ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/Phaser.java
Revision: 1.12
Committed: Thu Mar 19 05:10:42 2009 UTC (15 years, 1 month ago) by jsr166
Branch: MAIN
Changes since 1.11: +5 -5 lines
Log Message:
getUnsafe should use doPrivileged

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/licenses/publicdomain
5 */
6
7 package jsr166y;
8
9 import java.util.concurrent.*;
10 import java.util.concurrent.atomic.*;
11 import java.util.concurrent.locks.LockSupport;
12 import sun.misc.Unsafe;
13 import java.lang.reflect.*;
14
15 /**
16 * A reusable synchronization barrier, similar in functionality to a
17 * {@link java.util.concurrent.CyclicBarrier CyclicBarrier} and
18 * {@link java.util.concurrent.CountDownLatch CountDownLatch}
19 * but supporting more flexible usage.
20 *
21 * <ul>
22 *
23 * <li> The number of parties synchronizing on a phaser may vary over
24 * time. A task may register to be a party at any time, and may
25 * deregister upon arriving at the barrier. As is the case with most
26 * basic synchronization constructs, registration and deregistration
27 * affect only internal counts; they do not establish any further
28 * internal bookkeeping, so tasks cannot query whether they are
29 * registered. (However, you can introduce such bookkeeping by
30 * subclassing this class.)
31 *
32 * <li> Each generation has an associated phase value, starting at
33 * zero, and advancing when all parties reach the barrier (wrapping
34 * around to zero after reaching {@code Integer.MAX_VALUE}).
35 *
36 * <li> Like a CyclicBarrier, a Phaser may be repeatedly awaited.
37 * Method {@code arriveAndAwaitAdvance} has effect analogous to
38 * {@code CyclicBarrier.await}. However, Phasers separate two
39 * aspects of coordination, that may also be invoked independently:
40 *
41 * <ul>
42 *
43 * <li> Arriving at a barrier. Methods {@code arrive} and
44 * {@code arriveAndDeregister} do not block, but return
45 * the phase value current upon entry to the method.
46 *
47 * <li> Awaiting others. Method {@code awaitAdvance} requires an
48 * argument indicating the entry phase, and returns when the
49 * barrier advances to a new phase.
50 * </ul>
51 *
52 *
53 * <li> Barrier actions, performed by the task triggering a phase
54 * advance while others may be waiting, are arranged by overriding
55 * method {@code onAdvance}, that also controls termination.
56 * Overriding this method may be used to similar but more flexible
57 * effect as providing a barrier action to a CyclicBarrier.
58 *
59 * <li> Phasers may enter a <em>termination</em> state in which all
60 * actions immediately return without updating phaser state or waiting
61 * for advance, and indicating (via a negative phase value) that
62 * execution is complete. Termination is triggered by executing the
63 * overridable {@code onAdvance} method that is invoked each time the
64 * barrier is about to be tripped. When a Phaser is controlling an
65 * action with a fixed number of iterations, it is often convenient to
66 * override this method to cause termination when the current phase
67 * number reaches a threshold. Method {@code forceTermination} is also
68 * available to abruptly release waiting threads and allow them to
69 * terminate.
70 *
71 * <li> Phasers may be tiered to reduce contention. Phasers with large
72 * numbers of parties that would otherwise experience heavy
73 * synchronization contention costs may instead be arranged in trees.
74 * This will typically greatly increase throughput even though it
75 * incurs somewhat greater per-operation overhead.
76 *
77 * <li> By default, {@code awaitAdvance} continues to wait even if
78 * the waiting thread is interrupted. And unlike the case in
79 * CyclicBarriers, exceptions encountered while tasks wait
80 * interruptibly or with timeout do not change the state of the
81 * barrier. If necessary, you can perform any associated recovery
82 * within handlers of those exceptions, often after invoking
83 * {@code forceTermination}.
84 *
85 * <li>Phasers ensure lack of starvation when used by ForkJoinTasks.
86 *
87 * </ul>
88 *
89 * <p><b>Sample usages:</b>
90 *
91 * <p>A Phaser may be used instead of a {@code CountDownLatch} to control
92 * a one-shot action serving a variable number of parties. The typical
93 * idiom is for the method setting this up to first register, then
94 * start the actions, then deregister, as in:
95 *
96 * <pre>
97 * void runTasks(List&lt;Runnable&gt; list) {
98 * final Phaser phaser = new Phaser(1); // "1" to register self
99 * for (Runnable r : list) {
100 * phaser.register();
101 * new Thread() {
102 * public void run() {
103 * phaser.arriveAndAwaitAdvance(); // await all creation
104 * r.run();
105 * phaser.arriveAndDeregister(); // signal completion
106 * }
107 * }.start();
108 * }
109 *
110 * doSomethingOnBehalfOfWorkers();
111 * phaser.arrive(); // allow threads to start
112 * int p = phaser.arriveAndDeregister(); // deregister self ...
113 * p = phaser.awaitAdvance(p); // ... and await arrival
114 * otherActions(); // do other things while tasks execute
115 * phaser.awaitAdvance(p); // await final completion
116 * }
117 * </pre>
118 *
119 * <p>One way to cause a set of threads to repeatedly perform actions
120 * for a given number of iterations is to override {@code onAdvance}:
121 *
122 * <pre>
123 * void startTasks(List&lt;Runnable&gt; list, final int iterations) {
124 * final Phaser phaser = new Phaser() {
125 * public boolean onAdvance(int phase, int registeredParties) {
126 * return phase &gt;= iterations || registeredParties == 0;
127 * }
128 * };
129 * phaser.register();
130 * for (Runnable r : list) {
131 * phaser.register();
132 * new Thread() {
133 * public void run() {
134 * do {
135 * r.run();
136 * phaser.arriveAndAwaitAdvance();
137 * } while(!phaser.isTerminated();
138 * }
139 * }.start();
140 * }
141 * phaser.arriveAndDeregister(); // deregister self, don't wait
142 * }
143 * </pre>
144 *
145 * <p> To create a set of tasks using a tree of Phasers,
146 * you could use code of the following form, assuming a
147 * Task class with a constructor accepting a Phaser that
148 * it registers for upon construction:
149 * <pre>
150 * void build(Task[] actions, int lo, int hi, Phaser b) {
151 * int step = (hi - lo) / TASKS_PER_PHASER;
152 * if (step &gt; 1) {
153 * int i = lo;
154 * while (i &lt; hi) {
155 * int r = Math.min(i + step, hi);
156 * build(actions, i, r, new Phaser(b));
157 * i = r;
158 * }
159 * }
160 * else {
161 * for (int i = lo; i &lt; hi; ++i)
162 * actions[i] = new Task(b);
163 * // assumes new Task(b) performs b.register()
164 * }
165 * }
166 * // .. initially called, for n tasks via
167 * build(new Task[n], 0, n, new Phaser());
168 * </pre>
169 *
170 * The best value of {@code TASKS_PER_PHASER} depends mainly on
171 * expected barrier synchronization rates. A value as low as four may
172 * be appropriate for extremely small per-barrier task bodies (thus
173 * high rates), or up to hundreds for extremely large ones.
174 *
175 * </pre>
176 *
177 * <p><b>Implementation notes</b>: This implementation restricts the
178 * maximum number of parties to 65535. Attempts to register additional
179 * parties result in IllegalStateExceptions. However, you can and
180 * should create tiered phasers to accommodate arbitrarily large sets
181 * of participants.
182 */
183 public class Phaser {
184 /*
185 * This class implements an extension of X10 "clocks". Thanks to
186 * Vijay Saraswat for the idea, and to Vivek Sarkar for
187 * enhancements to extend functionality.
188 */
189
190 /**
191 * Barrier state representation. Conceptually, a barrier contains
192 * four values:
193 *
194 * * parties -- the number of parties to wait (16 bits)
195 * * unarrived -- the number of parties yet to hit barrier (16 bits)
196 * * phase -- the generation of the barrier (31 bits)
197 * * terminated -- set if barrier is terminated (1 bit)
198 *
199 * However, to efficiently maintain atomicity, these values are
200 * packed into a single (atomic) long. Termination uses the sign
201 * bit of 32 bit representation of phase, so phase is set to -1 on
202 * termination. Good performance relies on keeping state decoding
203 * and encoding simple, and keeping race windows short.
204 *
205 * Note: there are some cheats in arrive() that rely on unarrived
206 * count being lowest 16 bits.
207 */
208 private volatile long state;
209
210 private static final int ushortBits = 16;
211 private static final int ushortMask = 0xffff;
212 private static final int phaseMask = 0x7fffffff;
213
214 private static int unarrivedOf(long s) {
215 return (int)(s & ushortMask);
216 }
217
218 private static int partiesOf(long s) {
219 return ((int)s) >>> 16;
220 }
221
222 private static int phaseOf(long s) {
223 return (int)(s >>> 32);
224 }
225
226 private static int arrivedOf(long s) {
227 return partiesOf(s) - unarrivedOf(s);
228 }
229
230 private static long stateFor(int phase, int parties, int unarrived) {
231 return ((((long)phase) << 32) | (((long)parties) << 16) |
232 (long)unarrived);
233 }
234
235 private static long trippedStateFor(int phase, int parties) {
236 long lp = (long)parties;
237 return (((long)phase) << 32) | (lp << 16) | lp;
238 }
239
240 /**
241 * Returns message string for bad bounds exceptions
242 */
243 private static String badBounds(int parties, int unarrived) {
244 return ("Attempt to set " + unarrived +
245 " unarrived of " + parties + " parties");
246 }
247
248 /**
249 * The parent of this phaser, or null if none
250 */
251 private final Phaser parent;
252
253 /**
254 * The root of Phaser tree. Equals this if not in a tree. Used to
255 * support faster state push-down.
256 */
257 private final Phaser root;
258
259 // Wait queues
260
261 /**
262 * Heads of Treiber stacks for waiting threads. To eliminate
263 * contention while releasing some threads while adding others, we
264 * use two of them, alternating across even and odd phases.
265 */
266 private final AtomicReference<QNode> evenQ = new AtomicReference<QNode>();
267 private final AtomicReference<QNode> oddQ = new AtomicReference<QNode>();
268
269 private AtomicReference<QNode> queueFor(int phase) {
270 return (phase & 1) == 0? evenQ : oddQ;
271 }
272
273 /**
274 * Returns current state, first resolving lagged propagation from
275 * root if necessary.
276 */
277 private long getReconciledState() {
278 return parent == null? state : reconcileState();
279 }
280
281 /**
282 * Recursively resolves state.
283 */
284 private long reconcileState() {
285 Phaser p = parent;
286 long s = state;
287 if (p != null) {
288 while (unarrivedOf(s) == 0 && phaseOf(s) != phaseOf(root.state)) {
289 long parentState = p.getReconciledState();
290 int parentPhase = phaseOf(parentState);
291 int phase = phaseOf(s = state);
292 if (phase != parentPhase) {
293 long next = trippedStateFor(parentPhase, partiesOf(s));
294 if (casState(s, next)) {
295 releaseWaiters(phase);
296 s = next;
297 }
298 }
299 }
300 }
301 return s;
302 }
303
304 /**
305 * Creates a new Phaser without any initially registered parties,
306 * initial phase number 0, and no parent. Any thread using this
307 * Phaser will need to first register for it.
308 */
309 public Phaser() {
310 this(null);
311 }
312
313 /**
314 * Creates a new Phaser with the given numbers of registered
315 * unarrived parties, initial phase number 0, and no parent.
316 * @param parties the number of parties required to trip barrier.
317 * @throws IllegalArgumentException if parties less than zero
318 * or greater than the maximum number of parties supported.
319 */
320 public Phaser(int parties) {
321 this(null, parties);
322 }
323
324 /**
325 * Creates a new Phaser with the given parent, without any
326 * initially registered parties. If parent is non-null this phaser
327 * is registered with the parent and its initial phase number is
328 * the same as that of parent phaser.
329 * @param parent the parent phaser.
330 */
331 public Phaser(Phaser parent) {
332 int phase = 0;
333 this.parent = parent;
334 if (parent != null) {
335 this.root = parent.root;
336 phase = parent.register();
337 }
338 else
339 this.root = this;
340 this.state = trippedStateFor(phase, 0);
341 }
342
343 /**
344 * Creates a new Phaser with the given parent and numbers of
345 * registered unarrived parties. If parent is non-null this phaser
346 * is registered with the parent and its initial phase number is
347 * the same as that of parent phaser.
348 * @param parent the parent phaser.
349 * @param parties the number of parties required to trip barrier.
350 * @throws IllegalArgumentException if parties less than zero
351 * or greater than the maximum number of parties supported.
352 */
353 public Phaser(Phaser parent, int parties) {
354 if (parties < 0 || parties > ushortMask)
355 throw new IllegalArgumentException("Illegal number of parties");
356 int phase = 0;
357 this.parent = parent;
358 if (parent != null) {
359 this.root = parent.root;
360 phase = parent.register();
361 }
362 else
363 this.root = this;
364 this.state = trippedStateFor(phase, parties);
365 }
366
367 /**
368 * Adds a new unarrived party to this phaser.
369 * @return the current barrier phase number upon registration
370 * @throws IllegalStateException if attempting to register more
371 * than the maximum supported number of parties.
372 */
373 public int register() {
374 return doRegister(1);
375 }
376
377 /**
378 * Adds the given number of new unarrived parties to this phaser.
379 * @param parties the number of parties required to trip barrier.
380 * @return the current barrier phase number upon registration
381 * @throws IllegalStateException if attempting to register more
382 * than the maximum supported number of parties.
383 */
384 public int bulkRegister(int parties) {
385 if (parties < 0)
386 throw new IllegalArgumentException();
387 if (parties == 0)
388 return getPhase();
389 return doRegister(parties);
390 }
391
392 /**
393 * Shared code for register, bulkRegister
394 */
395 private int doRegister(int registrations) {
396 int phase;
397 for (;;) {
398 long s = getReconciledState();
399 phase = phaseOf(s);
400 int unarrived = unarrivedOf(s) + registrations;
401 int parties = partiesOf(s) + registrations;
402 if (phase < 0)
403 break;
404 if (parties > ushortMask || unarrived > ushortMask)
405 throw new IllegalStateException(badBounds(parties, unarrived));
406 if (phase == phaseOf(root.state) &&
407 casState(s, stateFor(phase, parties, unarrived)))
408 break;
409 }
410 return phase;
411 }
412
413 /**
414 * Arrives at the barrier, but does not wait for others. (You can
415 * in turn wait for others via {@link #awaitAdvance}).
416 *
417 * @return the barrier phase number upon entry to this method, or a
418 * negative value if terminated;
419 * @throws IllegalStateException if not terminated and the number
420 * of unarrived parties would become negative.
421 */
422 public int arrive() {
423 int phase;
424 for (;;) {
425 long s = state;
426 phase = phaseOf(s);
427 if (phase < 0)
428 break;
429 int parties = partiesOf(s);
430 int unarrived = unarrivedOf(s) - 1;
431 if (unarrived > 0) { // Not the last arrival
432 if (casState(s, s - 1)) // s-1 adds one arrival
433 break;
434 }
435 else if (unarrived == 0) { // the last arrival
436 Phaser par = parent;
437 if (par == null) { // directly trip
438 if (casState
439 (s,
440 trippedStateFor(onAdvance(phase, parties)? -1 :
441 ((phase + 1) & phaseMask), parties))) {
442 releaseWaiters(phase);
443 break;
444 }
445 }
446 else { // cascade to parent
447 if (casState(s, s - 1)) { // zeroes unarrived
448 par.arrive();
449 reconcileState();
450 break;
451 }
452 }
453 }
454 else if (phase != phaseOf(root.state)) // or if unreconciled
455 reconcileState();
456 else
457 throw new IllegalStateException(badBounds(parties, unarrived));
458 }
459 return phase;
460 }
461
462 /**
463 * Arrives at the barrier, and deregisters from it, without
464 * waiting for others. Deregistration reduces number of parties
465 * required to trip the barrier in future phases. If this phaser
466 * has a parent, and deregistration causes this phaser to have
467 * zero parties, this phaser is also deregistered from its parent.
468 *
469 * @return the current barrier phase number upon entry to
470 * this method, or a negative value if terminated;
471 * @throws IllegalStateException if not terminated and the number
472 * of registered or unarrived parties would become negative.
473 */
474 public int arriveAndDeregister() {
475 // similar code to arrive, but too different to merge
476 Phaser par = parent;
477 int phase;
478 for (;;) {
479 long s = state;
480 phase = phaseOf(s);
481 if (phase < 0)
482 break;
483 int parties = partiesOf(s) - 1;
484 int unarrived = unarrivedOf(s) - 1;
485 if (parties >= 0) {
486 if (unarrived > 0 || (unarrived == 0 && par != null)) {
487 if (casState
488 (s,
489 stateFor(phase, parties, unarrived))) {
490 if (unarrived == 0) {
491 par.arriveAndDeregister();
492 reconcileState();
493 }
494 break;
495 }
496 continue;
497 }
498 if (unarrived == 0) {
499 if (casState
500 (s,
501 trippedStateFor(onAdvance(phase, parties)? -1 :
502 ((phase + 1) & phaseMask), parties))) {
503 releaseWaiters(phase);
504 break;
505 }
506 continue;
507 }
508 if (par != null && phase != phaseOf(root.state)) {
509 reconcileState();
510 continue;
511 }
512 }
513 throw new IllegalStateException(badBounds(parties, unarrived));
514 }
515 return phase;
516 }
517
518 /**
519 * Arrives at the barrier and awaits others. Equivalent in effect
520 * to {@code awaitAdvance(arrive())}. If you instead need to
521 * await with interruption of timeout, and/or deregister upon
522 * arrival, you can arrange them using analogous constructions.
523 * @return the phase on entry to this method
524 * @throws IllegalStateException if not terminated and the number
525 * of unarrived parties would become negative.
526 */
527 public int arriveAndAwaitAdvance() {
528 return awaitAdvance(arrive());
529 }
530
531 /**
532 * Awaits the phase of the barrier to advance from the given
533 * value, or returns immediately if argument is negative or this
534 * barrier is terminated.
535 * @param phase the phase on entry to this method
536 * @return the phase on exit from this method
537 */
538 public int awaitAdvance(int phase) {
539 if (phase < 0)
540 return phase;
541 long s = getReconciledState();
542 int p = phaseOf(s);
543 if (p != phase)
544 return p;
545 if (unarrivedOf(s) == 0 && parent != null)
546 parent.awaitAdvance(phase);
547 // Fall here even if parent waited, to reconcile and help release
548 return untimedWait(phase);
549 }
550
551 /**
552 * Awaits the phase of the barrier to advance from the given
553 * value, or returns immediately if argument is negative or this
554 * barrier is terminated, or throws InterruptedException if
555 * interrupted while waiting.
556 * @param phase the phase on entry to this method
557 * @return the phase on exit from this method
558 * @throws InterruptedException if thread interrupted while waiting
559 */
560 public int awaitAdvanceInterruptibly(int phase)
561 throws InterruptedException {
562 if (phase < 0)
563 return phase;
564 long s = getReconciledState();
565 int p = phaseOf(s);
566 if (p != phase)
567 return p;
568 if (unarrivedOf(s) == 0 && parent != null)
569 parent.awaitAdvanceInterruptibly(phase);
570 return interruptibleWait(phase);
571 }
572
573 /**
574 * Awaits the phase of the barrier to advance from the given value
575 * or the given timeout elapses, or returns immediately if
576 * argument is negative or this barrier is terminated.
577 * @param phase the phase on entry to this method
578 * @return the phase on exit from this method
579 * @throws InterruptedException if thread interrupted while waiting
580 * @throws TimeoutException if timed out while waiting
581 */
582 public int awaitAdvanceInterruptibly(int phase, long timeout, TimeUnit unit)
583 throws InterruptedException, TimeoutException {
584 if (phase < 0)
585 return phase;
586 long s = getReconciledState();
587 int p = phaseOf(s);
588 if (p != phase)
589 return p;
590 if (unarrivedOf(s) == 0 && parent != null)
591 parent.awaitAdvanceInterruptibly(phase, timeout, unit);
592 return timedWait(phase, unit.toNanos(timeout));
593 }
594
595 /**
596 * Forces this barrier to enter termination state. Counts of
597 * arrived and registered parties are unaffected. If this phaser
598 * has a parent, it too is terminated. This method may be useful
599 * for coordinating recovery after one or more tasks encounter
600 * unexpected exceptions.
601 */
602 public void forceTermination() {
603 for (;;) {
604 long s = getReconciledState();
605 int phase = phaseOf(s);
606 int parties = partiesOf(s);
607 int unarrived = unarrivedOf(s);
608 if (phase < 0 ||
609 casState(s, stateFor(-1, parties, unarrived))) {
610 releaseWaiters(0);
611 releaseWaiters(1);
612 if (parent != null)
613 parent.forceTermination();
614 return;
615 }
616 }
617 }
618
619 /**
620 * Returns the current phase number. The maximum phase number is
621 * {@code Integer.MAX_VALUE}, after which it restarts at
622 * zero. Upon termination, the phase number is negative.
623 * @return the phase number, or a negative value if terminated
624 */
625 public final int getPhase() {
626 return phaseOf(getReconciledState());
627 }
628
629 /**
630 * Returns {@code true} if the current phase number equals the given phase.
631 * @param phase the phase
632 * @return {@code true} if the current phase number equals the given phase
633 */
634 public final boolean hasPhase(int phase) {
635 return phaseOf(getReconciledState()) == phase;
636 }
637
638 /**
639 * Returns the number of parties registered at this barrier.
640 * @return the number of parties
641 */
642 public int getRegisteredParties() {
643 return partiesOf(state);
644 }
645
646 /**
647 * Returns the number of parties that have arrived at the current
648 * phase of this barrier.
649 * @return the number of arrived parties
650 */
651 public int getArrivedParties() {
652 return arrivedOf(state);
653 }
654
655 /**
656 * Returns the number of registered parties that have not yet
657 * arrived at the current phase of this barrier.
658 * @return the number of unarrived parties
659 */
660 public int getUnarrivedParties() {
661 return unarrivedOf(state);
662 }
663
664 /**
665 * Returns the parent of this phaser, or null if none.
666 * @return the parent of this phaser, or null if none
667 */
668 public Phaser getParent() {
669 return parent;
670 }
671
672 /**
673 * Returns the root ancestor of this phaser, which is the same as
674 * this phaser if it has no parent.
675 * @return the root ancestor of this phaser
676 */
677 public Phaser getRoot() {
678 return root;
679 }
680
681 /**
682 * Returns {@code true} if this barrier has been terminated.
683 * @return {@code true} if this barrier has been terminated
684 */
685 public boolean isTerminated() {
686 return getPhase() < 0;
687 }
688
689 /**
690 * Overridable method to perform an action upon phase advance, and
691 * to control termination. This method is invoked whenever the
692 * barrier is tripped (and thus all other waiting parties are
693 * dormant). If it returns true, then, rather than advance the
694 * phase number, this barrier will be set to a final termination
695 * state, and subsequent calls to {@code isTerminated} will
696 * return true.
697 *
698 * <p> The default version returns true when the number of
699 * registered parties is zero. Normally, overrides that arrange
700 * termination for other reasons should also preserve this
701 * property.
702 *
703 * <p> You may override this method to perform an action with side
704 * effects visible to participating tasks, but it is in general
705 * only sensible to do so in designs where all parties register
706 * before any arrive, and all {@code awaitAdvance} at each phase.
707 * Otherwise, you cannot ensure lack of interference. In
708 * particular, this method may be invoked more than once per
709 * transition if other parties successfully register while the
710 * invocation of this method is in progress, thus postponing the
711 * transition until those parties also arrive, re-triggering this
712 * method.
713 *
714 * @param phase the phase number on entering the barrier
715 * @param registeredParties the current number of registered parties
716 * @return {@code true} if this barrier should terminate
717 */
718 protected boolean onAdvance(int phase, int registeredParties) {
719 return registeredParties <= 0;
720 }
721
722 /**
723 * Returns a string identifying this phaser, as well as its
724 * state. The state, in brackets, includes the String {@code
725 * "phase = "} followed by the phase number, {@code "parties = "}
726 * followed by the number of registered parties, and {@code
727 * "arrived = "} followed by the number of arrived parties.
728 *
729 * @return a string identifying this barrier, as well as its state
730 */
731 public String toString() {
732 long s = getReconciledState();
733 return super.toString() +
734 "[phase = " + phaseOf(s) +
735 " parties = " + partiesOf(s) +
736 " arrived = " + arrivedOf(s) + "]";
737 }
738
739 // methods for waiting
740
741 /**
742 * Wait nodes for Treiber stack representing wait queue
743 */
744 static final class QNode implements ForkJoinPool.ManagedBlocker {
745 final Phaser phaser;
746 final int phase;
747 final long startTime;
748 final long nanos;
749 final boolean timed;
750 final boolean interruptible;
751 volatile boolean wasInterrupted = false;
752 volatile Thread thread; // nulled to cancel wait
753 QNode next;
754 QNode(Phaser phaser, int phase, boolean interruptible,
755 boolean timed, long startTime, long nanos) {
756 this.phaser = phaser;
757 this.phase = phase;
758 this.timed = timed;
759 this.interruptible = interruptible;
760 this.startTime = startTime;
761 this.nanos = nanos;
762 thread = Thread.currentThread();
763 }
764 public boolean isReleasable() {
765 return (thread == null ||
766 phaser.getPhase() != phase ||
767 (interruptible && wasInterrupted) ||
768 (timed && (nanos - (System.nanoTime() - startTime)) <= 0));
769 }
770 public boolean block() {
771 if (Thread.interrupted()) {
772 wasInterrupted = true;
773 if (interruptible)
774 return true;
775 }
776 if (!timed)
777 LockSupport.park(this);
778 else {
779 long waitTime = nanos - (System.nanoTime() - startTime);
780 if (waitTime <= 0)
781 return true;
782 LockSupport.parkNanos(this, waitTime);
783 }
784 return isReleasable();
785 }
786 void signal() {
787 Thread t = thread;
788 if (t != null) {
789 thread = null;
790 LockSupport.unpark(t);
791 }
792 }
793 boolean doWait() {
794 if (thread != null) {
795 try {
796 ForkJoinPool.managedBlock(this, false);
797 } catch (InterruptedException ie) {
798 }
799 }
800 return wasInterrupted;
801 }
802
803 }
804
805 /**
806 * Removes and signals waiting threads from wait queue
807 */
808 private void releaseWaiters(int phase) {
809 AtomicReference<QNode> head = queueFor(phase);
810 QNode q;
811 while ((q = head.get()) != null) {
812 if (head.compareAndSet(q, q.next))
813 q.signal();
814 }
815 }
816
817 /**
818 * Tries to enqueue given node in the appropriate wait queue
819 * @return true if successful
820 */
821 private boolean tryEnqueue(QNode node) {
822 AtomicReference<QNode> head = queueFor(node.phase);
823 return head.compareAndSet(node.next = head.get(), node);
824 }
825
826 /**
827 * Enqueues node and waits unless aborted or signalled.
828 * @return current phase
829 */
830 private int untimedWait(int phase) {
831 QNode node = null;
832 boolean queued = false;
833 boolean interrupted = false;
834 int p;
835 while ((p = getPhase()) == phase) {
836 if (Thread.interrupted())
837 interrupted = true;
838 else if (node == null)
839 node = new QNode(this, phase, false, false, 0, 0);
840 else if (!queued)
841 queued = tryEnqueue(node);
842 else
843 interrupted = node.doWait();
844 }
845 if (node != null)
846 node.thread = null;
847 releaseWaiters(phase);
848 if (interrupted)
849 Thread.currentThread().interrupt();
850 return p;
851 }
852
853 /**
854 * Interruptible version
855 * @return current phase
856 */
857 private int interruptibleWait(int phase) throws InterruptedException {
858 QNode node = null;
859 boolean queued = false;
860 boolean interrupted = false;
861 int p;
862 while ((p = getPhase()) == phase && !interrupted) {
863 if (Thread.interrupted())
864 interrupted = true;
865 else if (node == null)
866 node = new QNode(this, phase, true, false, 0, 0);
867 else if (!queued)
868 queued = tryEnqueue(node);
869 else
870 interrupted = node.doWait();
871 }
872 if (node != null)
873 node.thread = null;
874 if (p != phase || (p = getPhase()) != phase)
875 releaseWaiters(phase);
876 if (interrupted)
877 throw new InterruptedException();
878 return p;
879 }
880
881 /**
882 * Timeout version.
883 * @return current phase
884 */
885 private int timedWait(int phase, long nanos)
886 throws InterruptedException, TimeoutException {
887 long startTime = System.nanoTime();
888 QNode node = null;
889 boolean queued = false;
890 boolean interrupted = false;
891 int p;
892 while ((p = getPhase()) == phase && !interrupted) {
893 if (Thread.interrupted())
894 interrupted = true;
895 else if (nanos - (System.nanoTime() - startTime) <= 0)
896 break;
897 else if (node == null)
898 node = new QNode(this, phase, true, true, startTime, nanos);
899 else if (!queued)
900 queued = tryEnqueue(node);
901 else
902 interrupted = node.doWait();
903 }
904 if (node != null)
905 node.thread = null;
906 if (p != phase || (p = getPhase()) != phase)
907 releaseWaiters(phase);
908 if (interrupted)
909 throw new InterruptedException();
910 if (p == phase)
911 throw new TimeoutException();
912 return p;
913 }
914
915 // Temporary Unsafe mechanics for preliminary release
916 private static Unsafe getUnsafe() throws Throwable {
917 try {
918 return Unsafe.getUnsafe();
919 } catch (SecurityException se) {
920 try {
921 return java.security.AccessController.doPrivileged
922 (new java.security.PrivilegedExceptionAction<Unsafe>() {
923 public Unsafe run() throws Exception {
924 return getUnsafePrivileged();
925 }});
926 } catch (java.security.PrivilegedActionException e) {
927 throw e.getCause();
928 }
929 }
930 }
931
932 private static Unsafe getUnsafePrivileged()
933 throws NoSuchFieldException, IllegalAccessException {
934 Field f = Unsafe.class.getDeclaredField("theUnsafe");
935 f.setAccessible(true);
936 return (Unsafe) f.get(null);
937 }
938
939 private static long fieldOffset(String fieldName)
940 throws NoSuchFieldException {
941 return _unsafe.objectFieldOffset
942 (Phaser.class.getDeclaredField(fieldName));
943 }
944
945 static final Unsafe _unsafe;
946 static final long stateOffset;
947
948 static {
949 try {
950 _unsafe = getUnsafe();
951 stateOffset = fieldOffset("state");
952 } catch (Throwable e) {
953 throw new RuntimeException("Could not initialize intrinsics", e);
954 }
955 }
956
957 final boolean casState(long cmp, long val) {
958 return _unsafe.compareAndSwapLong(this, stateOffset, cmp, val);
959 }
960 }