ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/Phaser.java
(Generate patch)

Comparing jsr166/src/jsr166y/Phaser.java (file contents):
Revision 1.75 by dl, Wed Sep 21 12:30:39 2011 UTC vs.
Revision 1.80 by jsr166, Sun Sep 13 16:28:14 2015 UTC

# Line 17 | Line 17 | import java.util.concurrent.locks.LockSu
17   * {@link java.util.concurrent.CountDownLatch CountDownLatch}
18   * but supporting more flexible usage.
19   *
20 < * <p> <b>Registration.</b> Unlike the case for other barriers, the
20 > * <p><b>Registration.</b> Unlike the case for other barriers, the
21   * number of parties <em>registered</em> to synchronize on a phaser
22   * may vary over time.  Tasks may be registered at any time (using
23   * methods {@link #register}, {@link #bulkRegister}, or forms of
# Line 30 | Line 30 | import java.util.concurrent.locks.LockSu
30   * (However, you can introduce such bookkeeping by subclassing this
31   * class.)
32   *
33 < * <p> <b>Synchronization.</b> Like a {@code CyclicBarrier}, a {@code
33 > * <p><b>Synchronization.</b> Like a {@code CyclicBarrier}, a {@code
34   * Phaser} may be repeatedly awaited.  Method {@link
35   * #arriveAndAwaitAdvance} has effect analogous to {@link
36   * java.util.concurrent.CyclicBarrier#await CyclicBarrier.await}. Each
# Line 44 | Line 44 | import java.util.concurrent.locks.LockSu
44   *
45   * <ul>
46   *
47 < *   <li> <b>Arrival.</b> Methods {@link #arrive} and
47 > *   <li><b>Arrival.</b> Methods {@link #arrive} and
48   *       {@link #arriveAndDeregister} record arrival.  These methods
49   *       do not block, but return an associated <em>arrival phase
50   *       number</em>; that is, the phase number of the phaser to which
# Line 57 | Line 57 | import java.util.concurrent.locks.LockSu
57   *       flexible than, providing a barrier action to a {@code
58   *       CyclicBarrier}.
59   *
60 < *   <li> <b>Waiting.</b> Method {@link #awaitAdvance} requires an
60 > *   <li><b>Waiting.</b> Method {@link #awaitAdvance} requires an
61   *       argument indicating an arrival phase number, and returns when
62   *       the phaser advances to (or is already at) a different phase.
63   *       Unlike similar constructions using {@code CyclicBarrier},
# Line 74 | Line 74 | import java.util.concurrent.locks.LockSu
74   *
75   * </ul>
76   *
77 < * <p> <b>Termination.</b> A phaser may enter a <em>termination</em>
77 > * <p><b>Termination.</b> A phaser may enter a <em>termination</em>
78   * state, that may be checked using method {@link #isTerminated}. Upon
79   * termination, all synchronization methods immediately return without
80   * waiting for advance, as indicated by a negative return value.
# Line 89 | Line 89 | import java.util.concurrent.locks.LockSu
89   * also available to abruptly release waiting threads and allow them
90   * to terminate.
91   *
92 < * <p> <b>Tiering.</b> Phasers may be <em>tiered</em> (i.e.,
92 > * <p><b>Tiering.</b> Phasers may be <em>tiered</em> (i.e.,
93   * constructed in tree structures) to reduce contention. Phasers with
94   * large numbers of parties that would otherwise experience heavy
95   * synchronization contention costs may instead be set up so that
# Line 271 | Line 271 | public class Phaser {
271      private static final int  PHASE_SHIFT     = 32;
272      private static final int  UNARRIVED_MASK  = 0xffff;      // to mask ints
273      private static final long PARTIES_MASK    = 0xffff0000L; // to mask longs
274 +    private static final long COUNTS_MASK     = 0xffffffffL;
275      private static final long TERMINATION_BIT = 1L << 63;
276  
277      // some special values
278      private static final int  ONE_ARRIVAL     = 1;
279      private static final int  ONE_PARTY       = 1 << PARTIES_SHIFT;
280 +    private static final int  ONE_DEREGISTER  = ONE_ARRIVAL|ONE_PARTY;
281      private static final int  EMPTY           = 1;
282  
283      // The following unpacking methods are usually manually inlined
284  
285      private static int unarrivedOf(long s) {
286          int counts = (int)s;
287 <        return (counts == EMPTY) ? 0 : counts & UNARRIVED_MASK;
287 >        return (counts == EMPTY) ? 0 : (counts & UNARRIVED_MASK);
288      }
289  
290      private static int partiesOf(long s) {
# Line 343 | Line 345 | public class Phaser {
345       * Manually tuned to speed up and minimize race windows for the
346       * common case of just decrementing unarrived field.
