ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/Phaser.java
Revision: 1.15
Committed: Tue Jul 21 18:11:44 2009 UTC (14 years, 9 months ago) by jsr166
Branch: MAIN
Changes since 1.14: +4 -4 lines
Log Message:
_unsafe => UNSAFE (a constant according to EJ #56)

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/licenses/publicdomain
5 */
6
7 package jsr166y;
8
9 import java.util.concurrent.*;
10 import java.util.concurrent.atomic.*;
11 import java.util.concurrent.locks.LockSupport;
12 import sun.misc.Unsafe;
13 import java.lang.reflect.*;
14
15 /**
16 * A reusable synchronization barrier, similar in functionality to a
17 * {@link java.util.concurrent.CyclicBarrier CyclicBarrier} and
18 * {@link java.util.concurrent.CountDownLatch CountDownLatch}
19 * but supporting more flexible usage.
20 *
21 * <ul>
22 *
23 * <li> The number of parties synchronizing on a phaser may vary over
24 * time. A task may register to be a party at any time, and may
25 * deregister upon arriving at the barrier. As is the case with most
26 * basic synchronization constructs, registration and deregistration
27 * affect only internal counts; they do not establish any further
28 * internal bookkeeping, so tasks cannot query whether they are
29 * registered. (However, you can introduce such bookkeeping by
30 * subclassing this class.)
31 *
32 * <li> Each generation has an associated phase value, starting at
33 * zero, and advancing when all parties reach the barrier (wrapping
34 * around to zero after reaching {@code Integer.MAX_VALUE}).
35 *
36 * <li> Like a CyclicBarrier, a Phaser may be repeatedly awaited.
37 * Method {@code arriveAndAwaitAdvance} has effect analogous to
38 * {@code CyclicBarrier.await}. However, Phasers separate two
39 * aspects of coordination, that may also be invoked independently:
40 *
41 * <ul>
42 *
43 * <li> Arriving at a barrier. Methods {@code arrive} and
44 * {@code arriveAndDeregister} do not block, but return
45 * the phase value current upon entry to the method.
46 *
47 * <li> Awaiting others. Method {@code awaitAdvance} requires an
48 * argument indicating the entry phase, and returns when the
49 * barrier advances to a new phase.
50 * </ul>
51 *
52 *
53 * <li> Barrier actions, performed by the task triggering a phase
54 * advance while others may be waiting, are arranged by overriding
55 * method {@code onAdvance}, that also controls termination.
56 * Overriding this method may be used to similar but more flexible
57 * effect as providing a barrier action to a CyclicBarrier.
58 *
59 * <li> Phasers may enter a <em>termination</em> state in which all
60 * actions immediately return without updating phaser state or waiting
61 * for advance, and indicating (via a negative phase value) that
62 * execution is complete. Termination is triggered by executing the
63 * overridable {@code onAdvance} method that is invoked each time the
64 * barrier is about to be tripped. When a Phaser is controlling an
65 * action with a fixed number of iterations, it is often convenient to
66 * override this method to cause termination when the current phase
67 * number reaches a threshold. Method {@code forceTermination} is also
68 * available to abruptly release waiting threads and allow them to
69 * terminate.
70 *
71 * <li> Phasers may be tiered to reduce contention. Phasers with large
72 * numbers of parties that would otherwise experience heavy
73 * synchronization contention costs may instead be arranged in trees.
74 * This will typically greatly increase throughput even though it
75 * incurs somewhat greater per-operation overhead.
76 *
77 * <li> By default, {@code awaitAdvance} continues to wait even if
78 * the waiting thread is interrupted. And unlike the case in
79 * CyclicBarriers, exceptions encountered while tasks wait
80 * interruptibly or with timeout do not change the state of the
81 * barrier. If necessary, you can perform any associated recovery
82 * within handlers of those exceptions, often after invoking
83 * {@code forceTermination}.
84 *
85 * <li>Phasers ensure lack of starvation when used by ForkJoinTasks.
86 *
87 * </ul>
88 *
89 * <p><b>Sample usages:</b>
90 *
91 * <p>A Phaser may be used instead of a {@code CountDownLatch} to control
92 * a one-shot action serving a variable number of parties. The typical
93 * idiom is for the method setting this up to first register, then
94 * start the actions, then deregister, as in:
95 *
96 * <pre> {@code
97 * void runTasks(List<Runnable> list) {
98 * final Phaser phaser = new Phaser(1); // "1" to register self
99 * for (Runnable r : list) {
100 * phaser.register();
101 * new Thread() {
102 * public void run() {
103 * phaser.arriveAndAwaitAdvance(); // await all creation
104 * r.run();
105 * phaser.arriveAndDeregister(); // signal completion
106 * }
107 * }.start();
108 * }
109 *
110 * doSomethingOnBehalfOfWorkers();
111 * phaser.arrive(); // allow threads to start
112 * int p = phaser.arriveAndDeregister(); // deregister self ...
113 * p = phaser.awaitAdvance(p); // ... and await arrival
114 * otherActions(); // do other things while tasks execute
115 * phaser.awaitAdvance(p); // await final completion
116 * }}</pre>
117 *
118 * <p>One way to cause a set of threads to repeatedly perform actions
119 * for a given number of iterations is to override {@code onAdvance}:
120 *
121 * <pre> {@code
122 * void startTasks(List<Runnable> list, final int iterations) {
123 * final Phaser phaser = new Phaser() {
124 * public boolean onAdvance(int phase, int registeredParties) {
125 * return phase >= iterations || registeredParties == 0;
126 * }
127 * };
128 * phaser.register();
129 * for (Runnable r : list) {
130 * phaser.register();
131 * new Thread() {
132 * public void run() {
133 * do {
134 * r.run();
135 * phaser.arriveAndAwaitAdvance();
136 * } while(!phaser.isTerminated();
137 * }
138 * }.start();
139 * }
140 * phaser.arriveAndDeregister(); // deregister self, don't wait
141 * }}</pre>
142 *
143 * <p> To create a set of tasks using a tree of Phasers,
144 * you could use code of the following form, assuming a
145 * Task class with a constructor accepting a Phaser that
146 * it registers for upon construction:
147 * <pre> {@code
148 * void build(Task[] actions, int lo, int hi, Phaser b) {
149 * int step = (hi - lo) / TASKS_PER_PHASER;
150 * if (step > 1) {
151 * int i = lo;
152 * while (i < hi) {
153 * int r = Math.min(i + step, hi);
154 * build(actions, i, r, new Phaser(b));
155 * i = r;
156 * }
157 * } else {
158 * for (int i = lo; i < hi; ++i)
159 * actions[i] = new Task(b);
160 * // assumes new Task(b) performs b.register()
161 * }
162 * }
163 * // .. initially called, for n tasks via
164 * build(new Task[n], 0, n, new Phaser());}</pre>
165 *
166 * The best value of {@code TASKS_PER_PHASER} depends mainly on
167 * expected barrier synchronization rates. A value as low as four may
168 * be appropriate for extremely small per-barrier task bodies (thus
169 * high rates), or up to hundreds for extremely large ones.
170 *
171 * </pre>
172 *
173 * <p><b>Implementation notes</b>: This implementation restricts the
174 * maximum number of parties to 65535. Attempts to register additional
175 * parties result in IllegalStateExceptions. However, you can and
176 * should create tiered phasers to accommodate arbitrarily large sets
177 * of participants.
178 */
179 public class Phaser {
180 /*
181 * This class implements an extension of X10 "clocks". Thanks to
182 * Vijay Saraswat for the idea, and to Vivek Sarkar for
183 * enhancements to extend functionality.
184 */
185
186 /**
187 * Barrier state representation. Conceptually, a barrier contains
188 * four values:
189 *
190 * * parties -- the number of parties to wait (16 bits)
191 * * unarrived -- the number of parties yet to hit barrier (16 bits)
192 * * phase -- the generation of the barrier (31 bits)
193 * * terminated -- set if barrier is terminated (1 bit)
194 *
195 * However, to efficiently maintain atomicity, these values are
196 * packed into a single (atomic) long. Termination uses the sign
197 * bit of 32 bit representation of phase, so phase is set to -1 on
198 * termination. Good performance relies on keeping state decoding
199 * and encoding simple, and keeping race windows short.
200 *
201 * Note: there are some cheats in arrive() that rely on unarrived
202 * count being lowest 16 bits.
203 */
204 private volatile long state;
205
206 private static final int ushortBits = 16;
207 private static final int ushortMask = 0xffff;
208 private static final int phaseMask = 0x7fffffff;
209
210 private static int unarrivedOf(long s) {
211 return (int)(s & ushortMask);
212 }
213
214 private static int partiesOf(long s) {
215 return ((int)s) >>> 16;
216 }
217
218 private static int phaseOf(long s) {
219 return (int)(s >>> 32);
220 }
221
222 private static int arrivedOf(long s) {
223 return partiesOf(s) - unarrivedOf(s);
224 }
225
226 private static long stateFor(int phase, int parties, int unarrived) {
227 return ((((long)phase) << 32) | (((long)parties) << 16) |
228 (long)unarrived);
229 }
230
231 private static long trippedStateFor(int phase, int parties) {
232 long lp = (long)parties;
233 return (((long)phase) << 32) | (lp << 16) | lp;
234 }
235
236 /**
237 * Returns message string for bad bounds exceptions.
238 */
239 private static String badBounds(int parties, int unarrived) {
240 return ("Attempt to set " + unarrived +
241 " unarrived of " + parties + " parties");
242 }
243
244 /**
245 * The parent of this phaser, or null if none
246 */
247 private final Phaser parent;
248
249 /**
250 * The root of Phaser tree. Equals this if not in a tree. Used to
251 * support faster state push-down.
252 */
253 private final Phaser root;
254
255 // Wait queues
256
257 /**
258 * Heads of Treiber stacks for waiting threads. To eliminate
259 * contention while releasing some threads while adding others, we
260 * use two of them, alternating across even and odd phases.
261 */
262 private final AtomicReference<QNode> evenQ = new AtomicReference<QNode>();
263 private final AtomicReference<QNode> oddQ = new AtomicReference<QNode>();
264
265 private AtomicReference<QNode> queueFor(int phase) {
266 return (phase & 1) == 0? evenQ : oddQ;
267 }
268
269 /**
270 * Returns current state, first resolving lagged propagation from
271 * root if necessary.
272 */
273 private long getReconciledState() {
274 return parent == null? state : reconcileState();
275 }
276
277 /**
278 * Recursively resolves state.
279 */
280 private long reconcileState() {
281 Phaser p = parent;
282 long s = state;
283 if (p != null) {
284 while (unarrivedOf(s) == 0 && phaseOf(s) != phaseOf(root.state)) {
285 long parentState = p.getReconciledState();
286 int parentPhase = phaseOf(parentState);
287 int phase = phaseOf(s = state);
288 if (phase != parentPhase) {
289 long next = trippedStateFor(parentPhase, partiesOf(s));
290 if (casState(s, next)) {
291 releaseWaiters(phase);
292 s = next;
293 }
294 }
295 }
296 }
297 return s;
298 }
299
300 /**
301 * Creates a new Phaser without any initially registered parties,
302 * initial phase number 0, and no parent. Any thread using this
303 * Phaser will need to first register for it.
304 */
305 public Phaser() {
306 this(null);
307 }
308
309 /**
310 * Creates a new Phaser with the given numbers of registered
311 * unarrived parties, initial phase number 0, and no parent.
312 *
313 * @param parties the number of parties required to trip barrier
314 * @throws IllegalArgumentException if parties less than zero
315 * or greater than the maximum number of parties supported
316 */
317 public Phaser(int parties) {
318 this(null, parties);
319 }
320
321 /**
322 * Creates a new Phaser with the given parent, without any
323 * initially registered parties. If parent is non-null this phaser
324 * is registered with the parent and its initial phase number is
325 * the same as that of parent phaser.
326 *
327 * @param parent the parent phaser
328 */
329 public Phaser(Phaser parent) {
330 int phase = 0;
331 this.parent = parent;
332 if (parent != null) {
333 this.root = parent.root;
334 phase = parent.register();
335 }
336 else
337 this.root = this;
338 this.state = trippedStateFor(phase, 0);
339 }
340
341 /**
342 * Creates a new Phaser with the given parent and numbers of
343 * registered unarrived parties. If parent is non-null, this phaser
344 * is registered with the parent and its initial phase number is
345 * the same as that of parent phaser.
346 *
347 * @param parent the parent phaser
348 * @param parties the number of parties required to trip barrier
349 * @throws IllegalArgumentException if parties less than zero
350 * or greater than the maximum number of parties supported
351 */
352 public Phaser(Phaser parent, int parties) {
353 if (parties < 0 || parties > ushortMask)
354 throw new IllegalArgumentException("Illegal number of parties");
355 int phase = 0;
356 this.parent = parent;
357 if (parent != null) {
358 this.root = parent.root;
359 phase = parent.register();
360 }
361 else
362 this.root = this;
363 this.state = trippedStateFor(phase, parties);
364 }
365
366 /**
367 * Adds a new unarrived party to this phaser.
368 *
369 * @return the current barrier phase number upon registration
370 * @throws IllegalStateException if attempting to register more
371 * than the maximum supported number of parties
372 */
373 public int register() {
374 return doRegister(1);
375 }
376
377 /**
378 * Adds the given number of new unarrived parties to this phaser.
379 *
380 * @param parties the number of parties required to trip barrier
381 * @return the current barrier phase number upon registration
382 * @throws IllegalStateException if attempting to register more
383 * than the maximum supported number of parties
384 */
385 public int bulkRegister(int parties) {
386 if (parties < 0)
387 throw new IllegalArgumentException();
388 if (parties == 0)
389 return getPhase();
390 return doRegister(parties);
391 }
392
393 /**
394 * Shared code for register, bulkRegister
395 */
396 private int doRegister(int registrations) {
397 int phase;
398 for (;;) {
399 long s = getReconciledState();
400 phase = phaseOf(s);
401 int unarrived = unarrivedOf(s) + registrations;
402 int parties = partiesOf(s) + registrations;
403 if (phase < 0)
404 break;
405 if (parties > ushortMask || unarrived > ushortMask)
406 throw new IllegalStateException(badBounds(parties, unarrived));
407 if (phase == phaseOf(root.state) &&
408 casState(s, stateFor(phase, parties, unarrived)))
409 break;
410 }
411 return phase;
412 }
413
414 /**
415 * Arrives at the barrier, but does not wait for others. (You can
416 * in turn wait for others via {@link #awaitAdvance}).
417 *
418 * @return the barrier phase number upon entry to this method, or a
419 * negative value if terminated
420 * @throws IllegalStateException if not terminated and the number
421 * of unarrived parties would become negative
422 */
423 public int arrive() {
424 int phase;
425 for (;;) {
426 long s = state;
427 phase = phaseOf(s);
428 if (phase < 0)
429 break;
430 int parties = partiesOf(s);
431 int unarrived = unarrivedOf(s) - 1;
432 if (unarrived > 0) { // Not the last arrival
433 if (casState(s, s - 1)) // s-1 adds one arrival
434 break;
435 }
436 else if (unarrived == 0) { // the last arrival
437 Phaser par = parent;
438 if (par == null) { // directly trip
439 if (casState
440 (s,
441 trippedStateFor(onAdvance(phase, parties)? -1 :
442 ((phase + 1) & phaseMask), parties))) {
443 releaseWaiters(phase);
444 break;
445 }
446 }
447 else { // cascade to parent
448 if (casState(s, s - 1)) { // zeroes unarrived
449 par.arrive();
450 reconcileState();
451 break;
452 }
453 }
454 }
455 else if (phase != phaseOf(root.state)) // or if unreconciled
456 reconcileState();
457 else
458 throw new IllegalStateException(badBounds(parties, unarrived));
459 }
460 return phase;
461 }
462
463 /**
464 * Arrives at the barrier, and deregisters from it, without
465 * waiting for others. Deregistration reduces number of parties
466 * required to trip the barrier in future phases. If this phaser
467 * has a parent, and deregistration causes this phaser to have
468 * zero parties, this phaser is also deregistered from its parent.
469 *
470 * @return the current barrier phase number upon entry to
471 * this method, or a negative value if terminated
472 * @throws IllegalStateException if not terminated and the number
473 * of registered or unarrived parties would become negative
474 */
475 public int arriveAndDeregister() {
476 // similar code to arrive, but too different to merge
477 Phaser par = parent;
478 int phase;
479 for (;;) {
480 long s = state;
481 phase = phaseOf(s);
482 if (phase < 0)
483 break;
484 int parties = partiesOf(s) - 1;
485 int unarrived = unarrivedOf(s) - 1;
486 if (parties >= 0) {
487 if (unarrived > 0 || (unarrived == 0 && par != null)) {
488 if (casState
489 (s,
490 stateFor(phase, parties, unarrived))) {
491 if (unarrived == 0) {
492 par.arriveAndDeregister();
493 reconcileState();
494 }
495 break;
496 }
497 continue;
498 }
499 if (unarrived == 0) {
500 if (casState
501 (s,
502 trippedStateFor(onAdvance(phase, parties)? -1 :
503 ((phase + 1) & phaseMask), parties))) {
504 releaseWaiters(phase);
505 break;
506 }
507 continue;
508 }
509 if (par != null && phase != phaseOf(root.state)) {
510 reconcileState();
511 continue;
512 }
513 }
514 throw new IllegalStateException(badBounds(parties, unarrived));
515 }
516 return phase;
517 }
518
519 /**
520 * Arrives at the barrier and awaits others. Equivalent in effect
521 * to {@code awaitAdvance(arrive())}. If you instead need to
522 * await with interruption of timeout, and/or deregister upon
523 * arrival, you can arrange them using analogous constructions.
524 *
525 * @return the phase on entry to this method
526 * @throws IllegalStateException if not terminated and the number
527 * of unarrived parties would become negative
528 */
529 public int arriveAndAwaitAdvance() {
530 return awaitAdvance(arrive());
531 }
532
533 /**
534 * Awaits the phase of the barrier to advance from the given
535 * value, or returns immediately if argument is negative or this
536 * barrier is terminated.
537 *
538 * @param phase the phase on entry to this method
539 * @return the phase on exit from this method
540 */
541 public int awaitAdvance(int phase) {
542 if (phase < 0)
543 return phase;
544 long s = getReconciledState();
545 int p = phaseOf(s);
546 if (p != phase)
547 return p;
548 if (unarrivedOf(s) == 0 && parent != null)
549 parent.awaitAdvance(phase);
550 // Fall here even if parent waited, to reconcile and help release
551 return untimedWait(phase);
552 }
553
554 /**
555 * Awaits the phase of the barrier to advance from the given
556 * value, or returns immediately if argument is negative or this
557 * barrier is terminated, or throws InterruptedException if
558 * interrupted while waiting.
559 *
560 * @param phase the phase on entry to this method
561 * @return the phase on exit from this method
562 * @throws InterruptedException if thread interrupted while waiting
563 */
564 public int awaitAdvanceInterruptibly(int phase)
565 throws InterruptedException {
566 if (phase < 0)
567 return phase;
568 long s = getReconciledState();
569 int p = phaseOf(s);
570 if (p != phase)
571 return p;
572 if (unarrivedOf(s) == 0 && parent != null)
573 parent.awaitAdvanceInterruptibly(phase);
574 return interruptibleWait(phase);
575 }
576
577 /**
578 * Awaits the phase of the barrier to advance from the given value
579 * or the given timeout elapses, or returns immediately if
580 * argument is negative or this barrier is terminated.
581 *
582 * @param phase the phase on entry to this method
583 * @return the phase on exit from this method
584 * @throws InterruptedException if thread interrupted while waiting
585 * @throws TimeoutException if timed out while waiting
586 */
587 public int awaitAdvanceInterruptibly(int phase, long timeout, TimeUnit unit)
588 throws InterruptedException, TimeoutException {
589 if (phase < 0)
590 return phase;
591 long s = getReconciledState();
592 int p = phaseOf(s);
593 if (p != phase)
594 return p;
595 if (unarrivedOf(s) == 0 && parent != null)
596 parent.awaitAdvanceInterruptibly(phase, timeout, unit);
597 return timedWait(phase, unit.toNanos(timeout));
598 }
599
600 /**
601 * Forces this barrier to enter termination state. Counts of
602 * arrived and registered parties are unaffected. If this phaser
603 * has a parent, it too is terminated. This method may be useful
604 * for coordinating recovery after one or more tasks encounter
605 * unexpected exceptions.
606 */
607 public void forceTermination() {
608 for (;;) {
609 long s = getReconciledState();
610 int phase = phaseOf(s);
611 int parties = partiesOf(s);
612 int unarrived = unarrivedOf(s);
613 if (phase < 0 ||
614 casState(s, stateFor(-1, parties, unarrived))) {
615 releaseWaiters(0);
616 releaseWaiters(1);
617 if (parent != null)
618 parent.forceTermination();
619 return;
620 }
621 }
622 }
623
624 /**
625 * Returns the current phase number. The maximum phase number is
626 * {@code Integer.MAX_VALUE}, after which it restarts at
627 * zero. Upon termination, the phase number is negative.
628 *
629 * @return the phase number, or a negative value if terminated
630 */
631 public final int getPhase() {
632 return phaseOf(getReconciledState());
633 }
634
635 /**
636 * Returns {@code true} if the current phase number equals the given phase.
637 *
638 * @param phase the phase
639 * @return {@code true} if the current phase number equals the given phase
640 */
641 public final boolean hasPhase(int phase) {
642 return phaseOf(getReconciledState()) == phase;
643 }
644
645 /**
646 * Returns the number of parties registered at this barrier.
647 *
648 * @return the number of parties
649 */
650 public int getRegisteredParties() {
651 return partiesOf(state);
652 }
653
654 /**
655 * Returns the number of parties that have arrived at the current
656 * phase of this barrier.
657 *
658 * @return the number of arrived parties
659 */
660 public int getArrivedParties() {
661 return arrivedOf(state);
662 }
663
664 /**
665 * Returns the number of registered parties that have not yet
666 * arrived at the current phase of this barrier.
667 *
668 * @return the number of unarrived parties
669 */
670 public int getUnarrivedParties() {
671 return unarrivedOf(state);
672 }
673
674 /**
675 * Returns the parent of this phaser, or null if none.
676 *
677 * @return the parent of this phaser, or null if none
678 */
679 public Phaser getParent() {
680 return parent;
681 }
682
683 /**
684 * Returns the root ancestor of this phaser, which is the same as
685 * this phaser if it has no parent.
686 *
687 * @return the root ancestor of this phaser
688 */
689 public Phaser getRoot() {
690 return root;
691 }
692
693 /**
694 * Returns {@code true} if this barrier has been terminated.
695 *
696 * @return {@code true} if this barrier has been terminated
697 */
698 public boolean isTerminated() {
699 return getPhase() < 0;
700 }
701
702 /**
703 * Overridable method to perform an action upon phase advance, and
704 * to control termination. This method is invoked whenever the
705 * barrier is tripped (and thus all other waiting parties are
706 * dormant). If it returns true, then, rather than advance the
707 * phase number, this barrier will be set to a final termination
708 * state, and subsequent calls to {@code isTerminated} will
709 * return true.
710 *
711 * <p> The default version returns true when the number of
712 * registered parties is zero. Normally, overrides that arrange
713 * termination for other reasons should also preserve this
714 * property.
715 *
716 * <p> You may override this method to perform an action with side
717 * effects visible to participating tasks, but it is in general
718 * only sensible to do so in designs where all parties register
719 * before any arrive, and all {@code awaitAdvance} at each phase.
720 * Otherwise, you cannot ensure lack of interference. In
721 * particular, this method may be invoked more than once per
722 * transition if other parties successfully register while the
723 * invocation of this method is in progress, thus postponing the
724 * transition until those parties also arrive, re-triggering this
725 * method.
726 *
727 * @param phase the phase number on entering the barrier
728 * @param registeredParties the current number of registered parties
729 * @return {@code true} if this barrier should terminate
730 */
731 protected boolean onAdvance(int phase, int registeredParties) {
732 return registeredParties <= 0;
733 }
734
735 /**
736 * Returns a string identifying this phaser, as well as its
737 * state. The state, in brackets, includes the String {@code
738 * "phase = "} followed by the phase number, {@code "parties = "}
739 * followed by the number of registered parties, and {@code
740 * "arrived = "} followed by the number of arrived parties.
741 *
742 * @return a string identifying this barrier, as well as its state
743 */
744 public String toString() {
745 long s = getReconciledState();
746 return super.toString() +
747 "[phase = " + phaseOf(s) +
748 " parties = " + partiesOf(s) +
749 " arrived = " + arrivedOf(s) + "]";
750 }
751
752 // methods for waiting
753
754 /**
755 * Wait nodes for Treiber stack representing wait queue
756 */
757 static final class QNode implements ForkJoinPool.ManagedBlocker {
758 final Phaser phaser;
759 final int phase;
760 final long startTime;
761 final long nanos;
762 final boolean timed;
763 final boolean interruptible;
764 volatile boolean wasInterrupted = false;
765 volatile Thread thread; // nulled to cancel wait
766 QNode next;
767 QNode(Phaser phaser, int phase, boolean interruptible,
768 boolean timed, long startTime, long nanos) {
769 this.phaser = phaser;
770 this.phase = phase;
771 this.timed = timed;
772 this.interruptible = interruptible;
773 this.startTime = startTime;
774 this.nanos = nanos;
775 thread = Thread.currentThread();
776 }
777 public boolean isReleasable() {
778 return (thread == null ||
779 phaser.getPhase() != phase ||
780 (interruptible && wasInterrupted) ||
781 (timed && (nanos - (System.nanoTime() - startTime)) <= 0));
782 }
783 public boolean block() {
784 if (Thread.interrupted()) {
785 wasInterrupted = true;
786 if (interruptible)
787 return true;
788 }
789 if (!timed)
790 LockSupport.park(this);
791 else {
792 long waitTime = nanos - (System.nanoTime() - startTime);
793 if (waitTime <= 0)
794 return true;
795 LockSupport.parkNanos(this, waitTime);
796 }
797 return isReleasable();
798 }
799 void signal() {
800 Thread t = thread;
801 if (t != null) {
802 thread = null;
803 LockSupport.unpark(t);
804 }
805 }
806 boolean doWait() {
807 if (thread != null) {
808 try {
809 ForkJoinPool.managedBlock(this, false);
810 } catch (InterruptedException ie) {
811 }
812 }
813 return wasInterrupted;
814 }
815
816 }
817
818 /**
819 * Removes and signals waiting threads from wait queue.
820 */
821 private void releaseWaiters(int phase) {
822 AtomicReference<QNode> head = queueFor(phase);
823 QNode q;
824 while ((q = head.get()) != null) {
825 if (head.compareAndSet(q, q.next))
826 q.signal();
827 }
828 }
829
830 /**
831 * Tries to enqueue given node in the appropriate wait queue.
832 *
833 * @return true if successful
834 */
835 private boolean tryEnqueue(QNode node) {
836 AtomicReference<QNode> head = queueFor(node.phase);
837 return head.compareAndSet(node.next = head.get(), node);
838 }
839
840 /**
841 * Enqueues node and waits unless aborted or signalled.
842 *
843 * @return current phase
844 */
845 private int untimedWait(int phase) {
846 QNode node = null;
847 boolean queued = false;
848 boolean interrupted = false;
849 int p;
850 while ((p = getPhase()) == phase) {
851 if (Thread.interrupted())
852 interrupted = true;
853 else if (node == null)
854 node = new QNode(this, phase, false, false, 0, 0);
855 else if (!queued)
856 queued = tryEnqueue(node);
857 else
858 interrupted = node.doWait();
859 }
860 if (node != null)
861 node.thread = null;
862 releaseWaiters(phase);
863 if (interrupted)
864 Thread.currentThread().interrupt();
865 return p;
866 }
867
868 /**
869 * Interruptible version
870 * @return current phase
871 */
872 private int interruptibleWait(int phase) throws InterruptedException {
873 QNode node = null;
874 boolean queued = false;
875 boolean interrupted = false;
876 int p;
877 while ((p = getPhase()) == phase && !interrupted) {
878 if (Thread.interrupted())
879 interrupted = true;
880 else if (node == null)
881 node = new QNode(this, phase, true, false, 0, 0);
882 else if (!queued)
883 queued = tryEnqueue(node);
884 else
885 interrupted = node.doWait();
886 }
887 if (node != null)
888 node.thread = null;
889 if (p != phase || (p = getPhase()) != phase)
890 releaseWaiters(phase);
891 if (interrupted)
892 throw new InterruptedException();
893 return p;
894 }
895
896 /**
897 * Timeout version.
898 * @return current phase
899 */
900 private int timedWait(int phase, long nanos)
901 throws InterruptedException, TimeoutException {
902 long startTime = System.nanoTime();
903 QNode node = null;
904 boolean queued = false;
905 boolean interrupted = false;
906 int p;
907 while ((p = getPhase()) == phase && !interrupted) {
908 if (Thread.interrupted())
909 interrupted = true;
910 else if (nanos - (System.nanoTime() - startTime) <= 0)
911 break;
912 else if (node == null)
913 node = new QNode(this, phase, true, true, startTime, nanos);
914 else if (!queued)
915 queued = tryEnqueue(node);
916 else
917 interrupted = node.doWait();
918 }
919 if (node != null)
920 node.thread = null;
921 if (p != phase || (p = getPhase()) != phase)
922 releaseWaiters(phase);
923 if (interrupted)
924 throw new InterruptedException();
925 if (p == phase)
926 throw new TimeoutException();
927 return p;
928 }
929
930 // Temporary Unsafe mechanics for preliminary release
931 private static Unsafe getUnsafe() throws Throwable {
932 try {
933 return Unsafe.getUnsafe();
934 } catch (SecurityException se) {
935 try {
936 return java.security.AccessController.doPrivileged
937 (new java.security.PrivilegedExceptionAction<Unsafe>() {
938 public Unsafe run() throws Exception {
939 return getUnsafePrivileged();
940 }});
941 } catch (java.security.PrivilegedActionException e) {
942 throw e.getCause();
943 }
944 }
945 }
946
947 private static Unsafe getUnsafePrivileged()
948 throws NoSuchFieldException, IllegalAccessException {
949 Field f = Unsafe.class.getDeclaredField("theUnsafe");
950 f.setAccessible(true);
951 return (Unsafe) f.get(null);
952 }
953
954 private static long fieldOffset(String fieldName)
955 throws NoSuchFieldException {
956 return UNSAFE.objectFieldOffset
957 (Phaser.class.getDeclaredField(fieldName));
958 }
959
960 static final Unsafe UNSAFE;
961 static final long stateOffset;
962
963 static {
964 try {
965 UNSAFE = getUnsafe();
966 stateOffset = fieldOffset("state");
967 } catch (Throwable e) {
968 throw new RuntimeException("Could not initialize intrinsics", e);
969 }
970 }
971
972 final boolean casState(long cmp, long val) {
973 return UNSAFE.compareAndSwapLong(this, stateOffset, cmp, val);
974 }
975 }