ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/Phaser.java
Revision: 1.16
Committed: Wed Jul 22 01:36:51 2009 UTC (14 years, 9 months ago) by jsr166
Branch: MAIN
Changes since 1.15: +3 -0 lines
Log Message:
Add @since, @author tags

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/licenses/publicdomain
5 */
6
7 package jsr166y;
8
9 import java.util.concurrent.*;
10 import java.util.concurrent.atomic.*;
11 import java.util.concurrent.locks.LockSupport;
12 import sun.misc.Unsafe;
13 import java.lang.reflect.*;
14
15 /**
16 * A reusable synchronization barrier, similar in functionality to a
17 * {@link java.util.concurrent.CyclicBarrier CyclicBarrier} and
18 * {@link java.util.concurrent.CountDownLatch CountDownLatch}
19 * but supporting more flexible usage.
20 *
21 * <ul>
22 *
23 * <li> The number of parties synchronizing on a phaser may vary over
24 * time. A task may register to be a party at any time, and may
25 * deregister upon arriving at the barrier. As is the case with most
26 * basic synchronization constructs, registration and deregistration
27 * affect only internal counts; they do not establish any further
28 * internal bookkeeping, so tasks cannot query whether they are
29 * registered. (However, you can introduce such bookkeeping by
30 * subclassing this class.)
31 *
32 * <li> Each generation has an associated phase value, starting at
33 * zero, and advancing when all parties reach the barrier (wrapping
34 * around to zero after reaching {@code Integer.MAX_VALUE}).
35 *
36 * <li> Like a CyclicBarrier, a Phaser may be repeatedly awaited.
37 * Method {@code arriveAndAwaitAdvance} has effect analogous to
38 * {@code CyclicBarrier.await}. However, Phasers separate two
39 * aspects of coordination, that may also be invoked independently:
40 *
41 * <ul>
42 *
43 * <li> Arriving at a barrier. Methods {@code arrive} and
44 * {@code arriveAndDeregister} do not block, but return
45 * the phase value current upon entry to the method.
46 *
47 * <li> Awaiting others. Method {@code awaitAdvance} requires an
48 * argument indicating the entry phase, and returns when the
49 * barrier advances to a new phase.
50 * </ul>
51 *
52 *
53 * <li> Barrier actions, performed by the task triggering a phase
54 * advance while others may be waiting, are arranged by overriding
55 * method {@code onAdvance}, that also controls termination.
56 * Overriding this method may be used to similar but more flexible
57 * effect as providing a barrier action to a CyclicBarrier.
58 *
59 * <li> Phasers may enter a <em>termination</em> state in which all
60 * actions immediately return without updating phaser state or waiting
61 * for advance, and indicating (via a negative phase value) that
62 * execution is complete. Termination is triggered by executing the
63 * overridable {@code onAdvance} method that is invoked each time the
64 * barrier is about to be tripped. When a Phaser is controlling an
65 * action with a fixed number of iterations, it is often convenient to
66 * override this method to cause termination when the current phase
67 * number reaches a threshold. Method {@code forceTermination} is also
68 * available to abruptly release waiting threads and allow them to
69 * terminate.
70 *
71 * <li> Phasers may be tiered to reduce contention. Phasers with large
72 * numbers of parties that would otherwise experience heavy
73 * synchronization contention costs may instead be arranged in trees.
74 * This will typically greatly increase throughput even though it
75 * incurs somewhat greater per-operation overhead.
76 *
77 * <li> By default, {@code awaitAdvance} continues to wait even if
78 * the waiting thread is interrupted. And unlike the case in
79 * CyclicBarriers, exceptions encountered while tasks wait
80 * interruptibly or with timeout do not change the state of the
81 * barrier. If necessary, you can perform any associated recovery
82 * within handlers of those exceptions, often after invoking
83 * {@code forceTermination}.
84 *
85 * <li>Phasers ensure lack of starvation when used by ForkJoinTasks.
86 *
87 * </ul>
88 *
89 * <p><b>Sample usages:</b>
90 *
91 * <p>A Phaser may be used instead of a {@code CountDownLatch} to control
92 * a one-shot action serving a variable number of parties. The typical
93 * idiom is for the method setting this up to first register, then
94 * start the actions, then deregister, as in:
95 *
96 * <pre> {@code
97 * void runTasks(List<Runnable> list) {
98 * final Phaser phaser = new Phaser(1); // "1" to register self
99 * for (Runnable r : list) {
100 * phaser.register();
101 * new Thread() {
102 * public void run() {
103 * phaser.arriveAndAwaitAdvance(); // await all creation
104 * r.run();
105 * phaser.arriveAndDeregister(); // signal completion
106 * }
107 * }.start();
108 * }
109 *
110 * doSomethingOnBehalfOfWorkers();
111 * phaser.arrive(); // allow threads to start
112 * int p = phaser.arriveAndDeregister(); // deregister self ...
113 * p = phaser.awaitAdvance(p); // ... and await arrival
114 * otherActions(); // do other things while tasks execute
115 * phaser.awaitAdvance(p); // await final completion
116 * }}</pre>
117 *
118 * <p>One way to cause a set of threads to repeatedly perform actions
119 * for a given number of iterations is to override {@code onAdvance}:
120 *
121 * <pre> {@code
122 * void startTasks(List<Runnable> list, final int iterations) {
123 * final Phaser phaser = new Phaser() {
124 * public boolean onAdvance(int phase, int registeredParties) {
125 * return phase >= iterations || registeredParties == 0;
126 * }
127 * };
128 * phaser.register();
129 * for (Runnable r : list) {
130 * phaser.register();
131 * new Thread() {
132 * public void run() {
133 * do {
134 * r.run();
135 * phaser.arriveAndAwaitAdvance();
136 * } while(!phaser.isTerminated();
137 * }
138 * }.start();
139 * }
140 * phaser.arriveAndDeregister(); // deregister self, don't wait
141 * }}</pre>
142 *
143 * <p> To create a set of tasks using a tree of Phasers,
144 * you could use code of the following form, assuming a
145 * Task class with a constructor accepting a Phaser that
146 * it registers for upon construction:
147 * <pre> {@code
148 * void build(Task[] actions, int lo, int hi, Phaser b) {
149 * int step = (hi - lo) / TASKS_PER_PHASER;
150 * if (step > 1) {
151 * int i = lo;
152 * while (i < hi) {
153 * int r = Math.min(i + step, hi);
154 * build(actions, i, r, new Phaser(b));
155 * i = r;
156 * }
157 * } else {
158 * for (int i = lo; i < hi; ++i)
159 * actions[i] = new Task(b);
160 * // assumes new Task(b) performs b.register()
161 * }
162 * }
163 * // .. initially called, for n tasks via
164 * build(new Task[n], 0, n, new Phaser());}</pre>
165 *
166 * The best value of {@code TASKS_PER_PHASER} depends mainly on
167 * expected barrier synchronization rates. A value as low as four may
168 * be appropriate for extremely small per-barrier task bodies (thus
169 * high rates), or up to hundreds for extremely large ones.
170 *
171 * </pre>
172 *
173 * <p><b>Implementation notes</b>: This implementation restricts the
174 * maximum number of parties to 65535. Attempts to register additional
175 * parties result in IllegalStateExceptions. However, you can and
176 * should create tiered phasers to accommodate arbitrarily large sets
177 * of participants.
178 *
179 * @since 1.7
180 * @author Doug Lea
181 */
182 public class Phaser {
183 /*
184 * This class implements an extension of X10 "clocks". Thanks to
185 * Vijay Saraswat for the idea, and to Vivek Sarkar for
186 * enhancements to extend functionality.
187 */
188
189 /**
190 * Barrier state representation. Conceptually, a barrier contains
191 * four values:
192 *
193 * * parties -- the number of parties to wait (16 bits)
194 * * unarrived -- the number of parties yet to hit barrier (16 bits)
195 * * phase -- the generation of the barrier (31 bits)
196 * * terminated -- set if barrier is terminated (1 bit)
197 *
198 * However, to efficiently maintain atomicity, these values are
199 * packed into a single (atomic) long. Termination uses the sign
200 * bit of 32 bit representation of phase, so phase is set to -1 on
201 * termination. Good performance relies on keeping state decoding
202 * and encoding simple, and keeping race windows short.
203 *
204 * Note: there are some cheats in arrive() that rely on unarrived
205 * count being lowest 16 bits.
206 */
207 private volatile long state;
208
209 private static final int ushortBits = 16;
210 private static final int ushortMask = 0xffff;
211 private static final int phaseMask = 0x7fffffff;
212
213 private static int unarrivedOf(long s) {
214 return (int)(s & ushortMask);
215 }
216
217 private static int partiesOf(long s) {
218 return ((int)s) >>> 16;
219 }
220
221 private static int phaseOf(long s) {
222 return (int)(s >>> 32);
223 }
224
225 private static int arrivedOf(long s) {
226 return partiesOf(s) - unarrivedOf(s);
227 }
228
229 private static long stateFor(int phase, int parties, int unarrived) {
230 return ((((long)phase) << 32) | (((long)parties) << 16) |
231 (long)unarrived);
232 }
233
234 private static long trippedStateFor(int phase, int parties) {
235 long lp = (long)parties;
236 return (((long)phase) << 32) | (lp << 16) | lp;
237 }
238
239 /**
240 * Returns message string for bad bounds exceptions.
241 */
242 private static String badBounds(int parties, int unarrived) {
243 return ("Attempt to set " + unarrived +
244 " unarrived of " + parties + " parties");
245 }
246
247 /**
248 * The parent of this phaser, or null if none
249 */
250 private final Phaser parent;
251
252 /**
253 * The root of Phaser tree. Equals this if not in a tree. Used to
254 * support faster state push-down.
255 */
256 private final Phaser root;
257
258 // Wait queues
259
260 /**
261 * Heads of Treiber stacks for waiting threads. To eliminate
262 * contention while releasing some threads while adding others, we
263 * use two of them, alternating across even and odd phases.
264 */
265 private final AtomicReference<QNode> evenQ = new AtomicReference<QNode>();
266 private final AtomicReference<QNode> oddQ = new AtomicReference<QNode>();
267
268 private AtomicReference<QNode> queueFor(int phase) {
269 return (phase & 1) == 0? evenQ : oddQ;
270 }
271
272 /**
273 * Returns current state, first resolving lagged propagation from
274 * root if necessary.
275 */
276 private long getReconciledState() {
277 return parent == null? state : reconcileState();
278 }
279
280 /**
281 * Recursively resolves state.
282 */
283 private long reconcileState() {
284 Phaser p = parent;
285 long s = state;
286 if (p != null) {
287 while (unarrivedOf(s) == 0 && phaseOf(s) != phaseOf(root.state)) {
288 long parentState = p.getReconciledState();
289 int parentPhase = phaseOf(parentState);
290 int phase = phaseOf(s = state);
291 if (phase != parentPhase) {
292 long next = trippedStateFor(parentPhase, partiesOf(s));
293 if (casState(s, next)) {
294 releaseWaiters(phase);
295 s = next;
296 }
297 }
298 }
299 }
300 return s;
301 }
302
303 /**
304 * Creates a new Phaser without any initially registered parties,
305 * initial phase number 0, and no parent. Any thread using this
306 * Phaser will need to first register for it.
307 */
308 public Phaser() {
309 this(null);
310 }
311
312 /**
313 * Creates a new Phaser with the given numbers of registered
314 * unarrived parties, initial phase number 0, and no parent.
315 *
316 * @param parties the number of parties required to trip barrier
317 * @throws IllegalArgumentException if parties less than zero
318 * or greater than the maximum number of parties supported
319 */
320 public Phaser(int parties) {
321 this(null, parties);
322 }
323
324 /**
325 * Creates a new Phaser with the given parent, without any
326 * initially registered parties. If parent is non-null this phaser
327 * is registered with the parent and its initial phase number is
328 * the same as that of parent phaser.
329 *
330 * @param parent the parent phaser
331 */
332 public Phaser(Phaser parent) {
333 int phase = 0;
334 this.parent = parent;
335 if (parent != null) {
336 this.root = parent.root;
337 phase = parent.register();
338 }
339 else
340 this.root = this;
341 this.state = trippedStateFor(phase, 0);
342 }
343
344 /**
345 * Creates a new Phaser with the given parent and numbers of
346 * registered unarrived parties. If parent is non-null, this phaser
347 * is registered with the parent and its initial phase number is
348 * the same as that of parent phaser.
349 *
350 * @param parent the parent phaser
351 * @param parties the number of parties required to trip barrier
352 * @throws IllegalArgumentException if parties less than zero
353 * or greater than the maximum number of parties supported
354 */
355 public Phaser(Phaser parent, int parties) {
356 if (parties < 0 || parties > ushortMask)
357 throw new IllegalArgumentException("Illegal number of parties");
358 int phase = 0;
359 this.parent = parent;
360 if (parent != null) {
361 this.root = parent.root;
362 phase = parent.register();
363 }
364 else
365 this.root = this;
366 this.state = trippedStateFor(phase, parties);
367 }
368
369 /**
370 * Adds a new unarrived party to this phaser.
371 *
372 * @return the current barrier phase number upon registration
373 * @throws IllegalStateException if attempting to register more
374 * than the maximum supported number of parties
375 */
376 public int register() {
377 return doRegister(1);
378 }
379
380 /**
381 * Adds the given number of new unarrived parties to this phaser.
382 *
383 * @param parties the number of parties required to trip barrier
384 * @return the current barrier phase number upon registration
385 * @throws IllegalStateException if attempting to register more
386 * than the maximum supported number of parties
387 */
388 public int bulkRegister(int parties) {
389 if (parties < 0)
390 throw new IllegalArgumentException();
391 if (parties == 0)
392 return getPhase();
393 return doRegister(parties);
394 }
395
396 /**
397 * Shared code for register, bulkRegister
398 */
399 private int doRegister(int registrations) {
400 int phase;
401 for (;;) {
402 long s = getReconciledState();
403 phase = phaseOf(s);
404 int unarrived = unarrivedOf(s) + registrations;
405 int parties = partiesOf(s) + registrations;
406 if (phase < 0)
407 break;
408 if (parties > ushortMask || unarrived > ushortMask)
409 throw new IllegalStateException(badBounds(parties, unarrived));
410 if (phase == phaseOf(root.state) &&
411 casState(s, stateFor(phase, parties, unarrived)))
412 break;
413 }
414 return phase;
415 }
416
417 /**
418 * Arrives at the barrier, but does not wait for others. (You can
419 * in turn wait for others via {@link #awaitAdvance}).
420 *
421 * @return the barrier phase number upon entry to this method, or a
422 * negative value if terminated
423 * @throws IllegalStateException if not terminated and the number
424 * of unarrived parties would become negative
425 */
426 public int arrive() {
427 int phase;
428 for (;;) {
429 long s = state;
430 phase = phaseOf(s);
431 if (phase < 0)
432 break;
433 int parties = partiesOf(s);
434 int unarrived = unarrivedOf(s) - 1;
435 if (unarrived > 0) { // Not the last arrival
436 if (casState(s, s - 1)) // s-1 adds one arrival
437 break;
438 }
439 else if (unarrived == 0) { // the last arrival
440 Phaser par = parent;
441 if (par == null) { // directly trip
442 if (casState
443 (s,
444 trippedStateFor(onAdvance(phase, parties)? -1 :
445 ((phase + 1) & phaseMask), parties))) {
446 releaseWaiters(phase);
447 break;
448 }
449 }
450 else { // cascade to parent
451 if (casState(s, s - 1)) { // zeroes unarrived
452 par.arrive();
453 reconcileState();
454 break;
455 }
456 }
457 }
458 else if (phase != phaseOf(root.state)) // or if unreconciled
459 reconcileState();
460 else
461 throw new IllegalStateException(badBounds(parties, unarrived));
462 }
463 return phase;
464 }
465
466 /**
467 * Arrives at the barrier, and deregisters from it, without
468 * waiting for others. Deregistration reduces number of parties
469 * required to trip the barrier in future phases. If this phaser
470 * has a parent, and deregistration causes this phaser to have
471 * zero parties, this phaser is also deregistered from its parent.
472 *
473 * @return the current barrier phase number upon entry to
474 * this method, or a negative value if terminated
475 * @throws IllegalStateException if not terminated and the number
476 * of registered or unarrived parties would become negative
477 */
478 public int arriveAndDeregister() {
479 // similar code to arrive, but too different to merge
480 Phaser par = parent;
481 int phase;
482 for (;;) {
483 long s = state;
484 phase = phaseOf(s);
485 if (phase < 0)
486 break;
487 int parties = partiesOf(s) - 1;
488 int unarrived = unarrivedOf(s) - 1;
489 if (parties >= 0) {
490 if (unarrived > 0 || (unarrived == 0 && par != null)) {
491 if (casState
492 (s,
493 stateFor(phase, parties, unarrived))) {
494 if (unarrived == 0) {
495 par.arriveAndDeregister();
496 reconcileState();
497 }
498 break;
499 }
500 continue;
501 }
502 if (unarrived == 0) {
503 if (casState
504 (s,
505 trippedStateFor(onAdvance(phase, parties)? -1 :
506 ((phase + 1) & phaseMask), parties))) {
507 releaseWaiters(phase);
508 break;
509 }
510 continue;
511 }
512 if (par != null && phase != phaseOf(root.state)) {
513 reconcileState();
514 continue;
515 }
516 }
517 throw new IllegalStateException(badBounds(parties, unarrived));
518 }
519 return phase;
520 }
521
522 /**
523 * Arrives at the barrier and awaits others. Equivalent in effect
524 * to {@code awaitAdvance(arrive())}. If you instead need to
525 * await with interruption of timeout, and/or deregister upon
526 * arrival, you can arrange them using analogous constructions.
527 *
528 * @return the phase on entry to this method
529 * @throws IllegalStateException if not terminated and the number
530 * of unarrived parties would become negative
531 */
532 public int arriveAndAwaitAdvance() {
533 return awaitAdvance(arrive());
534 }
535
536 /**
537 * Awaits the phase of the barrier to advance from the given
538 * value, or returns immediately if argument is negative or this
539 * barrier is terminated.
540 *
541 * @param phase the phase on entry to this method
542 * @return the phase on exit from this method
543 */
544 public int awaitAdvance(int phase) {
545 if (phase < 0)
546 return phase;
547 long s = getReconciledState();
548 int p = phaseOf(s);
549 if (p != phase)
550 return p;
551 if (unarrivedOf(s) == 0 && parent != null)
552 parent.awaitAdvance(phase);
553 // Fall here even if parent waited, to reconcile and help release
554 return untimedWait(phase);
555 }
556
557 /**
558 * Awaits the phase of the barrier to advance from the given
559 * value, or returns immediately if argument is negative or this
560 * barrier is terminated, or throws InterruptedException if
561 * interrupted while waiting.
562 *
563 * @param phase the phase on entry to this method
564 * @return the phase on exit from this method
565 * @throws InterruptedException if thread interrupted while waiting
566 */
567 public int awaitAdvanceInterruptibly(int phase)
568 throws InterruptedException {
569 if (phase < 0)
570 return phase;
571 long s = getReconciledState();
572 int p = phaseOf(s);
573 if (p != phase)
574 return p;
575 if (unarrivedOf(s) == 0 && parent != null)
576 parent.awaitAdvanceInterruptibly(phase);
577 return interruptibleWait(phase);
578 }
579
580 /**
581 * Awaits the phase of the barrier to advance from the given value
582 * or the given timeout elapses, or returns immediately if
583 * argument is negative or this barrier is terminated.
584 *
585 * @param phase the phase on entry to this method
586 * @return the phase on exit from this method
587 * @throws InterruptedException if thread interrupted while waiting
588 * @throws TimeoutException if timed out while waiting
589 */
590 public int awaitAdvanceInterruptibly(int phase, long timeout, TimeUnit unit)
591 throws InterruptedException, TimeoutException {
592 if (phase < 0)
593 return phase;
594 long s = getReconciledState();
595 int p = phaseOf(s);
596 if (p != phase)
597 return p;
598 if (unarrivedOf(s) == 0 && parent != null)
599 parent.awaitAdvanceInterruptibly(phase, timeout, unit);
600 return timedWait(phase, unit.toNanos(timeout));
601 }
602
603 /**
604 * Forces this barrier to enter termination state. Counts of
605 * arrived and registered parties are unaffected. If this phaser
606 * has a parent, it too is terminated. This method may be useful
607 * for coordinating recovery after one or more tasks encounter
608 * unexpected exceptions.
609 */
610 public void forceTermination() {
611 for (;;) {
612 long s = getReconciledState();
613 int phase = phaseOf(s);
614 int parties = partiesOf(s);
615 int unarrived = unarrivedOf(s);
616 if (phase < 0 ||
617 casState(s, stateFor(-1, parties, unarrived))) {
618 releaseWaiters(0);
619 releaseWaiters(1);
620 if (parent != null)
621 parent.forceTermination();
622 return;
623 }
624 }
625 }
626
627 /**
628 * Returns the current phase number. The maximum phase number is
629 * {@code Integer.MAX_VALUE}, after which it restarts at
630 * zero. Upon termination, the phase number is negative.
631 *
632 * @return the phase number, or a negative value if terminated
633 */
634 public final int getPhase() {
635 return phaseOf(getReconciledState());
636 }
637
638 /**
639 * Returns {@code true} if the current phase number equals the given phase.
640 *
641 * @param phase the phase
642 * @return {@code true} if the current phase number equals the given phase
643 */
644 public final boolean hasPhase(int phase) {
645 return phaseOf(getReconciledState()) == phase;
646 }
647
648 /**
649 * Returns the number of parties registered at this barrier.
650 *
651 * @return the number of parties
652 */
653 public int getRegisteredParties() {
654 return partiesOf(state);
655 }
656
657 /**
658 * Returns the number of parties that have arrived at the current
659 * phase of this barrier.
660 *
661 * @return the number of arrived parties
662 */
663 public int getArrivedParties() {
664 return arrivedOf(state);
665 }
666
667 /**
668 * Returns the number of registered parties that have not yet
669 * arrived at the current phase of this barrier.
670 *
671 * @return the number of unarrived parties
672 */
673 public int getUnarrivedParties() {
674 return unarrivedOf(state);
675 }
676
677 /**
678 * Returns the parent of this phaser, or null if none.
679 *
680 * @return the parent of this phaser, or null if none
681 */
682 public Phaser getParent() {
683 return parent;
684 }
685
686 /**
687 * Returns the root ancestor of this phaser, which is the same as
688 * this phaser if it has no parent.
689 *
690 * @return the root ancestor of this phaser
691 */
692 public Phaser getRoot() {
693 return root;
694 }
695
696 /**
697 * Returns {@code true} if this barrier has been terminated.
698 *
699 * @return {@code true} if this barrier has been terminated
700 */
701 public boolean isTerminated() {
702 return getPhase() < 0;
703 }
704
705 /**
706 * Overridable method to perform an action upon phase advance, and
707 * to control termination. This method is invoked whenever the
708 * barrier is tripped (and thus all other waiting parties are
709 * dormant). If it returns true, then, rather than advance the
710 * phase number, this barrier will be set to a final termination
711 * state, and subsequent calls to {@code isTerminated} will
712 * return true.
713 *
714 * <p> The default version returns true when the number of
715 * registered parties is zero. Normally, overrides that arrange
716 * termination for other reasons should also preserve this
717 * property.
718 *
719 * <p> You may override this method to perform an action with side
720 * effects visible to participating tasks, but it is in general
721 * only sensible to do so in designs where all parties register
722 * before any arrive, and all {@code awaitAdvance} at each phase.
723 * Otherwise, you cannot ensure lack of interference. In
724 * particular, this method may be invoked more than once per
725 * transition if other parties successfully register while the
726 * invocation of this method is in progress, thus postponing the
727 * transition until those parties also arrive, re-triggering this
728 * method.
729 *
730 * @param phase the phase number on entering the barrier
731 * @param registeredParties the current number of registered parties
732 * @return {@code true} if this barrier should terminate
733 */
734 protected boolean onAdvance(int phase, int registeredParties) {
735 return registeredParties <= 0;
736 }
737
738 /**
739 * Returns a string identifying this phaser, as well as its
740 * state. The state, in brackets, includes the String {@code
741 * "phase = "} followed by the phase number, {@code "parties = "}
742 * followed by the number of registered parties, and {@code
743 * "arrived = "} followed by the number of arrived parties.
744 *
745 * @return a string identifying this barrier, as well as its state
746 */
747 public String toString() {
748 long s = getReconciledState();
749 return super.toString() +
750 "[phase = " + phaseOf(s) +
751 " parties = " + partiesOf(s) +
752 " arrived = " + arrivedOf(s) + "]";
753 }
754
755 // methods for waiting
756
757 /**
758 * Wait nodes for Treiber stack representing wait queue
759 */
760 static final class QNode implements ForkJoinPool.ManagedBlocker {
761 final Phaser phaser;
762 final int phase;
763 final long startTime;
764 final long nanos;
765 final boolean timed;
766 final boolean interruptible;
767 volatile boolean wasInterrupted = false;
768 volatile Thread thread; // nulled to cancel wait
769 QNode next;
770 QNode(Phaser phaser, int phase, boolean interruptible,
771 boolean timed, long startTime, long nanos) {
772 this.phaser = phaser;
773 this.phase = phase;
774 this.timed = timed;
775 this.interruptible = interruptible;
776 this.startTime = startTime;
777 this.nanos = nanos;
778 thread = Thread.currentThread();
779 }
780 public boolean isReleasable() {
781 return (thread == null ||
782 phaser.getPhase() != phase ||
783 (interruptible && wasInterrupted) ||
784 (timed && (nanos - (System.nanoTime() - startTime)) <= 0));
785 }
786 public boolean block() {
787 if (Thread.interrupted()) {
788 wasInterrupted = true;
789 if (interruptible)
790 return true;
791 }
792 if (!timed)
793 LockSupport.park(this);
794 else {
795 long waitTime = nanos - (System.nanoTime() - startTime);
796 if (waitTime <= 0)
797 return true;
798 LockSupport.parkNanos(this, waitTime);
799 }
800 return isReleasable();
801 }
802 void signal() {
803 Thread t = thread;
804 if (t != null) {
805 thread = null;
806 LockSupport.unpark(t);
807 }
808 }
809 boolean doWait() {
810 if (thread != null) {
811 try {
812 ForkJoinPool.managedBlock(this, false);
813 } catch (InterruptedException ie) {
814 }
815 }
816 return wasInterrupted;
817 }
818
819 }
820
821 /**
822 * Removes and signals waiting threads from wait queue.
823 */
824 private void releaseWaiters(int phase) {
825 AtomicReference<QNode> head = queueFor(phase);
826 QNode q;
827 while ((q = head.get()) != null) {
828 if (head.compareAndSet(q, q.next))
829 q.signal();
830 }
831 }
832
833 /**
834 * Tries to enqueue given node in the appropriate wait queue.
835 *
836 * @return true if successful
837 */
838 private boolean tryEnqueue(QNode node) {
839 AtomicReference<QNode> head = queueFor(node.phase);
840 return head.compareAndSet(node.next = head.get(), node);
841 }
842
843 /**
844 * Enqueues node and waits unless aborted or signalled.
845 *
846 * @return current phase
847 */
848 private int untimedWait(int phase) {
849 QNode node = null;
850 boolean queued = false;
851 boolean interrupted = false;
852 int p;
853 while ((p = getPhase()) == phase) {
854 if (Thread.interrupted())
855 interrupted = true;
856 else if (node == null)
857 node = new QNode(this, phase, false, false, 0, 0);
858 else if (!queued)
859 queued = tryEnqueue(node);
860 else
861 interrupted = node.doWait();
862 }
863 if (node != null)
864 node.thread = null;
865 releaseWaiters(phase);
866 if (interrupted)
867 Thread.currentThread().interrupt();
868 return p;
869 }
870
871 /**
872 * Interruptible version
873 * @return current phase
874 */
875 private int interruptibleWait(int phase) throws InterruptedException {
876 QNode node = null;
877 boolean queued = false;
878 boolean interrupted = false;
879 int p;
880 while ((p = getPhase()) == phase && !interrupted) {
881 if (Thread.interrupted())
882 interrupted = true;
883 else if (node == null)
884 node = new QNode(this, phase, true, false, 0, 0);
885 else if (!queued)
886 queued = tryEnqueue(node);
887 else
888 interrupted = node.doWait();
889 }
890 if (node != null)
891 node.thread = null;
892 if (p != phase || (p = getPhase()) != phase)
893 releaseWaiters(phase);
894 if (interrupted)
895 throw new InterruptedException();
896 return p;
897 }
898
899 /**
900 * Timeout version.
901 * @return current phase
902 */
903 private int timedWait(int phase, long nanos)
904 throws InterruptedException, TimeoutException {
905 long startTime = System.nanoTime();
906 QNode node = null;
907 boolean queued = false;
908 boolean interrupted = false;
909 int p;
910 while ((p = getPhase()) == phase && !interrupted) {
911 if (Thread.interrupted())
912 interrupted = true;
913 else if (nanos - (System.nanoTime() - startTime) <= 0)
914 break;
915 else if (node == null)
916 node = new QNode(this, phase, true, true, startTime, nanos);
917 else if (!queued)
918 queued = tryEnqueue(node);
919 else
920 interrupted = node.doWait();
921 }
922 if (node != null)
923 node.thread = null;
924 if (p != phase || (p = getPhase()) != phase)
925 releaseWaiters(phase);
926 if (interrupted)
927 throw new InterruptedException();
928 if (p == phase)
929 throw new TimeoutException();
930 return p;
931 }
932
933 // Temporary Unsafe mechanics for preliminary release
934 private static Unsafe getUnsafe() throws Throwable {
935 try {
936 return Unsafe.getUnsafe();
937 } catch (SecurityException se) {
938 try {
939 return java.security.AccessController.doPrivileged
940 (new java.security.PrivilegedExceptionAction<Unsafe>() {
941 public Unsafe run() throws Exception {
942 return getUnsafePrivileged();
943 }});
944 } catch (java.security.PrivilegedActionException e) {
945 throw e.getCause();
946 }
947 }
948 }
949
950 private static Unsafe getUnsafePrivileged()
951 throws NoSuchFieldException, IllegalAccessException {
952 Field f = Unsafe.class.getDeclaredField("theUnsafe");
953 f.setAccessible(true);
954 return (Unsafe) f.get(null);
955 }
956
957 private static long fieldOffset(String fieldName)
958 throws NoSuchFieldException {
959 return UNSAFE.objectFieldOffset
960 (Phaser.class.getDeclaredField(fieldName));
961 }
962
963 static final Unsafe UNSAFE;
964 static final long stateOffset;
965
966 static {
967 try {
968 UNSAFE = getUnsafe();
969 stateOffset = fieldOffset("state");
970 } catch (Throwable e) {
971 throw new RuntimeException("Could not initialize intrinsics", e);
972 }
973 }
974
975 final boolean casState(long cmp, long val) {
976 return UNSAFE.compareAndSwapLong(this, stateOffset, cmp, val);
977 }
978 }