347       *
348 <     * @param deregister false for arrive, true for arriveAndDeregister
348 >     * @param adjust value to subtract from state;
349 >     *               ONE_ARRIVAL for arrive,
350 >     *               ONE_DEREGISTER for arriveAndDeregister
351       */
352 <    private int doArrive(boolean deregister) {
349 <        int adj = deregister ? ONE_ARRIVAL|ONE_PARTY : ONE_ARRIVAL;
352 >    private int doArrive(int adjust) {
353          final Phaser root = this.root;
354          for (;;) {
355              long s = (root == this) ? state : reconcileState();
356              int phase = (int)(s >>> PHASE_SHIFT);
354            int counts = (int)s;
355            int unarrived = (counts & UNARRIVED_MASK) - 1;
357              if (phase < 0)
358                  return phase;
359 <            else if (counts == EMPTY || unarrived < 0) {
360 <                if (root == this || reconcileState() == s)
361 <                    throw new IllegalStateException(badArrive(s));
362 <            }
363 <            else if (UNSAFE.compareAndSwapLong(this, stateOffset, s, s-=adj)) {
364 <                long n = s & PARTIES_MASK;  // base of next state
365 <                int nextUnarrived = (int)n >>> PARTIES_SHIFT;
366 <                if (unarrived == 0) {
359 >            int counts = (int)s;
360 >            int unarrived = (counts == EMPTY) ? 0 : (counts & UNARRIVED_MASK);
361 >            if (unarrived <= 0)
362 >                throw new IllegalStateException(badArrive(s));
363 >            if (UNSAFE.compareAndSwapLong(this, stateOffset, s, s-=adjust)) {
364 >                if (unarrived == 1) {
365 >                    long n = s & PARTIES_MASK;  // base of next state
366 >                    int nextUnarrived = (int)n >>> PARTIES_SHIFT;
367                      if (root == this) {
368                          if (onAdvance(phase, nextUnarrived))
369                              n |= TERMINATION_BIT;
# Line 370 | Line 371 | public class Phaser {
371                              n |= EMPTY;
372                          else
373                              n |= nextUnarrived;
374 <                        n |= (long)((phase + 1) & MAX_PHASE) << PHASE_SHIFT;
374 >                        int nextPhase = (phase + 1) & MAX_PHASE;
375 >                        n |= (long)nextPhase << PHASE_SHIFT;
376                          UNSAFE.compareAndSwapLong(this, stateOffset, s, n);
377 +                        releaseWaiters(phase);
378                      }
379                      else if (nextUnarrived == 0) { // propagate deregistration
380 <                        phase = parent.doArrive(true);
380 >                        phase = parent.doArrive(ONE_DEREGISTER);
381                          UNSAFE.compareAndSwapLong(this, stateOffset,
382                                                    s, s | EMPTY);
383                      }
384                      else
385 <                        phase = parent.doArrive(false);
383 <                    releaseWaiters(phase);
385 >                        phase = parent.doArrive(ONE_ARRIVAL);
386                  }
387                  return phase;
388              }
# Line 395 | Line 397 | public class Phaser {
397       */
398      private int doRegister(int registrations) {
399          // adjustment to state
400 <        long adj = ((long)registrations << PARTIES_SHIFT) | registrations;
400 >        long adjust = ((long)registrations << PARTIES_SHIFT) | registrations;
401          final Phaser parent = this.parent;
402          int phase;
403          for (;;) {
# Line 405 | Line 407 | public class Phaser {
407              int unarrived = counts & UNARRIVED_MASK;
408              if (registrations > MAX_PARTIES - parties)
409                  throw new IllegalStateException(badRegister(s));
410 <            else if ((phase = (int)(s >>> PHASE_SHIFT)) < 0)
410 >            phase = (int)(s >>> PHASE_SHIFT);
411 >            if (phase < 0)
412                  break;
413 <            else if (counts != EMPTY) {             // not 1st registration
413 >            if (counts != EMPTY) {                  // not 1st registration
414                  if (parent == null || reconcileState() == s) {
415                      if (unarrived == 0)             // wait out advance
416                          root.internalAwaitAdvance(phase, null);
417                      else if (UNSAFE.compareAndSwapLong(this, stateOffset,
418 <                                                       s, s + adj))
418 >                                                       s, s + adjust))
419                          break;
420                  }
421              }
422              else if (parent == null) {              // 1st root registration
423 <                long next = ((long)phase << PHASE_SHIFT) | adj;
423 >                long next = ((long)phase << PHASE_SHIFT) | adjust;
424                  if (UNSAFE.compareAndSwapLong(this, stateOffset, s, next))
425                      break;
426              }
427              else {
428                  synchronized (this) {               // 1st sub registration
429                      if (state == s) {               // recheck under lock
430 <                        parent.doRegister(1);
431 <                        do {                        // force current phase
430 >                        phase = parent.doRegister(1);
431 >                        if (phase < 0)
432 >                            break;
433 >                        // finish registration whenever parent registration
434 >                        // succeeded, even when racing with termination,
435 >                        // since these are part of the same "transaction".
436 >                        while (!UNSAFE.compareAndSwapLong
437 >                               (this, stateOffset, s,
438 >                                ((long)phase << PHASE_SHIFT) | adjust)) {
439 >                            s = state;
440                              phase = (int)(root.state >>> PHASE_SHIFT);
441 <                            // assert phase < 0 || (int)state == EMPTY;
442 <                        } while (!UNSAFE.compareAndSwapLong
432 <                                 (this, stateOffset, state,
433 <                                  ((long)phase << PHASE_SHIFT) | adj));
441 >                            // assert (int)s == EMPTY;
442 >                        }
443                          break;
444                      }
445                  }
# Line 445 | Line 454 | public class Phaser {
454       * subphasers have not yet done so, in which case they must finish
455       * their own advance by setting unarrived to parties (or if
456       * parties is zero, resetting to unregistered EMPTY state).
448     * However, this method may also be called when "floating"
449     * subphasers with possibly some unarrived parties are merely
450     * catching up to current phase, in which case counts are
451     * unaffected.
457       *
458       * @return reconciled state
459       */
# Line 456 | Line 461 | public class Phaser {
461          final Phaser root = this.root;
462          long s = state;
463          if (root != this) {
464 <            int phase, u, p;
465 <            // CAS root phase with current parties; possibly trip unarrived
464 >            int phase, p;
465 >            // CAS to root phase with current parties, tripping unarrived
466              while ((phase = (int)(root.state >>> PHASE_SHIFT)) !=
467                     (int)(s >>> PHASE_SHIFT) &&
468                     !UNSAFE.compareAndSwapLong
469                     (this, stateOffset, s,
470                      s = (((long)phase << PHASE_SHIFT) |
471 <                         (s & PARTIES_MASK) |
472 <                         ((p = (int)s >>> PARTIES_SHIFT) == 0 ? EMPTY :
473 <                          ((u = (int)s & UNARRIVED_MASK) == 0 && phase >= 0) ?
469 <                          p : u))))
471 >                         ((phase < 0) ? (s & COUNTS_MASK) :
472 >                          (((p = (int)s >>> PARTIES_SHIFT) == 0) ? EMPTY :
473 >                           ((s & PARTIES_MASK) | p))))))
474                  s = state;
475          }
476          return s;
# Line 598 | Line 602 | public class Phaser {
602       * of unarrived parties would become negative
603       */
604      public int arrive() {
605 <        return doArrive(false);
605 >        return doArrive(ONE_ARRIVAL);
606      }
607  
608      /**
# Line 618 | Line 622 | public class Phaser {
622       * of registered or unarrived parties would become negative
623       */
624      public int arriveAndDeregister() {
625 <        return doArrive(true);
625 >        return doArrive(ONE_DEREGISTER);
626      }
627  
628      /**
# Line 645 | Line 649 | public class Phaser {
649          for (;;) {
650              long s = (root == this) ? state : reconcileState();
651              int phase = (int)(s >>> PHASE_SHIFT);
648            int counts = (int)s;
649            int unarrived = (counts & UNARRIVED_MASK) - 1;
652              if (phase < 0)
653                  return phase;
654 <            else if (counts == EMPTY || unarrived < 0) {
655 <                if (reconcileState() == s)
656 <                    throw new IllegalStateException(badArrive(s));
657 <            }
658 <            else if (UNSAFE.compareAndSwapLong(this, stateOffset, s,
659 <                                               s -= ONE_ARRIVAL)) {
660 <                if (unarrived != 0)
654 >            int counts = (int)s;
655 >            int unarrived = (counts == EMPTY) ? 0 : (counts & UNARRIVED_MASK);
656 >            if (unarrived <= 0)
657 >                throw new IllegalStateException(badArrive(s));
658 >            if (UNSAFE.compareAndSwapLong(this, stateOffset, s,
659 >                                          s -= ONE_ARRIVAL)) {
660 >                if (unarrived > 1)
661                      return root.internalAwaitAdvance(phase, null);
662                  if (root != this)
663                      return parent.arriveAndAwaitAdvance();
# Line 788 | Line 790 | public class Phaser {
790              if (UNSAFE.compareAndSwapLong(root, stateOffset,
791                                            s, s | TERMINATION_BIT)) {
792                  // signal all threads
793 <                releaseWaiters(0);
794 <                releaseWaiters(1);
793 >                releaseWaiters(0); // Waiters on evenQ
794 >                releaseWaiters(1); // Waiters on oddQ
795                  return;
796              }
797          }
# Line 995 | Line 997 | public class Phaser {
997  
998      /**
999       * Possibly blocks and waits for phase to advance unless aborted.
1000 <     * Call only from root node.
1000 >     * Call only on root phaser.
1001       *
1002       * @param phase current phase
1003       * @param node if non-null, the wait node to track interrupt and timeout;
# Line 1003 | Line 1005 | public class Phaser {
1005       * @return current phase
1006       */
1007      private int internalAwaitAdvance(int phase, QNode node) {
1008 +        // assert root == this;
1009          releaseWaiters(phase-1);          // ensure old queue clean
1010          boolean queued = false;           // true when node is enqueued
1011          int lastUnarrived = 0;            // to increase spins upon change
# Line 1139 | Line 1142 | public class Phaser {
1142      private static sun.misc.Unsafe getUnsafe() {
1143          try {
1144              return sun.misc.Unsafe.getUnsafe();
1145 <        } catch (SecurityException se) {
1146 <            try {
1147 <                return java.security.AccessController.doPrivileged
1148 <                    (new java.security
1149 <                     .PrivilegedExceptionAction<sun.misc.Unsafe>() {
1150 <                        public sun.misc.Unsafe run() throws Exception {
1151 <                            java.lang.reflect.Field f = sun.misc
1152 <                                .Unsafe.class.getDeclaredField("theUnsafe");
1153 <                            f.setAccessible(true);
1154 <                            return (sun.misc.Unsafe) f.get(null);
1155 <                        }});
1156 <            } catch (java.security.PrivilegedActionException e) {
1157 <                throw new RuntimeException("Could not initialize intrinsics",
1158 <                                           e.getCause());
1159 <            }
1145 >        } catch (SecurityException tryReflectionInstead) {}
1146 >        try {
1147 >            return java.security.AccessController.doPrivileged
1148 >            (new java.security.PrivilegedExceptionAction<sun.misc.Unsafe>() {
1149 >                public sun.misc.Unsafe run() throws Exception {
1150 >                    Class<sun.misc.Unsafe> k = sun.misc.Unsafe.class;
1151 >                    for (java.lang.reflect.Field f : k.getDeclaredFields()) {
1152 >                        f.setAccessible(true);
1153 >                        Object x = f.get(null);
1154 >                        if (k.isInstance(x))
1155 >                            return k.cast(x);
1156 >                    }
1157 >                    throw new NoSuchFieldError("the Unsafe");
1158 >                }});
1159 >        } catch (java.security.PrivilegedActionException e) {
1160 >            throw new RuntimeException("Could not initialize intrinsics",
1161 >                                       e.getCause());
1162          }
1163      }
1164   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines