ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/Phaser.java
(Generate patch)

Comparing jsr166/src/jsr166y/Phaser.java (file contents):
Revision 1.72 by dl, Mon May 16 11:41:14 2011 UTC vs.
Revision 1.77 by jsr166, Mon Oct 17 23:37:19 2011 UTC

# Line 237 | Line 237 | public class Phaser {
237       */
238  
239      /**
240 <     * Primary state representation, holding four fields:
240 >     * Primary state representation, holding four bit-fields:
241       *
242 <     * * unarrived -- the number of parties yet to hit barrier (bits  0-15)
243 <     * * parties -- the number of parties to wait              (bits 16-31)
244 <     * * phase -- the generation of the barrier                (bits 32-62)
245 <     * * terminated -- set if barrier is terminated            (bit  63 / sign)
242 >     * unarrived  -- the number of parties yet to hit barrier (bits  0-15)
243 >     * parties    -- the number of parties to wait            (bits 16-31)
244 >     * phase      -- the generation of the barrier            (bits 32-62)
245 >     * terminated -- set if barrier is terminated             (bit  63 / sign)
246       *
247       * Except that a phaser with no registered parties is
248 <     * distinguished with the otherwise illegal state of having zero
248 >     * distinguished by the otherwise illegal state of having zero
249       * parties and one unarrived parties (encoded as EMPTY below).
250       *
251       * To efficiently maintain atomicity, these values are packed into
# Line 266 | Line 266 | public class Phaser {
266      private volatile long state;
267  
268      private static final int  MAX_PARTIES     = 0xffff;
269 <    private static final int  MAX_PHASE       = 0x7fffffff;
269 >    private static final int  MAX_PHASE       = Integer.MAX_VALUE;
270      private static final int  PARTIES_SHIFT   = 16;
271      private static final int  PHASE_SHIFT     = 32;
272    private static final long PHASE_MASK      = -1L << PHASE_SHIFT;
272      private static final int  UNARRIVED_MASK  = 0xffff;      // to mask ints
273      private static final long PARTIES_MASK    = 0xffff0000L; // to mask longs
274 +    private static final long COUNTS_MASK     = 0xffffffffL;
275      private static final long TERMINATION_BIT = 1L << 63;
276  
277      // some special values
278      private static final int  ONE_ARRIVAL     = 1;
279      private static final int  ONE_PARTY       = 1 << PARTIES_SHIFT;
280 +    private static final int  ONE_DEREGISTER  = ONE_ARRIVAL|ONE_PARTY;
281      private static final int  EMPTY           = 1;
282  
283      // The following unpacking methods are usually manually inlined
284  
285      private static int unarrivedOf(long s) {
286          int counts = (int)s;
287 <        return (counts == EMPTY) ? 0 : counts & UNARRIVED_MASK;
287 >        return (counts == EMPTY) ? 0 : (counts & UNARRIVED_MASK);
288      }
289  
290      private static int partiesOf(long s) {
# Line 291 | Line 292 | public class Phaser {
292      }
293  
294      private static int phaseOf(long s) {
295 <        return (int) (s >>> PHASE_SHIFT);
295 >        return (int)(s >>> PHASE_SHIFT);
296      }
297  
298      private static int arrivedOf(long s) {
# Line 344 | Line 345 | public class Phaser {
345       * Manually tuned to speed up and minimize race windows for the
346       * common case of just decrementing unarrived field.
347       *
348 <     * @param deregister false for arrive, true for arriveAndDeregister
348 >     * @param adjust value to subtract from state;
349 >     *               ONE_ARRIVAL for arrive,
350 >     *               ONE_DEREGISTER for arriveAndDeregister
351       */
352 <    private int doArrive(boolean deregister) {
350 <        int adj = deregister ? ONE_ARRIVAL|ONE_PARTY : ONE_ARRIVAL;
352 >    private int doArrive(int adjust) {
353          final Phaser root = this.root;
354          for (;;) {
355              long s = (root == this) ? state : reconcileState();
356              int phase = (int)(s >>> PHASE_SHIFT);
355            int counts = (int)s;
356            int unarrived = (counts & UNARRIVED_MASK) - 1;
357              if (phase < 0)
358                  return phase;
359 <            else if (counts == EMPTY || unarrived < 0) {
360 <                if (root == this || reconcileState() == s)
361 <                    throw new IllegalStateException(badArrive(s));
362 <            }
363 <            else if (UNSAFE.compareAndSwapLong(this, stateOffset, s, s-=adj)) {
364 <                if (unarrived == 0) {
359 >            int counts = (int)s;
360 >            int unarrived = (counts == EMPTY) ? 0 : (counts & UNARRIVED_MASK);
361 >            if (unarrived <= 0)
362 >                throw new IllegalStateException(badArrive(s));
363 >            if (UNSAFE.compareAndSwapLong(this, stateOffset, s, s-=adjust)) {
364 >                if (unarrived == 1) {
365                      long n = s & PARTIES_MASK;  // base of next state
366 <                    int nextUnarrived = ((int)n) >>> PARTIES_SHIFT;
367 <                    if (root != this)
368 <                        return parent.doArrive(nextUnarrived == 0);
369 <                    if (onAdvance(phase, nextUnarrived))
370 <                        n |= TERMINATION_BIT;
371 <                    else if (nextUnarrived == 0)
372 <                        n |= EMPTY;
366 >                    int nextUnarrived = (int)n >>> PARTIES_SHIFT;
367 >                    if (root == this) {
368 >                        if (onAdvance(phase, nextUnarrived))
369 >                            n |= TERMINATION_BIT;
370 >                        else if (nextUnarrived == 0)
371 >                            n |= EMPTY;
372 >                        else
373 >                            n |= nextUnarrived;
374 >                        int nextPhase = (phase + 1) & MAX_PHASE;
375 >                        n |= (long)nextPhase << PHASE_SHIFT;
376 >                        UNSAFE.compareAndSwapLong(this, stateOffset, s, n);
377 >                        releaseWaiters(phase);
378 >                    }
379 >                    else if (nextUnarrived == 0) { // propagate deregistration
380 >                        phase = parent.doArrive(ONE_DEREGISTER);
381 >                        UNSAFE.compareAndSwapLong(this, stateOffset,
382 >                                                  s, s | EMPTY);
383 >                    }
384                      else
385 <                        n |= nextUnarrived;
375 <                    n |= ((long)((phase + 1) & MAX_PHASE)) << PHASE_SHIFT;
376 <                    UNSAFE.compareAndSwapLong(this, stateOffset, s, n);
377 <                    releaseWaiters(phase);
385 >                        phase = parent.doArrive(ONE_ARRIVAL);
386                  }
387                  return phase;
388              }
# Line 389 | Line 397 | public class Phaser {
397       */
398      private int doRegister(int registrations) {
399          // adjustment to state
400 <        long adj = ((long)registrations << PARTIES_SHIFT) | registrations;
401 <        Phaser par = parent;
400 >        long adjust = ((long)registrations << PARTIES_SHIFT) | registrations;
401 >        final Phaser parent = this.parent;
402          int phase;
403          for (;;) {
404 <            long s = state;
404 >            long s = (parent == null) ? state : reconcileState();
405              int counts = (int)s;
406              int parties = counts >>> PARTIES_SHIFT;
407              int unarrived = counts & UNARRIVED_MASK;
408              if (registrations > MAX_PARTIES - parties)
409                  throw new IllegalStateException(badRegister(s));
410 <            else if ((phase = (int)(s >>> PHASE_SHIFT)) < 0)
410 >            phase = (int)(s >>> PHASE_SHIFT);
411 >            if (phase < 0)
412                  break;
413 <            else if (counts != EMPTY) {             // not 1st registration
414 <                if (par == null || reconcileState() == s) {
413 >            if (counts != EMPTY) {                  // not 1st registration
414 >                if (parent == null || reconcileState() == s) {
415                      if (unarrived == 0)             // wait out advance
416                          root.internalAwaitAdvance(phase, null);
417                      else if (UNSAFE.compareAndSwapLong(this, stateOffset,
418 <                                                       s, s + adj))
418 >                                                       s, s + adjust))
419                          break;
420                  }
421              }
422 <            else if (par == null) {                 // 1st root registration
423 <                long next = (((long) phase) << PHASE_SHIFT) | adj;
422 >            else if (parent == null) {              // 1st root registration
423 >                long next = ((long)phase << PHASE_SHIFT) | adjust;
424                  if (UNSAFE.compareAndSwapLong(this, stateOffset, s, next))
425                      break;
426              }
427              else {
428                  synchronized (this) {               // 1st sub registration
429                      if (state == s) {               // recheck under lock
430 <                        par.doRegister(1);
431 <                        do {                        // force current phase
430 >                        phase = parent.doRegister(1);
431 >                        if (phase < 0)
432 >                            break;
433 >                        // finish registration whenever parent registration
434 >                        // succeeded, even when racing with termination,
435 >                        // since these are part of the same "transaction".
436 >                        while (!UNSAFE.compareAndSwapLong
437 >                               (this, stateOffset, s,
438 >                                ((long)phase << PHASE_SHIFT) | adjust)) {
439 >                            s = state;
440                              phase = (int)(root.state >>> PHASE_SHIFT);
441 <                            // assert phase < 0 || (int)state == EMPTY;
442 <                        } while (!UNSAFE.compareAndSwapLong
426 <                                 (this, stateOffset, state,
427 <                                  (((long) phase) << PHASE_SHIFT) | adj));
441 >                            // assert (int)s == EMPTY;
442 >                        }
443                          break;
444                      }
445                  }
# Line 439 | Line 454 | public class Phaser {
454       * subphasers have not yet done so, in which case they must finish
455       * their own advance by setting unarrived to parties (or if
456       * parties is zero, resetting to unregistered EMPTY state).
442     * However, this method may also be called when "floating"
443     * subphasers with possibly some unarrived parties are merely
444     * catching up to current phase, in which case counts are
445     * unaffected.
457       *
458       * @return reconciled state
459       */
# Line 450 | Line 461 | public class Phaser {
461          final Phaser root = this.root;
462          long s = state;
463          if (root != this) {
464 <            int phase, u, p;
465 <            // CAS root phase with current parties; possibly trip unarrived
464 >            int phase, p;
465 >            // CAS to root phase with current parties, tripping unarrived
466              while ((phase = (int)(root.state >>> PHASE_SHIFT)) !=
467                     (int)(s >>> PHASE_SHIFT) &&
468                     !UNSAFE.compareAndSwapLong
469                     (this, stateOffset, s,
470 <                    s = ((((long) phase) << PHASE_SHIFT) | (s & PARTIES_MASK) |
471 <                         ((p = (int)s >>> PARTIES_SHIFT) == 0 ? EMPTY :
472 <                          (u = (int)s & UNARRIVED_MASK) == 0 ? p : u))))
470 >                    s = (((long)phase << PHASE_SHIFT) |
471 >                         ((phase < 0) ? (s & COUNTS_MASK) :
472 >                          (((p = (int)s >>> PARTIES_SHIFT) == 0) ? EMPTY :
473 >                           ((s & PARTIES_MASK) | p))))))
474                  s = state;
475          }
476          return s;
# Line 525 | Line 537 | public class Phaser {
537              this.evenQ = new AtomicReference<QNode>();
538              this.oddQ = new AtomicReference<QNode>();
539          }
540 <        this.state = (parties == 0) ? (long) EMPTY :
541 <            ((((long) phase) << PHASE_SHIFT) |
542 <             (((long) parties) << PARTIES_SHIFT) |
543 <             ((long) parties));
540 >        this.state = (parties == 0) ? (long)EMPTY :
541 >            ((long)phase << PHASE_SHIFT) |
542 >            ((long)parties << PARTIES_SHIFT) |
543 >            ((long)parties);
544      }
545  
546      /**
# Line 590 | Line 602 | public class Phaser {
602       * of unarrived parties would become negative
603       */
604      public int arrive() {
605 <        return doArrive(false);
605 >        return doArrive(ONE_ARRIVAL);
606      }
607  
608      /**
# Line 610 | Line 622 | public class Phaser {
622       * of registered or unarrived parties would become negative
623       */
624      public int arriveAndDeregister() {
625 <        return doArrive(true);
625 >        return doArrive(ONE_DEREGISTER);
626      }
627  
628      /**
# Line 637 | Line 649 | public class Phaser {
649          for (;;) {
650              long s = (root == this) ? state : reconcileState();
651              int phase = (int)(s >>> PHASE_SHIFT);
640            int counts = (int)s;
641            int unarrived = (counts & UNARRIVED_MASK) - 1;
652              if (phase < 0)
653                  return phase;
654 <            else if (counts == EMPTY || unarrived < 0) {
655 <                if (reconcileState() == s)
656 <                    throw new IllegalStateException(badArrive(s));
657 <            }
658 <            else if (UNSAFE.compareAndSwapLong(this, stateOffset, s,
659 <                                               s -= ONE_ARRIVAL)) {
660 <                if (unarrived != 0)
654 >            int counts = (int)s;
655 >            int unarrived = (counts == EMPTY) ? 0 : (counts & UNARRIVED_MASK);
656 >            if (unarrived <= 0)
657 >                throw new IllegalStateException(badArrive(s));
658 >            if (UNSAFE.compareAndSwapLong(this, stateOffset, s,
659 >                                          s -= ONE_ARRIVAL)) {
660 >                if (unarrived > 1)
661                      return root.internalAwaitAdvance(phase, null);
662                  if (root != this)
663                      return parent.arriveAndAwaitAdvance();
664                  long n = s & PARTIES_MASK;  // base of next state
665 <                int nextUnarrived = ((int)n) >>> PARTIES_SHIFT;
665 >                int nextUnarrived = (int)n >>> PARTIES_SHIFT;
666                  if (onAdvance(phase, nextUnarrived))
667                      n |= TERMINATION_BIT;
668                  else if (nextUnarrived == 0)
# Line 780 | Line 790 | public class Phaser {
790              if (UNSAFE.compareAndSwapLong(root, stateOffset,
791                                            s, s | TERMINATION_BIT)) {
792                  // signal all threads
793 <                releaseWaiters(0);
794 <                releaseWaiters(1);
793 >                releaseWaiters(0); // Waiters on evenQ
794 >                releaseWaiters(1); // Waiters on oddQ
795                  return;
796              }
797          }
# Line 987 | Line 997 | public class Phaser {
997  
998      /**
999       * Possibly blocks and waits for phase to advance unless aborted.
1000 <     * Call only from root node.
1000 >     * Call only on root phaser.
1001       *
1002       * @param phase current phase
1003       * @param node if non-null, the wait node to track interrupt and timeout;
# Line 995 | Line 1005 | public class Phaser {
1005       * @return current phase
1006       */
1007      private int internalAwaitAdvance(int phase, QNode node) {
1008 +        // assert root == this;
1009          releaseWaiters(phase-1);          // ensure old queue clean
1010          boolean queued = false;           // true when node is enqueued
1011          int lastUnarrived = 0;            // to increase spins upon change
# Line 1108 | Line 1119 | public class Phaser {
1119  
1120      // Unsafe mechanics
1121  
1122 <    private static final sun.misc.Unsafe UNSAFE = getUnsafe();
1123 <    private static final long stateOffset =
1124 <        objectFieldOffset("state", Phaser.class);
1114 <
1115 <    private static long objectFieldOffset(String field, Class<?> klazz) {
1122 >    private static final sun.misc.Unsafe UNSAFE;
1123 >    private static final long stateOffset;
1124 >    static {
1125          try {
1126 <            return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
1127 <        } catch (NoSuchFieldException e) {
1128 <            // Convert Exception to corresponding Error
1129 <            NoSuchFieldError error = new NoSuchFieldError(field);
1130 <            error.initCause(e);
1131 <            throw error;
1126 >            UNSAFE = getUnsafe();
1127 >            Class<?> k = Phaser.class;
1128 >            stateOffset = UNSAFE.objectFieldOffset
1129 >                (k.getDeclaredField("state"));
1130 >        } catch (Exception e) {
1131 >            throw new Error(e);
1132          }
1133      }
1134  

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines