else if (parent == null) {              // 1st root registration
423 >                long next = ((long)phase << PHASE_SHIFT) | adjust;
424 >                if (UNSAFE.compareAndSwapLong(this, stateOffset, s, next))
425 >                    break;
426 >            }
427 >            else {
428 >                synchronized (this) {               // 1st sub registration
429 >                    if (state == s) {               // recheck under lock
430 >                        phase = parent.doRegister(1);
431 >                        if (phase < 0)
432 >                            break;
433 >                        // finish registration whenever parent registration
434 >                        // succeeded, even when racing with termination,
435 >                        // since these are part of the same "transaction".
436 >                        while (!UNSAFE.compareAndSwapLong
437 >                               (this, stateOffset, s,
438 >                                ((long)phase << PHASE_SHIFT) | adjust)) {
439 >                            s = state;
440 >                            phase = (int)(root.state >>> PHASE_SHIFT);
441 >                            // assert (int)s == EMPTY;
442 >                        }
443 >                        break;
444 >                    }
445 >                }
446 >            }
447          }
448 +        return phase;
449      }
450  
451      /**
452 <     * Returns message string for out of bounds exceptions on registration.
453 <     */
454 <    private String badRegister(long s) {
455 <        return "Attempt to register more than " +
456 <            MAX_PARTIES + " parties for " + stateToString(s);
457 <    }
458 <
386 <    /**
387 <     * Recursively resolves lagged phase propagation from root if necessary.
452 >     * Resolves lagged phase propagation from root if necessary.
453 >     * Reconciliation normally occurs when root has advanced but
454 >     * subphasers have not yet done so, in which case they must finish
455 >     * their own advance by setting unarrived to parties (or if
456 >     * parties is zero, resetting to unregistered EMPTY state).
457 >     *
458 >     * @return reconciled state
459       */
460      private long reconcileState() {
461 <        Phaser par = parent;
461 >        final Phaser root = this.root;
462          long s = state;
463 <        if (par != null) {
464 <            Phaser rt = root;
465 <            int phase, rPhase;
466 <            while ((phase = (int)(s >>> PHASE_SHIFT)) >= 0 &&
467 <                   (rPhase = (int)(rt.state >>> PHASE_SHIFT)) != phase) {
468 <                if ((int)(par.state >>> PHASE_SHIFT) != rPhase)
469 <                    par.reconcileState();
470 <                else if (rPhase < 0 || ((int)s & UNARRIVED_MASK) == 0) {
471 <                    long u = s & PARTIES_MASK; // reset unarrived to parties
472 <                    long next = ((((long) rPhase) << PHASE_SHIFT) | u |
473 <                                 (u >>> PARTIES_SHIFT));
403 <                    if (state == s &&
404 <                        UNSAFE.compareAndSwapLong(this, stateOffset,
405 <                                                  s, s = next))
406 <                        break;
407 <                }
463 >        if (root != this) {
464 >            int phase, p;
465 >            // CAS to root phase with current parties, tripping unarrived
466 >            while ((phase = (int)(root.state >>> PHASE_SHIFT)) !=
467 >                   (int)(s >>> PHASE_SHIFT) &&
468 >                   !UNSAFE.compareAndSwapLong
469 >                   (this, stateOffset, s,
470 >                    s = (((long)phase << PHASE_SHIFT) |
471 >                         ((phase < 0) ? (s & COUNTS_MASK) :
472 >                          (((p = (int)s >>> PARTIES_SHIFT) == 0) ? EMPTY :
473 >                           ((s & PARTIES_MASK) | p))))))
474                  s = state;
409            }
475          }
476          return s;
477      }
478  
479      /**
480 <     * Creates a new phaser without any initially registered parties,
481 <     * initial phase number 0, and no parent. Any thread using this
480 >     * Creates a new phaser with no initially registered parties, no
481 >     * parent, and initial phase number 0. Any thread using this
482       * phaser will need to first register for it.
483       */
484      public Phaser() {
# Line 422 | Line 487 | public class Phaser {
487  
488      /**
489       * Creates a new phaser with the given number of registered
490 <     * unarrived parties, initial phase number 0, and no parent.
490 >     * unarrived parties, no parent, and initial phase number 0.
491       *
492 <     * @param parties the number of parties required to trip barrier
492 >     * @param parties the number of parties required to advance to the
493 >     * next phase
494       * @throws IllegalArgumentException if parties less than zero
495       * or greater than the maximum number of parties supported
496       */
# Line 433 | Line 499 | public class Phaser {
499      }
500  
501      /**
502 <     * Creates a new phaser with the given parent, without any
437 <     * initially registered parties. If parent is non-null this phaser
438 <     * is registered with the parent and its initial phase number is
439 <     * the same as that of parent phaser.
502 >     * Equivalent to {@link #Phaser(Phaser, int) Phaser(parent, 0)}.
503       *
504       * @param parent the parent phaser
505       */
# Line 446 | Line 509 | public class Phaser {
509  
510      /**
511       * Creates a new phaser with the given parent and number of
512 <     * registered unarrived parties. If parent is non-null, this phaser
513 <     * is registered with the parent and its initial phase number is
514 <     * the same as that of parent phaser.
512 >     * registered unarrived parties.  When the given parent is non-null
513 >     * and the given number of parties is greater than zero, this
514 >     * child phaser is registered with its parent.
515       *
516       * @param parent the parent phaser
517 <     * @param parties the number of parties required to trip barrier
517 >     * @param parties the number of parties required to advance to the
518 >     * next phase
519       * @throws IllegalArgumentException if parties less than zero
520       * or greater than the maximum number of parties supported
521       */
522      public Phaser(Phaser parent, int parties) {
523          if (parties >>> PARTIES_SHIFT != 0)
524              throw new IllegalArgumentException("Illegal number of parties");
525 <        int phase;
525 >        int phase = 0;
526          this.parent = parent;
527          if (parent != null) {
528 <            Phaser r = parent.root;
529 <            this.root = r;
530 <            this.evenQ = r.evenQ;
531 <            this.oddQ = r.oddQ;
532 <            phase = parent.register();
528 >            final Phaser root = parent.root;
529 >            this.root = root;
530 >            this.evenQ = root.evenQ;
531 >            this.oddQ = root.oddQ;
532 >            if (parties != 0)
533 >                phase = parent.doRegister(1);
534          }
535          else {
536              this.root = this;
537              this.evenQ = new AtomicReference<QNode>();
538              this.oddQ = new AtomicReference<QNode>();
474            phase = 0;
539          }
540 <        long p = (long)parties;
541 <        this.state = (((long)phase) << PHASE_SHIFT) | p | (p << PARTIES_SHIFT);
540 >        this.state = (parties == 0) ? (long)EMPTY :
541 >            ((long)phase << PHASE_SHIFT) |
542 >            ((long)parties << PARTIES_SHIFT) |
543 >            ((long)parties);
544      }
545  
546      /**
547 <     * Adds a new unarrived party to this phaser.
548 <     * If an ongoing invocation of {@link #onAdvance} is in progress,
549 <     * this method may wait until its completion before registering.
550 <     *
551 <     * @return the arrival phase number to which this registration applied
547 >     * Adds a new unarrived party to this phaser.  If an ongoing
548 >     * invocation of {@link #onAdvance} is in progress, this method
549 >     * may await its completion before returning.  If this phaser has
550 >     * a parent, and this phaser previously had no registered parties,
551 >     * this child phaser is also registered with its parent. If
552 >     * this phaser is terminated, the attempt to register has
553 >     * no effect, and a negative value is returned.
554 >     *
555 >     * @return the arrival phase number to which this registration
556 >     * applied.  If this value is negative, then this phaser has
557 >     * terminated, in which case registration has no effect.
558       * @throws IllegalStateException if attempting to register more
559       * than the maximum supported number of parties
560       */
# Line 493 | Line 565 | public class Phaser {
565      /**
566       * Adds the given number of new unarrived parties to this phaser.
567       * If an ongoing invocation of {@link #onAdvance} is in progress,
568 <     * this method may wait until its completion before registering.
569 <     *
570 <     * @param parties the number of additional parties required to trip barrier
571 <     * @return the arrival phase number to which this registration applied
568 >     * this method may await its completion before returning.  If this
569 >     * phaser has a parent, and the given number of parties is greater
570 >     * than zero, and this phaser previously had no registered
571 >     * parties, this child phaser is also registered with its parent.
572 >     * If this phaser is terminated, the attempt to register has no
573 >     * effect, and a negative value is returned.
574 >     *
575 >     * @param parties the number of additional parties required to
576 >     * advance to the next phase
577 >     * @return the arrival phase number to which this registration
578 >     * applied.  If this value is negative, then this phaser has
579 >     * terminated, in which case registration has no effect.
580       * @throws IllegalStateException if attempting to register more
581       * than the maximum supported number of parties
582       * @throws IllegalArgumentException if {@code parties < 0}
# Line 510 | Line 590 | public class Phaser {
590      }
591  
592      /**
593 <     * Arrives at the barrier, but does not wait for others.  (You can
594 <     * in turn wait for others via {@link #awaitAdvance}).  It is an
595 <     * unenforced usage error for an unregistered party to invoke this
596 <     * method.
593 >     * Arrives at this phaser, without waiting for others to arrive.
594 >     *
595 >     * <p>It is a usage error for an unregistered party to invoke this
596 >     * method.  However, this error may result in an {@code
597 >     * IllegalStateException} only upon some subsequent operation on
598 >     * this phaser, if ever.
599       *
600       * @return the arrival phase number, or a negative value if terminated
601       * @throws IllegalStateException if not terminated and the number
# Line 524 | Line 606 | public class Phaser {
606      }
607  
608      /**
609 <     * Arrives at the barrier and deregisters from it without waiting
610 <     * for others. Deregistration reduces the number of parties
611 <     * required to trip the barrier in future phases.  If this phaser
609 >     * Arrives at this phaser and deregisters from it without waiting
610 >     * for others to arrive. Deregistration reduces the number of
611 >     * parties required to advance in future phases.  If this phaser
612       * has a parent, and deregistration causes this phaser to have
613 <     * zero parties, this phaser also arrives at and is deregistered
614 <     * from its parent.  It is an unenforced usage error for an
615 <     * unregistered party to invoke this method.
613 >     * zero parties, this phaser is also deregistered from its parent.
614 >     *
615 >     * <p>It is a usage error for an unregistered party to invoke this
616 >     * method.  However, this error may result in an {@code
617 >     * IllegalStateException} only upon some subsequent operation on
618 >     * this phaser, if ever.
619       *
620       * @return the arrival phase number, or a negative value if terminated
621       * @throws IllegalStateException if not terminated and the number
622       * of registered or unarrived parties would become negative
623       */
624      public int arriveAndDeregister() {
625 <        return doArrive(ONE_ARRIVAL|ONE_PARTY);
625 >        return doArrive(ONE_DEREGISTER);
626      }
627  
628      /**
629 <     * Arrives at the barrier and awaits others. Equivalent in effect
629 >     * Arrives at this phaser and awaits others. Equivalent in effect
630       * to {@code awaitAdvance(arrive())}.  If you need to await with
631       * interruption or timeout, you can arrange this with an analogous
632       * construction using one of the other forms of the {@code
633       * awaitAdvance} method.  If instead you need to deregister upon
634 <     * arrival, use {@link #arriveAndDeregister}. It is an unenforced
635 <     * usage error for an unregistered party to invoke this method.
634 >     * arrival, use {@code awaitAdvance(arriveAndDeregister())}.
635 >     *
636 >     * <p>It is a usage error for an unregistered party to invoke this
637 >     * method.  However, this error may result in an {@code
638 >     * IllegalStateException} only upon some subsequent operation on
639 >     * this phaser, if ever.
640       *
641 <     * @return the arrival phase number, or a negative number if terminated
641 >     * @return the arrival phase number, or the (negative)
642 >     * {@linkplain #getPhase() current phase} if terminated
643       * @throws IllegalStateException if not terminated and the number
644       * of unarrived parties would become negative
645       */
646      public int arriveAndAwaitAdvance() {
647 <        return awaitAdvance(arrive());
647 >        // Specialization of doArrive+awaitAdvance eliminating some reads/paths
648 >        final Phaser root = this.root;
649 >        for (;;) {
650 >            long s = (root == this) ? state : reconcileState();
651 >            int phase = (int)(s >>> PHASE_SHIFT);
652 >            if (phase < 0)
653 >                return phase;
654 >            int counts = (int)s;
655 >            int unarrived = (counts == EMPTY) ? 0 : (counts & UNARRIVED_MASK);
656 >            if (unarrived <= 0)
657 >                throw new IllegalStateException(badArrive(s));
658 >            if (UNSAFE.compareAndSwapLong(this, stateOffset, s,
659 >                                          s -= ONE_ARRIVAL)) {
660 >                if (unarrived > 1)
661 >                    return root.internalAwaitAdvance(phase, null);
662 >                if (root != this)
663 >                    return parent.arriveAndAwaitAdvance();
664 >                long n = s & PARTIES_MASK;  // base of next state
665 >                int nextUnarrived = (int)n >>> PARTIES_SHIFT;
666 >                if (onAdvance(phase, nextUnarrived))
667 >                    n |= TERMINATION_BIT;
668 >                else if (nextUnarrived == 0)
669 >                    n |= EMPTY;
670 >                else
671 >                    n |= nextUnarrived;
672 >                int nextPhase = (phase + 1) & MAX_PHASE;
673 >                n |= (long)nextPhase << PHASE_SHIFT;
674 >                if (!UNSAFE.compareAndSwapLong(this, stateOffset, s, n))
675 >                    return (int)(state >>> PHASE_SHIFT); // terminated
676 >                releaseWaiters(phase);
677 >                return nextPhase;
678 >            }
679 >        }
680      }
681  
682      /**
683 <     * Awaits the phase of the barrier to advance from the given phase
684 <     * value, returning immediately if the current phase of the
685 <     * barrier is not equal to the given phase value or this barrier
564 <     * is terminated.
683 >     * Awaits the phase of this phaser to advance from the given phase
684 >     * value, returning immediately if the current phase is not equal
685 >     * to the given phase value or this phaser is terminated.
686       *
687       * @param phase an arrival phase number, or negative value if
688       * terminated; this argument is normally the value returned by a
689 <     * previous call to {@code arrive} or its variants
690 <     * @return the next arrival phase number, or a negative value
691 <     * if terminated or argument is negative
689 >     * previous call to {@code arrive} or {@code arriveAndDeregister}.
690 >     * @return the next arrival phase number, or the argument if it is
691 >     * negative, or the (negative) {@linkplain #getPhase() current phase}
692 >     * if terminated
693       */
694      public int awaitAdvance(int phase) {
695 +        final Phaser root = this.root;
696 +        long s = (root == this) ? state : reconcileState();
697 +        int p = (int)(s >>> PHASE_SHIFT);
698          if (phase < 0)
699              return phase;
700 <        long s = (parent == null) ? state : reconcileState();
701 <        int p = (int)(s >>> PHASE_SHIFT);
702 <        return (p != phase) ? p : internalAwaitAdvance(phase, null);
700 >        if (p == phase)
701 >            return root.internalAwaitAdvance(phase, null);
702 >        return p;
703      }
704  
705      /**
706 <     * Awaits the phase of the barrier to advance from the given phase
706 >     * Awaits the phase of this phaser to advance from the given phase
707       * value, throwing {@code InterruptedException} if interrupted
708 <     * while waiting, or returning immediately if the current phase of
709 <     * the barrier is not equal to the given phase value or this
710 <     * barrier is terminated.
708 >     * while waiting, or returning immediately if the current phase is
709 >     * not equal to the given phase value or this phaser is
710 >     * terminated.
711       *
712       * @param phase an arrival phase number, or negative value if
713       * terminated; this argument is normally the value returned by a
714 <     * previous call to {@code arrive} or its variants
715 <     * @return the next arrival phase number, or a negative value
716 <     * if terminated or argument is negative
714 >     * previous call to {@code arrive} or {@code arriveAndDeregister}.
715 >     * @return the next arrival phase number, or the argument if it is
716 >     * negative, or the (negative) {@linkplain #getPhase() current phase}
717 >     * if terminated
718       * @throws InterruptedException if thread interrupted while waiting
719       */
720      public int awaitAdvanceInterruptibly(int phase)
721          throws InterruptedException {
722 +        final Phaser root = this.root;
723 +        long s = (root == this) ? state : reconcileState();
724 +        int p = (int)(s >>> PHASE_SHIFT);
725          if (phase < 0)
726              return phase;
598        long s = (parent == null) ? state : reconcileState();
599        int p = (int)(s >>> PHASE_SHIFT);
727          if (p == phase) {
728              QNode node = new QNode(this, phase, true, false, 0L);
729 <            p = internalAwaitAdvance(phase, node);
729 >            p = root.internalAwaitAdvance(phase, node);
730              if (node.wasInterrupted)
731                  throw new InterruptedException();
732          }
# Line 607 | Line 734 | public class Phaser {
734      }
735  
736      /**
737 <     * Awaits the phase of the barrier to advance from the given phase
737 >     * Awaits the phase of this phaser to advance from the given phase
738       * value or the given timeout to elapse, throwing {@code
739       * InterruptedException} if interrupted while waiting, or
740 <     * returning immediately if the current phase of the barrier is
741 <     * not equal to the given phase value or this barrier is
615 <     * terminated.
740 >     * returning immediately if the current phase is not equal to the
741 >     * given phase value or this phaser is terminated.
742       *
743       * @param phase an arrival phase number, or negative value if
744       * terminated; this argument is normally the value returned by a
745 <     * previous call to {@code arrive} or its variants
745 >     * previous call to {@code arrive} or {@code arriveAndDeregister}.
746       * @param timeout how long to wait before giving up, in units of
747       *        {@code unit}
748       * @param unit a {@code TimeUnit} determining how to interpret the
749       *        {@code timeout} parameter
750 <     * @return the next arrival phase number, or a negative value
751 <     * if terminated or argument is negative
750 >     * @return the next arrival phase number, or the argument if it is
751 >     * negative, or the (negative) {@linkplain #getPhase() current phase}
752 >     * if terminated
753       * @throws InterruptedException if thread interrupted while waiting
754       * @throws TimeoutException if timed out while waiting
755       */
756      public int awaitAdvanceInterruptibly(int phase,
757                                           long timeout, TimeUnit unit)
758          throws InterruptedException, TimeoutException {
759 +        long nanos = unit.toNanos(timeout);
760 +        final Phaser root = this.root;
761 +        long s = (root == this) ? state : reconcileState();
762 +        int p = (int)(s >>> PHASE_SHIFT);
763          if (phase < 0)
764              return phase;
634        long s = (parent == null) ? state : reconcileState();
635        int p = (int)(s >>> PHASE_SHIFT);
765          if (p == phase) {
637            long nanos = unit.toNanos(timeout);
766              QNode node = new QNode(this, phase, true, true, nanos);
767 <            p = internalAwaitAdvance(phase, node);
767 >            p = root.internalAwaitAdvance(phase, node);
768              if (node.wasInterrupted)
769                  throw new InterruptedException();
770              else if (p == phase)
# Line 646 | Line 774 | public class Phaser {
774      }
775  
776      /**
777 <     * Forces this barrier to enter termination state.  Counts of
778 <     * arrived and registered parties are unaffected.  If this phaser
779 <     * is a member of a tiered set of phasers, then all of the phasers
780 <     * in the set are terminated.  If this phaser is already
781 <     * terminated, this method has no effect.  This method may be
782 <     * useful for coordinating recovery after one or more tasks
783 <     * encounter unexpected exceptions.
777 >     * Forces this phaser to enter termination state.  Counts of
778 >     * registered parties are unaffected.  If this phaser is a member
779 >     * of a tiered set of phasers, then all of the phasers in the set
780 >     * are terminated.  If this phaser is already terminated, this
781 >     * method has no effect.  This method may be useful for
782 >     * coordinating recovery after one or more tasks encounter
783 >     * unexpected exceptions.
784       */
785      public void forceTermination() {
786          // Only need to change root state
# Line 660 | Line 788 | public class Phaser {
788          long s;
789          while ((s = root.state) >= 0) {
790              if (UNSAFE.compareAndSwapLong(root, stateOffset,
791 <                                          s, s | TERMINATION_PHASE)) {
792 <                releaseWaiters(0); // signal all threads
793 <                releaseWaiters(1);
791 >                                          s, s | TERMINATION_BIT)) {
792 >                // signal all threads
793 >                releaseWaiters(0); // Waiters on evenQ
794 >                releaseWaiters(1); // Waiters on oddQ
795                  return;
796              }
797          }
# Line 671 | Line 800 | public class Phaser {
800      /**
801       * Returns the current phase number. The maximum phase number is
802       * {@code Integer.MAX_VALUE}, after which it restarts at
803 <     * zero. Upon termination, the phase number is negative.
803 >     * zero. Upon termination, the phase number is negative,
804 >     * in which case the prevailing phase prior to termination
805 >     * may be obtained via {@code getPhase() + Integer.MIN_VALUE}.
806       *
807       * @return the phase number, or a negative value if terminated
808       */
# Line 680 | Line 811 | public class Phaser {
811      }
812  
813      /**
814 <     * Returns the number of parties registered at this barrier.
814 >     * Returns the number of parties registered at this phaser.
815       *
816       * @return the number of parties
817       */
# Line 690 | Line 821 | public class Phaser {
821  
822      /**
823       * Returns the number of registered parties that have arrived at
824 <     * the current phase of this barrier.
824 >     * the current phase of this phaser. If this phaser has terminated,
825 >     * the returned value is meaningless and arbitrary.
826       *
827       * @return the number of arrived parties
828       */
829      public int getArrivedParties() {
830 <        return arrivedOf(parent==null? state : reconcileState());
830 >        return arrivedOf(reconcileState());
831      }
832  
833      /**
834       * Returns the number of registered parties that have not yet
835 <     * arrived at the current phase of this barrier.
835 >     * arrived at the current phase of this phaser. If this phaser has
836 >     * terminated, the returned value is meaningless and arbitrary.
837       *
838       * @return the number of unarrived parties
839       */
840      public int getUnarrivedParties() {
841 <        return unarrivedOf(parent==null? state : reconcileState());
841 >        return unarrivedOf(reconcileState());
842      }
843  
844      /**
# Line 728 | Line 861 | public class Phaser {
861      }
862  
863      /**
864 <     * Returns {@code true} if this barrier has been terminated.
864 >     * Returns {@code true} if this phaser has been terminated.
865       *
866 <     * @return {@code true} if this barrier has been terminated
866 >     * @return {@code true} if this phaser has been terminated
867       */
868      public boolean isTerminated() {
869          return root.state < 0L;
# Line 739 | Line 872 | public class Phaser {
872      /**
873       * Overridable method to perform an action upon impending phase
874       * advance, and to control termination. This method is invoked
875 <     * upon arrival of the party tripping the barrier (when all other
875 >     * upon arrival of the party advancing this phaser (when all other
876       * waiting parties are dormant).  If this method returns {@code
877 <     * true}, then, rather than advance the phase number, this barrier
878 <     * will be set to a final termination state, and subsequent calls
879 <     * to {@link #isTerminated} will return true. Any (unchecked)
880 <     * Exception or Error thrown by an invocation of this method is
881 <     * propagated to the party attempting to trip the barrier, in
882 <     * which case no advance occurs.
877 >     * true}, this phaser will be set to a final termination state
878 >     * upon advance, and subsequent calls to {@link #isTerminated}
879 >     * will return true. Any (unchecked) Exception or Error thrown by
880 >     * an invocation of this method is propagated to the party
881 >     * attempting to advance this phaser, in which case no advance
882 >     * occurs.
883       *
884       * <p>The arguments to this method provide the state of the phaser
885       * prevailing for the current transition.  The effects of invoking
886 <     * arrival, registration, and waiting methods on this Phaser from
886 >     * arrival, registration, and waiting methods on this phaser from
887       * within {@code onAdvance} are unspecified and should not be
888       * relied on.
889       *
890 <     * <p>If this Phaser is a member of a tiered set of Phasers, then
891 <     * {@code onAdvance} is invoked only for its root Phaser on each
890 >     * <p>If this phaser is a member of a tiered set of phasers, then
891 >     * {@code onAdvance} is invoked only for its root phaser on each
892       * advance.
893       *
894 <     * <p>The default version returns {@code true} when the number of
895 <     * registered parties is zero. Normally, overrides that arrange
896 <     * termination for other reasons should also preserve this
897 <     * property.
894 >     * <p>To support the most common use cases, the default
895 >     * implementation of this method returns {@code true} when the
896 >     * number of registered parties has become zero as the result of a
897 >     * party invoking {@code arriveAndDeregister}.  You can disable
898 >     * this behavior, thus enabling continuation upon future
899 >     * registrations, by overriding this method to always return
900 >     * {@code false}:
901 >     *
902 >     * <pre> {@code
903 >     * Phaser phaser = new Phaser() {
904 >     *   protected boolean onAdvance(int phase, int parties) { return false; }
905 >     * }}</pre>
906       *
907 <     * @param phase the phase number on entering the barrier
907 >     * @param phase the current phase number on entry to this method,
908 >     * before this phaser is advanced
909       * @param registeredParties the current number of registered parties
910 <     * @return {@code true} if this barrier should terminate
910 >     * @return {@code true} if this phaser should terminate
911       */
912      protected boolean onAdvance(int phase, int registeredParties) {
913 <        return registeredParties <= 0;
913 >        return registeredParties == 0;
914      }
915  
916      /**
# Line 778 | Line 920 | public class Phaser {
920       * followed by the number of registered parties, and {@code
921       * "arrived = "} followed by the number of arrived parties.
922       *
923 <     * @return a string identifying this barrier, as well as its state
923 >     * @return a string identifying this phaser, as well as its state
924       */
925      public String toString() {
926          return stateToString(reconcileState());
# Line 800 | Line 942 | public class Phaser {
942       * Removes and signals threads from queue for phase.
943       */
944      private void releaseWaiters(int phase) {
945 <        AtomicReference<QNode> head = queueFor(phase);
946 <        QNode q;
947 <        int p;
945 >        QNode q;   // first element of queue
946 >        Thread t;  // its thread
947 >        AtomicReference<QNode> head = (phase & 1) == 0 ? evenQ : oddQ;
948          while ((q = head.get()) != null &&
949 <               ((p = q.phase) == phase ||
950 <                (int)(root.state >>> PHASE_SHIFT) != p)) {
951 <            if (head.compareAndSet(q, q.next))
952 <                q.signal();
949 >               q.phase != (int)(root.state >>> PHASE_SHIFT)) {
950 >            if (head.compareAndSet(q, q.next) &&
951 >                (t = q.thread) != null) {
952 >                q.thread = null;
953 >                LockSupport.unpark(t);
954 >            }
955 >        }
956 >    }
957 >
958 >    /**
959 >     * Variant of releaseWaiters that additionally tries to remove any
960 >     * nodes no longer waiting for advance due to timeout or
961 >     * interrupt. Currently, nodes are removed only if they are at
962 >     * head of queue, which suffices to reduce memory footprint in
963 >     * most usages.
964 >     *
965 >     * @return current phase on exit
966 >     */
967 >    private int abortWait(int phase) {
968 >        AtomicReference<QNode> head = (phase & 1) == 0 ? evenQ : oddQ;
969 >        for (;;) {
970 >            Thread t;
971 >            QNode q = head.get();
972 >            int p = (int)(root.state >>> PHASE_SHIFT);
973 >            if (q == null || ((t = q.thread) != null && q.phase == p))
974 >                return p;
975 >            if (head.compareAndSet(q, q.next) && t != null) {
976 >                q.thread = null;
977 >                LockSupport.unpark(t);
978 >            }
979          }
980      }
981  
# Line 822 | Line 990 | public class Phaser {
990       * avoid it when threads regularly arrive: When a thread in
991       * internalAwaitAdvance notices another arrival before blocking,
992       * and there appear to be enough CPUs available, it spins
993 <     * SPINS_PER_ARRIVAL more times before blocking. Plus, even on
994 <     * uniprocessors, there is at least one intervening Thread.yield
827 <     * before blocking. The value trades off good-citizenship vs big
828 <     * unnecessary slowdowns.
993 >     * SPINS_PER_ARRIVAL more times before blocking. The value trades
994 >     * off good-citizenship vs big unnecessary slowdowns.
995       */
996      static final int SPINS_PER_ARRIVAL = (NCPU < 2) ? 1 : 1 << 8;
997  
998      /**
999       * Possibly blocks and waits for phase to advance unless aborted.
1000 +     * Call only on root phaser.
1001       *
1002       * @param phase current phase
1003       * @param node if non-null, the wait node to track interrupt and timeout;
# Line 838 | Line 1005 | public class Phaser {
1005       * @return current phase
1006       */
1007      private int internalAwaitAdvance(int phase, QNode node) {
1008 <        Phaser current = this;       // to eventually wait at root if tiered
1009 <        boolean queued = false;      // true when node is enqueued
1010 <        int lastUnarrived = -1;      // to increase spins upon change
1008 >        // assert root == this;
1009 >        releaseWaiters(phase-1);          // ensure old queue clean
1010 >        boolean queued = false;           // true when node is enqueued
1011 >        int lastUnarrived = 0;            // to increase spins upon change
1012          int spins = SPINS_PER_ARRIVAL;
1013          long s;
1014          int p;
1015 <        while ((p = (int)((s = current.state) >>> PHASE_SHIFT)) == phase) {
1016 <            Phaser par;
1017 <            int unarrived = (int)s & UNARRIVED_MASK;
1018 <            if (unarrived != lastUnarrived) {
1019 <                if (lastUnarrived == -1) // ensure old queue clean
852 <                    releaseWaiters(phase-1);
853 <                if ((lastUnarrived = unarrived) < NCPU)
1015 >        while ((p = (int)((s = state) >>> PHASE_SHIFT)) == phase) {
1016 >            if (node == null) {           // spinning in noninterruptible mode
1017 >                int unarrived = (int)s & UNARRIVED_MASK;
1018 >                if (unarrived != lastUnarrived &&
1019 >                    (lastUnarrived = unarrived) < NCPU)
1020                      spins += SPINS_PER_ARRIVAL;
1021 <            }
1022 <            else if (unarrived == 0 && (par = current.parent) != null) {
1023 <                current = par;       // if all arrived, use parent
1024 <                par = par.parent;
859 <                lastUnarrived = -1;
860 <            }
861 <            else if (spins > 0) {
862 <                if (--spins == (SPINS_PER_ARRIVAL >>> 1))
863 <                    Thread.yield();  // yield midway through spin
864 <            }
865 <            else if (node == null)   // must be noninterruptible
866 <                node = new QNode(this, phase, false, false, 0L);
867 <            else if (node.isReleasable()) {
868 <                if ((p = (int)(root.state >>> PHASE_SHIFT)) != phase)
869 <                    break;
870 <                else
871 <                    return phase;    // aborted
872 <            }
873 <            else if (!queued) {      // push onto queue
874 <                AtomicReference<QNode> head = queueFor(phase);
875 <                QNode q = head.get();
876 <                if (q == null || q.phase == phase) {
877 <                    node.next = q;
878 <                    if ((p = (int)(root.state >>> PHASE_SHIFT)) != phase)
879 <                        break;       // recheck to avoid stale enqueue
880 <                    else
881 <                        queued = head.compareAndSet(q, node);
1021 >                boolean interrupted = Thread.interrupted();
1022 >                if (interrupted || --spins < 0) { // need node to record intr
1023 >                    node = new QNode(this, phase, false, false, 0L);
1024 >                    node.wasInterrupted = interrupted;
1025                  }
1026              }
1027 +            else if (node.isReleasable()) // done or aborted
1028 +                break;
1029 +            else if (!queued) {           // push onto queue
1030 +                AtomicReference<QNode> head = (phase & 1) == 0 ? evenQ : oddQ;
1031 +                QNode q = node.next = head.get();
1032 +                if ((q == null || q.phase == phase) &&
1033 +                    (int)(state >>> PHASE_SHIFT) == phase) // avoid stale enq
1034 +                    queued = head.compareAndSet(q, node);
1035 +            }
1036              else {
1037                  try {
1038                      ForkJoinPool.managedBlock(node);
# Line 889 | Line 1041 | public class Phaser {
1041                  }
1042              }
1043          }
1044 +
1045 +        if (node != null) {
1046 +            if (node.thread != null)
1047 +                node.thread = null;       // avoid need for unpark()
1048 +            if (node.wasInterrupted && !node.interruptible)
1049 +                Thread.currentThread().interrupt();
1050 +            if (p == phase && (p = (int)(state >>> PHASE_SHIFT)) == phase)
1051 +                return abortWait(phase); // possibly clean up on abort
1052 +        }
1053          releaseWaiters(phase);
893        if (node != null)
894            node.onRelease();
1054          return p;
1055      }
1056  
# Line 916 | Line 1075 | public class Phaser {
1075              this.interruptible = interruptible;
1076              this.nanos = nanos;
1077              this.timed = timed;
1078 <            this.lastTime = timed? System.nanoTime() : 0L;
1078 >            this.lastTime = timed ? System.nanoTime() : 0L;
1079              thread = Thread.currentThread();
1080          }
1081  
1082          public boolean isReleasable() {
1083 <            Thread t = thread;
1084 <            if (t != null) {
1085 <                if (phaser.getPhase() != phase)
1086 <                    t = null;
1087 <                else {
1088 <                    if (Thread.interrupted())
1089 <                        wasInterrupted = true;
1090 <                    if (interruptible && wasInterrupted)
1091 <                        t = null;
933 <                    else if (timed) {
934 <                        if (nanos > 0) {
935 <                            long now = System.nanoTime();
936 <                            nanos -= now - lastTime;
937 <                            lastTime = now;
938 <                        }
939 <                        if (nanos <= 0)
940 <                            t = null;
941 <                    }
942 <                }
943 <                if (t != null)
944 <                    return false;
1083 >            if (thread == null)
1084 >                return true;
1085 >            if (phaser.getPhase() != phase) {
1086 >                thread = null;
1087 >                return true;
1088 >            }
1089 >            if (Thread.interrupted())
1090 >                wasInterrupted = true;
1091 >            if (wasInterrupted && interruptible) {
1092                  thread = null;
1093 +                return true;
1094 +            }
1095 +            if (timed) {
1096 +                if (nanos > 0L) {
1097 +                    long now = System.nanoTime();
1098 +                    nanos -= now - lastTime;
1099 +                    lastTime = now;
1100 +                }
1101 +                if (nanos <= 0L) {
1102 +                    thread = null;
1103 +                    return true;
1104 +                }
1105              }
1106 <            return true;
1106 >            return false;
1107          }
1108  
1109          public boolean block() {
# Line 956 | Line 1115 | public class Phaser {
1115                  LockSupport.parkNanos(this, nanos);
1116              return isReleasable();
1117          }
959
960        void signal() {
961            Thread t = thread;
962            if (t != null) {
963                thread = null;
964                LockSupport.unpark(t);
965            }
966        }
967
968        void onRelease() { // actions upon return from internalAwaitAdvance
969            if (!interruptible && wasInterrupted)
970                Thread.currentThread().interrupt();
971            if (thread != null)
972                thread = null;
973        }
974
1118      }
1119  
1120      // Unsafe mechanics
1121  
1122 <    private static final sun.misc.Unsafe UNSAFE = getUnsafe();
1123 <    private static final long stateOffset =
1124 <        objectFieldOffset("state", Phaser.class);
982 <
983 <    private static long objectFieldOffset(String field, Class<?> klazz) {
1122 >    private static final sun.misc.Unsafe UNSAFE;
1123 >    private static final long stateOffset;
1124 >    static {
1125          try {
1126 <            return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
1127 <        } catch (NoSuchFieldException e) {
1128 <            // Convert Exception to corresponding Error
1129 <            NoSuchFieldError error = new NoSuchFieldError(field);
1130 <            error.initCause(e);
1131 <            throw error;
1126 >            UNSAFE = getUnsafe();
1127 >            Class<?> k = Phaser.class;
1128 >            stateOffset = UNSAFE.objectFieldOffset
1129 >                (k.getDeclaredField("state"));
1130 >        } catch (Exception e) {
1131 >            throw new Error(e);
1132          }
1133      }
1134  

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines