ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/Phaser.java
Revision: 1.13
Committed: Mon Jul 20 22:40:09 2009 UTC (14 years, 9 months ago) by jsr166
Branch: MAIN
Changes since 1.12: +49 -53 lines
Log Message:
<pre> => <pre> @code

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/licenses/publicdomain
5 */
6
7 package jsr166y;
8
9 import java.util.concurrent.*;
10 import java.util.concurrent.atomic.*;
11 import java.util.concurrent.locks.LockSupport;
12 import sun.misc.Unsafe;
13 import java.lang.reflect.*;
14
15 /**
16 * A reusable synchronization barrier, similar in functionality to a
17 * {@link java.util.concurrent.CyclicBarrier CyclicBarrier} and
18 * {@link java.util.concurrent.CountDownLatch CountDownLatch}
19 * but supporting more flexible usage.
20 *
21 * <ul>
22 *
23 * <li> The number of parties synchronizing on a phaser may vary over
24 * time. A task may register to be a party at any time, and may
25 * deregister upon arriving at the barrier. As is the case with most
26 * basic synchronization constructs, registration and deregistration
27 * affect only internal counts; they do not establish any further
28 * internal bookkeeping, so tasks cannot query whether they are
29 * registered. (However, you can introduce such bookkeeping by
30 * subclassing this class.)
31 *
32 * <li> Each generation has an associated phase value, starting at
33 * zero, and advancing when all parties reach the barrier (wrapping
34 * around to zero after reaching {@code Integer.MAX_VALUE}).
35 *
36 * <li> Like a CyclicBarrier, a Phaser may be repeatedly awaited.
37 * Method {@code arriveAndAwaitAdvance} has effect analogous to
38 * {@code CyclicBarrier.await}. However, Phasers separate two
39 * aspects of coordination, that may also be invoked independently:
40 *
41 * <ul>
42 *
43 * <li> Arriving at a barrier. Methods {@code arrive} and
44 * {@code arriveAndDeregister} do not block, but return
45 * the phase value current upon entry to the method.
46 *
47 * <li> Awaiting others. Method {@code awaitAdvance} requires an
48 * argument indicating the entry phase, and returns when the
49 * barrier advances to a new phase.
50 * </ul>
51 *
52 *
53 * <li> Barrier actions, performed by the task triggering a phase
54 * advance while others may be waiting, are arranged by overriding
55 * method {@code onAdvance}, that also controls termination.
56 * Overriding this method may be used to similar but more flexible
57 * effect as providing a barrier action to a CyclicBarrier.
58 *
59 * <li> Phasers may enter a <em>termination</em> state in which all
60 * actions immediately return without updating phaser state or waiting
61 * for advance, and indicating (via a negative phase value) that
62 * execution is complete. Termination is triggered by executing the
63 * overridable {@code onAdvance} method that is invoked each time the
64 * barrier is about to be tripped. When a Phaser is controlling an
65 * action with a fixed number of iterations, it is often convenient to
66 * override this method to cause termination when the current phase
67 * number reaches a threshold. Method {@code forceTermination} is also
68 * available to abruptly release waiting threads and allow them to
69 * terminate.
70 *
71 * <li> Phasers may be tiered to reduce contention. Phasers with large
72 * numbers of parties that would otherwise experience heavy
73 * synchronization contention costs may instead be arranged in trees.
74 * This will typically greatly increase throughput even though it
75 * incurs somewhat greater per-operation overhead.
76 *
77 * <li> By default, {@code awaitAdvance} continues to wait even if
78 * the waiting thread is interrupted. And unlike the case in
79 * CyclicBarriers, exceptions encountered while tasks wait
80 * interruptibly or with timeout do not change the state of the
81 * barrier. If necessary, you can perform any associated recovery
82 * within handlers of those exceptions, often after invoking
83 * {@code forceTermination}.
84 *
85 * <li>Phasers ensure lack of starvation when used by ForkJoinTasks.
86 *
87 * </ul>
88 *
89 * <p><b>Sample usages:</b>
90 *
91 * <p>A Phaser may be used instead of a {@code CountDownLatch} to control
92 * a one-shot action serving a variable number of parties. The typical
93 * idiom is for the method setting this up to first register, then
94 * start the actions, then deregister, as in:
95 *
96 * <pre> {@code
97 * void runTasks(List<Runnable> list) {
98 * final Phaser phaser = new Phaser(1); // "1" to register self
99 * for (Runnable r : list) {
100 * phaser.register();
101 * new Thread() {
102 * public void run() {
103 * phaser.arriveAndAwaitAdvance(); // await all creation
104 * r.run();
105 * phaser.arriveAndDeregister(); // signal completion
106 * }
107 * }.start();
108 * }
109 *
110 * doSomethingOnBehalfOfWorkers();
111 * phaser.arrive(); // allow threads to start
112 * int p = phaser.arriveAndDeregister(); // deregister self ...
113 * p = phaser.awaitAdvance(p); // ... and await arrival
114 * otherActions(); // do other things while tasks execute
115 * phaser.awaitAdvance(p); // await final completion
116 * }}</pre>
117 *
118 * <p>One way to cause a set of threads to repeatedly perform actions
119 * for a given number of iterations is to override {@code onAdvance}:
120 *
121 * <pre> {@code
122 * void startTasks(List<Runnable> list, final int iterations) {
123 * final Phaser phaser = new Phaser() {
124 * public boolean onAdvance(int phase, int registeredParties) {
125 * return phase >= iterations || registeredParties == 0;
126 * }
127 * };
128 * phaser.register();
129 * for (Runnable r : list) {
130 * phaser.register();
131 * new Thread() {
132 * public void run() {
133 * do {
134 * r.run();
135 * phaser.arriveAndAwaitAdvance();
136 * } while(!phaser.isTerminated();
137 * }
138 * }.start();
139 * }
140 * phaser.arriveAndDeregister(); // deregister self, don't wait
141 * }}</pre>
142 *
143 * <p> To create a set of tasks using a tree of Phasers,
144 * you could use code of the following form, assuming a
145 * Task class with a constructor accepting a Phaser that
146 * it registers for upon construction:
147 * <pre> {@code
148 * void build(Task[] actions, int lo, int hi, Phaser b) {
149 * int step = (hi - lo) / TASKS_PER_PHASER;
150 * if (step > 1) {
151 * int i = lo;
152 * while (i < hi) {
153 * int r = Math.min(i + step, hi);
154 * build(actions, i, r, new Phaser(b));
155 * i = r;
156 * }
157 * } else {
158 * for (int i = lo; i < hi; ++i)
159 * actions[i] = new Task(b);
160 * // assumes new Task(b) performs b.register()
161 * }
162 * }
163 * // .. initially called, for n tasks via
164 * build(new Task[n], 0, n, new Phaser());}</pre>
165 *
166 * The best value of {@code TASKS_PER_PHASER} depends mainly on
167 * expected barrier synchronization rates. A value as low as four may
168 * be appropriate for extremely small per-barrier task bodies (thus
169 * high rates), or up to hundreds for extremely large ones.
170 *
171 * </pre>
172 *
173 * <p><b>Implementation notes</b>: This implementation restricts the
174 * maximum number of parties to 65535. Attempts to register additional
175 * parties result in IllegalStateExceptions. However, you can and
176 * should create tiered phasers to accommodate arbitrarily large sets
177 * of participants.
178 */
179 public class Phaser {
180 /*
181 * This class implements an extension of X10 "clocks". Thanks to
182 * Vijay Saraswat for the idea, and to Vivek Sarkar for
183 * enhancements to extend functionality.
184 */
185
186 /**
187 * Barrier state representation. Conceptually, a barrier contains
188 * four values:
189 *
190 * * parties -- the number of parties to wait (16 bits)
191 * * unarrived -- the number of parties yet to hit barrier (16 bits)
192 * * phase -- the generation of the barrier (31 bits)
193 * * terminated -- set if barrier is terminated (1 bit)
194 *
195 * However, to efficiently maintain atomicity, these values are
196 * packed into a single (atomic) long. Termination uses the sign
197 * bit of 32 bit representation of phase, so phase is set to -1 on
198 * termination. Good performance relies on keeping state decoding
199 * and encoding simple, and keeping race windows short.
200 *
201 * Note: there are some cheats in arrive() that rely on unarrived
202 * count being lowest 16 bits.
203 */
204 private volatile long state;
205
206 private static final int ushortBits = 16;
207 private static final int ushortMask = 0xffff;
208 private static final int phaseMask = 0x7fffffff;
209
210 private static int unarrivedOf(long s) {
211 return (int)(s & ushortMask);
212 }
213
214 private static int partiesOf(long s) {
215 return ((int)s) >>> 16;
216 }
217
218 private static int phaseOf(long s) {
219 return (int)(s >>> 32);
220 }
221
222 private static int arrivedOf(long s) {
223 return partiesOf(s) - unarrivedOf(s);
224 }
225
226 private static long stateFor(int phase, int parties, int unarrived) {
227 return ((((long)phase) << 32) | (((long)parties) << 16) |
228 (long)unarrived);
229 }
230
231 private static long trippedStateFor(int phase, int parties) {
232 long lp = (long)parties;
233 return (((long)phase) << 32) | (lp << 16) | lp;
234 }
235
236 /**
237 * Returns message string for bad bounds exceptions
238 */
239 private static String badBounds(int parties, int unarrived) {
240 return ("Attempt to set " + unarrived +
241 " unarrived of " + parties + " parties");
242 }
243
244 /**
245 * The parent of this phaser, or null if none
246 */
247 private final Phaser parent;
248
249 /**
250 * The root of Phaser tree. Equals this if not in a tree. Used to
251 * support faster state push-down.
252 */
253 private final Phaser root;
254
255 // Wait queues
256
257 /**
258 * Heads of Treiber stacks for waiting threads. To eliminate
259 * contention while releasing some threads while adding others, we
260 * use two of them, alternating across even and odd phases.
261 */
262 private final AtomicReference<QNode> evenQ = new AtomicReference<QNode>();
263 private final AtomicReference<QNode> oddQ = new AtomicReference<QNode>();
264
265 private AtomicReference<QNode> queueFor(int phase) {
266 return (phase & 1) == 0? evenQ : oddQ;
267 }
268
269 /**
270 * Returns current state, first resolving lagged propagation from
271 * root if necessary.
272 */
273 private long getReconciledState() {
274 return parent == null? state : reconcileState();
275 }
276
277 /**
278 * Recursively resolves state.
279 */
280 private long reconcileState() {
281 Phaser p = parent;
282 long s = state;
283 if (p != null) {
284 while (unarrivedOf(s) == 0 && phaseOf(s) != phaseOf(root.state)) {
285 long parentState = p.getReconciledState();
286 int parentPhase = phaseOf(parentState);
287 int phase = phaseOf(s = state);
288 if (phase != parentPhase) {
289 long next = trippedStateFor(parentPhase, partiesOf(s));
290 if (casState(s, next)) {
291 releaseWaiters(phase);
292 s = next;
293 }
294 }
295 }
296 }
297 return s;
298 }
299
300 /**
301 * Creates a new Phaser without any initially registered parties,
302 * initial phase number 0, and no parent. Any thread using this
303 * Phaser will need to first register for it.
304 */
305 public Phaser() {
306 this(null);
307 }
308
309 /**
310 * Creates a new Phaser with the given numbers of registered
311 * unarrived parties, initial phase number 0, and no parent.
312 * @param parties the number of parties required to trip barrier.
313 * @throws IllegalArgumentException if parties less than zero
314 * or greater than the maximum number of parties supported.
315 */
316 public Phaser(int parties) {
317 this(null, parties);
318 }
319
320 /**
321 * Creates a new Phaser with the given parent, without any
322 * initially registered parties. If parent is non-null this phaser
323 * is registered with the parent and its initial phase number is
324 * the same as that of parent phaser.
325 * @param parent the parent phaser.
326 */
327 public Phaser(Phaser parent) {
328 int phase = 0;
329 this.parent = parent;
330 if (parent != null) {
331 this.root = parent.root;
332 phase = parent.register();
333 }
334 else
335 this.root = this;
336 this.state = trippedStateFor(phase, 0);
337 }
338
339 /**
340 * Creates a new Phaser with the given parent and numbers of
341 * registered unarrived parties. If parent is non-null this phaser
342 * is registered with the parent and its initial phase number is
343 * the same as that of parent phaser.
344 * @param parent the parent phaser.
345 * @param parties the number of parties required to trip barrier.
346 * @throws IllegalArgumentException if parties less than zero
347 * or greater than the maximum number of parties supported.
348 */
349 public Phaser(Phaser parent, int parties) {
350 if (parties < 0 || parties > ushortMask)
351 throw new IllegalArgumentException("Illegal number of parties");
352 int phase = 0;
353 this.parent = parent;
354 if (parent != null) {
355 this.root = parent.root;
356 phase = parent.register();
357 }
358 else
359 this.root = this;
360 this.state = trippedStateFor(phase, parties);
361 }
362
363 /**
364 * Adds a new unarrived party to this phaser.
365 * @return the current barrier phase number upon registration
366 * @throws IllegalStateException if attempting to register more
367 * than the maximum supported number of parties.
368 */
369 public int register() {
370 return doRegister(1);
371 }
372
373 /**
374 * Adds the given number of new unarrived parties to this phaser.
375 * @param parties the number of parties required to trip barrier.
376 * @return the current barrier phase number upon registration
377 * @throws IllegalStateException if attempting to register more
378 * than the maximum supported number of parties.
379 */
380 public int bulkRegister(int parties) {
381 if (parties < 0)
382 throw new IllegalArgumentException();
383 if (parties == 0)
384 return getPhase();
385 return doRegister(parties);
386 }
387
388 /**
389 * Shared code for register, bulkRegister
390 */
391 private int doRegister(int registrations) {
392 int phase;
393 for (;;) {
394 long s = getReconciledState();
395 phase = phaseOf(s);
396 int unarrived = unarrivedOf(s) + registrations;
397 int parties = partiesOf(s) + registrations;
398 if (phase < 0)
399 break;
400 if (parties > ushortMask || unarrived > ushortMask)
401 throw new IllegalStateException(badBounds(parties, unarrived));
402 if (phase == phaseOf(root.state) &&
403 casState(s, stateFor(phase, parties, unarrived)))
404 break;
405 }
406 return phase;
407 }
408
409 /**
410 * Arrives at the barrier, but does not wait for others. (You can
411 * in turn wait for others via {@link #awaitAdvance}).
412 *
413 * @return the barrier phase number upon entry to this method, or a
414 * negative value if terminated;
415 * @throws IllegalStateException if not terminated and the number
416 * of unarrived parties would become negative.
417 */
418 public int arrive() {
419 int phase;
420 for (;;) {
421 long s = state;
422 phase = phaseOf(s);
423 if (phase < 0)
424 break;
425 int parties = partiesOf(s);
426 int unarrived = unarrivedOf(s) - 1;
427 if (unarrived > 0) { // Not the last arrival
428 if (casState(s, s - 1)) // s-1 adds one arrival
429 break;
430 }
431 else if (unarrived == 0) { // the last arrival
432 Phaser par = parent;
433 if (par == null) { // directly trip
434 if (casState
435 (s,
436 trippedStateFor(onAdvance(phase, parties)? -1 :
437 ((phase + 1) & phaseMask), parties))) {
438 releaseWaiters(phase);
439 break;
440 }
441 }
442 else { // cascade to parent
443 if (casState(s, s - 1)) { // zeroes unarrived
444 par.arrive();
445 reconcileState();
446 break;
447 }
448 }
449 }
450 else if (phase != phaseOf(root.state)) // or if unreconciled
451 reconcileState();
452 else
453 throw new IllegalStateException(badBounds(parties, unarrived));
454 }
455 return phase;
456 }
457
458 /**
459 * Arrives at the barrier, and deregisters from it, without
460 * waiting for others. Deregistration reduces number of parties
461 * required to trip the barrier in future phases. If this phaser
462 * has a parent, and deregistration causes this phaser to have
463 * zero parties, this phaser is also deregistered from its parent.
464 *
465 * @return the current barrier phase number upon entry to
466 * this method, or a negative value if terminated;
467 * @throws IllegalStateException if not terminated and the number
468 * of registered or unarrived parties would become negative.
469 */
470 public int arriveAndDeregister() {
471 // similar code to arrive, but too different to merge
472 Phaser par = parent;
473 int phase;
474 for (;;) {
475 long s = state;
476 phase = phaseOf(s);
477 if (phase < 0)
478 break;
479 int parties = partiesOf(s) - 1;
480 int unarrived = unarrivedOf(s) - 1;
481 if (parties >= 0) {
482 if (unarrived > 0 || (unarrived == 0 && par != null)) {
483 if (casState
484 (s,
485 stateFor(phase, parties, unarrived))) {
486 if (unarrived == 0) {
487 par.arriveAndDeregister();
488 reconcileState();
489 }
490 break;
491 }
492 continue;
493 }
494 if (unarrived == 0) {
495 if (casState
496 (s,
497 trippedStateFor(onAdvance(phase, parties)? -1 :
498 ((phase + 1) & phaseMask), parties))) {
499 releaseWaiters(phase);
500 break;
501 }
502 continue;
503 }
504 if (par != null && phase != phaseOf(root.state)) {
505 reconcileState();
506 continue;
507 }
508 }
509 throw new IllegalStateException(badBounds(parties, unarrived));
510 }
511 return phase;
512 }
513
514 /**
515 * Arrives at the barrier and awaits others. Equivalent in effect
516 * to {@code awaitAdvance(arrive())}. If you instead need to
517 * await with interruption of timeout, and/or deregister upon
518 * arrival, you can arrange them using analogous constructions.
519 * @return the phase on entry to this method
520 * @throws IllegalStateException if not terminated and the number
521 * of unarrived parties would become negative.
522 */
523 public int arriveAndAwaitAdvance() {
524 return awaitAdvance(arrive());
525 }
526
527 /**
528 * Awaits the phase of the barrier to advance from the given
529 * value, or returns immediately if argument is negative or this
530 * barrier is terminated.
531 * @param phase the phase on entry to this method
532 * @return the phase on exit from this method
533 */
534 public int awaitAdvance(int phase) {
535 if (phase < 0)
536 return phase;
537 long s = getReconciledState();
538 int p = phaseOf(s);
539 if (p != phase)
540 return p;
541 if (unarrivedOf(s) == 0 && parent != null)
542 parent.awaitAdvance(phase);
543 // Fall here even if parent waited, to reconcile and help release
544 return untimedWait(phase);
545 }
546
547 /**
548 * Awaits the phase of the barrier to advance from the given
549 * value, or returns immediately if argument is negative or this
550 * barrier is terminated, or throws InterruptedException if
551 * interrupted while waiting.
552 * @param phase the phase on entry to this method
553 * @return the phase on exit from this method
554 * @throws InterruptedException if thread interrupted while waiting
555 */
556 public int awaitAdvanceInterruptibly(int phase)
557 throws InterruptedException {
558 if (phase < 0)
559 return phase;
560 long s = getReconciledState();
561 int p = phaseOf(s);
562 if (p != phase)
563 return p;
564 if (unarrivedOf(s) == 0 && parent != null)
565 parent.awaitAdvanceInterruptibly(phase);
566 return interruptibleWait(phase);
567 }
568
569 /**
570 * Awaits the phase of the barrier to advance from the given value
571 * or the given timeout elapses, or returns immediately if
572 * argument is negative or this barrier is terminated.
573 * @param phase the phase on entry to this method
574 * @return the phase on exit from this method
575 * @throws InterruptedException if thread interrupted while waiting
576 * @throws TimeoutException if timed out while waiting
577 */
578 public int awaitAdvanceInterruptibly(int phase, long timeout, TimeUnit unit)
579 throws InterruptedException, TimeoutException {
580 if (phase < 0)
581 return phase;
582 long s = getReconciledState();
583 int p = phaseOf(s);
584 if (p != phase)
585 return p;
586 if (unarrivedOf(s) == 0 && parent != null)
587 parent.awaitAdvanceInterruptibly(phase, timeout, unit);
588 return timedWait(phase, unit.toNanos(timeout));
589 }
590
591 /**
592 * Forces this barrier to enter termination state. Counts of
593 * arrived and registered parties are unaffected. If this phaser
594 * has a parent, it too is terminated. This method may be useful
595 * for coordinating recovery after one or more tasks encounter
596 * unexpected exceptions.
597 */
598 public void forceTermination() {
599 for (;;) {
600 long s = getReconciledState();
601 int phase = phaseOf(s);
602 int parties = partiesOf(s);
603 int unarrived = unarrivedOf(s);
604 if (phase < 0 ||
605 casState(s, stateFor(-1, parties, unarrived))) {
606 releaseWaiters(0);
607 releaseWaiters(1);
608 if (parent != null)
609 parent.forceTermination();
610 return;
611 }
612 }
613 }
614
615 /**
616 * Returns the current phase number. The maximum phase number is
617 * {@code Integer.MAX_VALUE}, after which it restarts at
618 * zero. Upon termination, the phase number is negative.
619 * @return the phase number, or a negative value if terminated
620 */
621 public final int getPhase() {
622 return phaseOf(getReconciledState());
623 }
624
625 /**
626 * Returns {@code true} if the current phase number equals the given phase.
627 * @param phase the phase
628 * @return {@code true} if the current phase number equals the given phase
629 */
630 public final boolean hasPhase(int phase) {
631 return phaseOf(getReconciledState()) == phase;
632 }
633
634 /**
635 * Returns the number of parties registered at this barrier.
636 * @return the number of parties
637 */
638 public int getRegisteredParties() {
639 return partiesOf(state);
640 }
641
642 /**
643 * Returns the number of parties that have arrived at the current
644 * phase of this barrier.
645 * @return the number of arrived parties
646 */
647 public int getArrivedParties() {
648 return arrivedOf(state);
649 }
650
651 /**
652 * Returns the number of registered parties that have not yet
653 * arrived at the current phase of this barrier.
654 * @return the number of unarrived parties
655 */
656 public int getUnarrivedParties() {
657 return unarrivedOf(state);
658 }
659
660 /**
661 * Returns the parent of this phaser, or null if none.
662 * @return the parent of this phaser, or null if none
663 */
664 public Phaser getParent() {
665 return parent;
666 }
667
668 /**
669 * Returns the root ancestor of this phaser, which is the same as
670 * this phaser if it has no parent.
671 * @return the root ancestor of this phaser
672 */
673 public Phaser getRoot() {
674 return root;
675 }
676
677 /**
678 * Returns {@code true} if this barrier has been terminated.
679 * @return {@code true} if this barrier has been terminated
680 */
681 public boolean isTerminated() {
682 return getPhase() < 0;
683 }
684
685 /**
686 * Overridable method to perform an action upon phase advance, and
687 * to control termination. This method is invoked whenever the
688 * barrier is tripped (and thus all other waiting parties are
689 * dormant). If it returns true, then, rather than advance the
690 * phase number, this barrier will be set to a final termination
691 * state, and subsequent calls to {@code isTerminated} will
692 * return true.
693 *
694 * <p> The default version returns true when the number of
695 * registered parties is zero. Normally, overrides that arrange
696 * termination for other reasons should also preserve this
697 * property.
698 *
699 * <p> You may override this method to perform an action with side
700 * effects visible to participating tasks, but it is in general
701 * only sensible to do so in designs where all parties register
702 * before any arrive, and all {@code awaitAdvance} at each phase.
703 * Otherwise, you cannot ensure lack of interference. In
704 * particular, this method may be invoked more than once per
705 * transition if other parties successfully register while the
706 * invocation of this method is in progress, thus postponing the
707 * transition until those parties also arrive, re-triggering this
708 * method.
709 *
710 * @param phase the phase number on entering the barrier
711 * @param registeredParties the current number of registered parties
712 * @return {@code true} if this barrier should terminate
713 */
714 protected boolean onAdvance(int phase, int registeredParties) {
715 return registeredParties <= 0;
716 }
717
718 /**
719 * Returns a string identifying this phaser, as well as its
720 * state. The state, in brackets, includes the String {@code
721 * "phase = "} followed by the phase number, {@code "parties = "}
722 * followed by the number of registered parties, and {@code
723 * "arrived = "} followed by the number of arrived parties.
724 *
725 * @return a string identifying this barrier, as well as its state
726 */
727 public String toString() {
728 long s = getReconciledState();
729 return super.toString() +
730 "[phase = " + phaseOf(s) +
731 " parties = " + partiesOf(s) +
732 " arrived = " + arrivedOf(s) + "]";
733 }
734
735 // methods for waiting
736
737 /**
738 * Wait nodes for Treiber stack representing wait queue
739 */
740 static final class QNode implements ForkJoinPool.ManagedBlocker {
741 final Phaser phaser;
742 final int phase;
743 final long startTime;
744 final long nanos;
745 final boolean timed;
746 final boolean interruptible;
747 volatile boolean wasInterrupted = false;
748 volatile Thread thread; // nulled to cancel wait
749 QNode next;
750 QNode(Phaser phaser, int phase, boolean interruptible,
751 boolean timed, long startTime, long nanos) {
752 this.phaser = phaser;
753 this.phase = phase;
754 this.timed = timed;
755 this.interruptible = interruptible;
756 this.startTime = startTime;
757 this.nanos = nanos;
758 thread = Thread.currentThread();
759 }
760 public boolean isReleasable() {
761 return (thread == null ||
762 phaser.getPhase() != phase ||
763 (interruptible && wasInterrupted) ||
764 (timed && (nanos - (System.nanoTime() - startTime)) <= 0));
765 }
766 public boolean block() {
767 if (Thread.interrupted()) {
768 wasInterrupted = true;
769 if (interruptible)
770 return true;
771 }
772 if (!timed)
773 LockSupport.park(this);
774 else {
775 long waitTime = nanos - (System.nanoTime() - startTime);
776 if (waitTime <= 0)
777 return true;
778 LockSupport.parkNanos(this, waitTime);
779 }
780 return isReleasable();
781 }
782 void signal() {
783 Thread t = thread;
784 if (t != null) {
785 thread = null;
786 LockSupport.unpark(t);
787 }
788 }
789 boolean doWait() {
790 if (thread != null) {
791 try {
792 ForkJoinPool.managedBlock(this, false);
793 } catch (InterruptedException ie) {
794 }
795 }
796 return wasInterrupted;
797 }
798
799 }
800
801 /**
802 * Removes and signals waiting threads from wait queue
803 */
804 private void releaseWaiters(int phase) {
805 AtomicReference<QNode> head = queueFor(phase);
806 QNode q;
807 while ((q = head.get()) != null) {
808 if (head.compareAndSet(q, q.next))
809 q.signal();
810 }
811 }
812
813 /**
814 * Tries to enqueue given node in the appropriate wait queue
815 * @return true if successful
816 */
817 private boolean tryEnqueue(QNode node) {
818 AtomicReference<QNode> head = queueFor(node.phase);
819 return head.compareAndSet(node.next = head.get(), node);
820 }
821
822 /**
823 * Enqueues node and waits unless aborted or signalled.
824 * @return current phase
825 */
826 private int untimedWait(int phase) {
827 QNode node = null;
828 boolean queued = false;
829 boolean interrupted = false;
830 int p;
831 while ((p = getPhase()) == phase) {
832 if (Thread.interrupted())
833 interrupted = true;
834 else if (node == null)
835 node = new QNode(this, phase, false, false, 0, 0);
836 else if (!queued)
837 queued = tryEnqueue(node);
838 else
839 interrupted = node.doWait();
840 }
841 if (node != null)
842 node.thread = null;
843 releaseWaiters(phase);
844 if (interrupted)
845 Thread.currentThread().interrupt();
846 return p;
847 }
848
849 /**
850 * Interruptible version
851 * @return current phase
852 */
853 private int interruptibleWait(int phase) throws InterruptedException {
854 QNode node = null;
855 boolean queued = false;
856 boolean interrupted = false;
857 int p;
858 while ((p = getPhase()) == phase && !interrupted) {
859 if (Thread.interrupted())
860 interrupted = true;
861 else if (node == null)
862 node = new QNode(this, phase, true, false, 0, 0);
863 else if (!queued)
864 queued = tryEnqueue(node);
865 else
866 interrupted = node.doWait();
867 }
868 if (node != null)
869 node.thread = null;
870 if (p != phase || (p = getPhase()) != phase)
871 releaseWaiters(phase);
872 if (interrupted)
873 throw new InterruptedException();
874 return p;
875 }
876
877 /**
878 * Timeout version.
879 * @return current phase
880 */
881 private int timedWait(int phase, long nanos)
882 throws InterruptedException, TimeoutException {
883 long startTime = System.nanoTime();
884 QNode node = null;
885 boolean queued = false;
886 boolean interrupted = false;
887 int p;
888 while ((p = getPhase()) == phase && !interrupted) {
889 if (Thread.interrupted())
890 interrupted = true;
891 else if (nanos - (System.nanoTime() - startTime) <= 0)
892 break;
893 else if (node == null)
894 node = new QNode(this, phase, true, true, startTime, nanos);
895 else if (!queued)
896 queued = tryEnqueue(node);
897 else
898 interrupted = node.doWait();
899 }
900 if (node != null)
901 node.thread = null;
902 if (p != phase || (p = getPhase()) != phase)
903 releaseWaiters(phase);
904 if (interrupted)
905 throw new InterruptedException();
906 if (p == phase)
907 throw new TimeoutException();
908 return p;
909 }
910
911 // Temporary Unsafe mechanics for preliminary release
912 private static Unsafe getUnsafe() throws Throwable {
913 try {
914 return Unsafe.getUnsafe();
915 } catch (SecurityException se) {
916 try {
917 return java.security.AccessController.doPrivileged
918 (new java.security.PrivilegedExceptionAction<Unsafe>() {
919 public Unsafe run() throws Exception {
920 return getUnsafePrivileged();
921 }});
922 } catch (java.security.PrivilegedActionException e) {
923 throw e.getCause();
924 }
925 }
926 }
927
928 private static Unsafe getUnsafePrivileged()
929 throws NoSuchFieldException, IllegalAccessException {
930 Field f = Unsafe.class.getDeclaredField("theUnsafe");
931 f.setAccessible(true);
932 return (Unsafe) f.get(null);
933 }
934
935 private static long fieldOffset(String fieldName)
936 throws NoSuchFieldException {
937 return _unsafe.objectFieldOffset
938 (Phaser.class.getDeclaredField(fieldName));
939 }
940
941 static final Unsafe _unsafe;
942 static final long stateOffset;
943
944 static {
945 try {
946 _unsafe = getUnsafe();
947 stateOffset = fieldOffset("state");
948 } catch (Throwable e) {
949 throw new RuntimeException("Could not initialize intrinsics", e);
950 }
951 }
952
953 final boolean casState(long cmp, long val) {
954 return _unsafe.compareAndSwapLong(this, stateOffset, cmp, val);
955 }
956 }