ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/Phaser.java
Revision: 1.20
Committed: Sat Jul 25 00:34:00 2009 UTC (14 years, 9 months ago) by jsr166
Branch: MAIN
Changes since 1.19: +2 -1 lines
Log Message:
Avoid wildcard imports

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/licenses/publicdomain
5 */
6
7 package jsr166y;
8
9 import java.util.concurrent.*;
10
11 import java.util.concurrent.atomic.AtomicReference;
12 import java.util.concurrent.locks.LockSupport;
13
14 /**
15 * A reusable synchronization barrier, similar in functionality to a
16 * {@link java.util.concurrent.CyclicBarrier CyclicBarrier} and
17 * {@link java.util.concurrent.CountDownLatch CountDownLatch}
18 * but supporting more flexible usage.
19 *
20 * <ul>
21 *
22 * <li> The number of parties synchronizing on a phaser may vary over
23 * time. A task may register to be a party at any time, and may
24 * deregister upon arriving at the barrier. As is the case with most
25 * basic synchronization constructs, registration and deregistration
26 * affect only internal counts; they do not establish any further
27 * internal bookkeeping, so tasks cannot query whether they are
28 * registered. (However, you can introduce such bookkeeping by
29 * subclassing this class.)
30 *
31 * <li> Each generation has an associated phase value, starting at
32 * zero, and advancing when all parties reach the barrier (wrapping
33 * around to zero after reaching {@code Integer.MAX_VALUE}).
34 *
35 * <li> Like a CyclicBarrier, a Phaser may be repeatedly awaited.
36 * Method {@code arriveAndAwaitAdvance} has effect analogous to
37 * {@code CyclicBarrier.await}. However, Phasers separate two
38 * aspects of coordination, that may also be invoked independently:
39 *
40 * <ul>
41 *
42 * <li> Arriving at a barrier. Methods {@code arrive} and
43 * {@code arriveAndDeregister} do not block, but return
44 * the phase value current upon entry to the method.
45 *
46 * <li> Awaiting others. Method {@code awaitAdvance} requires an
47 * argument indicating the entry phase, and returns when the
48 * barrier advances to a new phase.
49 * </ul>
50 *
51 *
52 * <li> Barrier actions, performed by the task triggering a phase
53 * advance while others may be waiting, are arranged by overriding
54 * method {@code onAdvance}, that also controls termination.
55 * Overriding this method may be used to similar but more flexible
56 * effect as providing a barrier action to a CyclicBarrier.
57 *
58 * <li> Phasers may enter a <em>termination</em> state in which all
59 * actions immediately return without updating phaser state or waiting
60 * for advance, and indicating (via a negative phase value) that
61 * execution is complete. Termination is triggered by executing the
62 * overridable {@code onAdvance} method that is invoked each time the
63 * barrier is about to be tripped. When a Phaser is controlling an
64 * action with a fixed number of iterations, it is often convenient to
65 * override this method to cause termination when the current phase
66 * number reaches a threshold. Method {@code forceTermination} is also
67 * available to abruptly release waiting threads and allow them to
68 * terminate.
69 *
70 * <li> Phasers may be tiered to reduce contention. Phasers with large
71 * numbers of parties that would otherwise experience heavy
72 * synchronization contention costs may instead be arranged in trees.
73 * This will typically greatly increase throughput even though it
74 * incurs somewhat greater per-operation overhead.
75 *
76 * <li> By default, {@code awaitAdvance} continues to wait even if
77 * the waiting thread is interrupted. And unlike the case in
78 * CyclicBarriers, exceptions encountered while tasks wait
79 * interruptibly or with timeout do not change the state of the
80 * barrier. If necessary, you can perform any associated recovery
81 * within handlers of those exceptions, often after invoking
82 * {@code forceTermination}.
83 *
84 * <li>Phasers ensure lack of starvation when used by ForkJoinTasks.
85 *
86 * </ul>
87 *
88 * <p><b>Sample usages:</b>
89 *
90 * <p>A Phaser may be used instead of a {@code CountDownLatch} to control
91 * a one-shot action serving a variable number of parties. The typical
92 * idiom is for the method setting this up to first register, then
93 * start the actions, then deregister, as in:
94 *
95 * <pre> {@code
96 * void runTasks(List<Runnable> list) {
97 * final Phaser phaser = new Phaser(1); // "1" to register self
98 * for (Runnable r : list) {
99 * phaser.register();
100 * new Thread() {
101 * public void run() {
102 * phaser.arriveAndAwaitAdvance(); // await all creation
103 * r.run();
104 * phaser.arriveAndDeregister(); // signal completion
105 * }
106 * }.start();
107 * }
108 *
109 * doSomethingOnBehalfOfWorkers();
110 * phaser.arrive(); // allow threads to start
111 * int p = phaser.arriveAndDeregister(); // deregister self ...
112 * p = phaser.awaitAdvance(p); // ... and await arrival
113 * otherActions(); // do other things while tasks execute
114 * phaser.awaitAdvance(p); // await final completion
115 * }}</pre>
116 *
117 * <p>One way to cause a set of threads to repeatedly perform actions
118 * for a given number of iterations is to override {@code onAdvance}:
119 *
120 * <pre> {@code
121 * void startTasks(List<Runnable> list, final int iterations) {
122 * final Phaser phaser = new Phaser() {
123 * public boolean onAdvance(int phase, int registeredParties) {
124 * return phase >= iterations || registeredParties == 0;
125 * }
126 * };
127 * phaser.register();
128 * for (Runnable r : list) {
129 * phaser.register();
130 * new Thread() {
131 * public void run() {
132 * do {
133 * r.run();
134 * phaser.arriveAndAwaitAdvance();
135 * } while(!phaser.isTerminated();
136 * }
137 * }.start();
138 * }
139 * phaser.arriveAndDeregister(); // deregister self, don't wait
140 * }}</pre>
141 *
142 * <p> To create a set of tasks using a tree of Phasers,
143 * you could use code of the following form, assuming a
144 * Task class with a constructor accepting a Phaser that
145 * it registers for upon construction:
146 * <pre> {@code
147 * void build(Task[] actions, int lo, int hi, Phaser b) {
148 * int step = (hi - lo) / TASKS_PER_PHASER;
149 * if (step > 1) {
150 * int i = lo;
151 * while (i < hi) {
152 * int r = Math.min(i + step, hi);
153 * build(actions, i, r, new Phaser(b));
154 * i = r;
155 * }
156 * } else {
157 * for (int i = lo; i < hi; ++i)
158 * actions[i] = new Task(b);
159 * // assumes new Task(b) performs b.register()
160 * }
161 * }
162 * // .. initially called, for n tasks via
163 * build(new Task[n], 0, n, new Phaser());}</pre>
164 *
165 * The best value of {@code TASKS_PER_PHASER} depends mainly on
166 * expected barrier synchronization rates. A value as low as four may
167 * be appropriate for extremely small per-barrier task bodies (thus
168 * high rates), or up to hundreds for extremely large ones.
169 *
170 * </pre>
171 *
172 * <p><b>Implementation notes</b>: This implementation restricts the
173 * maximum number of parties to 65535. Attempts to register additional
174 * parties result in IllegalStateExceptions. However, you can and
175 * should create tiered phasers to accommodate arbitrarily large sets
176 * of participants.
177 *
178 * @since 1.7
179 * @author Doug Lea
180 */
181 public class Phaser {
182 /*
183 * This class implements an extension of X10 "clocks". Thanks to
184 * Vijay Saraswat for the idea, and to Vivek Sarkar for
185 * enhancements to extend functionality.
186 */
187
188 /**
189 * Barrier state representation. Conceptually, a barrier contains
190 * four values:
191 *
192 * * parties -- the number of parties to wait (16 bits)
193 * * unarrived -- the number of parties yet to hit barrier (16 bits)
194 * * phase -- the generation of the barrier (31 bits)
195 * * terminated -- set if barrier is terminated (1 bit)
196 *
197 * However, to efficiently maintain atomicity, these values are
198 * packed into a single (atomic) long. Termination uses the sign
199 * bit of 32 bit representation of phase, so phase is set to -1 on
200 * termination. Good performance relies on keeping state decoding
201 * and encoding simple, and keeping race windows short.
202 *
203 * Note: there are some cheats in arrive() that rely on unarrived
204 * count being lowest 16 bits.
205 */
206 private volatile long state;
207
208 private static final int ushortBits = 16;
209 private static final int ushortMask = 0xffff;
210 private static final int phaseMask = 0x7fffffff;
211
212 private static int unarrivedOf(long s) {
213 return (int) (s & ushortMask);
214 }
215
216 private static int partiesOf(long s) {
217 return ((int) s) >>> 16;
218 }
219
220 private static int phaseOf(long s) {
221 return (int) (s >>> 32);
222 }
223
224 private static int arrivedOf(long s) {
225 return partiesOf(s) - unarrivedOf(s);
226 }
227
228 private static long stateFor(int phase, int parties, int unarrived) {
229 return ((((long) phase) << 32) | (((long) parties) << 16) |
230 (long) unarrived);
231 }
232
233 private static long trippedStateFor(int phase, int parties) {
234 long lp = (long) parties;
235 return (((long) phase) << 32) | (lp << 16) | lp;
236 }
237
238 /**
239 * Returns message string for bad bounds exceptions.
240 */
241 private static String badBounds(int parties, int unarrived) {
242 return ("Attempt to set " + unarrived +
243 " unarrived of " + parties + " parties");
244 }
245
246 /**
247 * The parent of this phaser, or null if none
248 */
249 private final Phaser parent;
250
251 /**
252 * The root of Phaser tree. Equals this if not in a tree. Used to
253 * support faster state push-down.
254 */
255 private final Phaser root;
256
257 // Wait queues
258
259 /**
260 * Heads of Treiber stacks for waiting threads. To eliminate
261 * contention while releasing some threads while adding others, we
262 * use two of them, alternating across even and odd phases.
263 */
264 private final AtomicReference<QNode> evenQ = new AtomicReference<QNode>();
265 private final AtomicReference<QNode> oddQ = new AtomicReference<QNode>();
266
267 private AtomicReference<QNode> queueFor(int phase) {
268 return ((phase & 1) == 0) ? evenQ : oddQ;
269 }
270
271 /**
272 * Returns current state, first resolving lagged propagation from
273 * root if necessary.
274 */
275 private long getReconciledState() {
276 return (parent == null) ? state : reconcileState();
277 }
278
279 /**
280 * Recursively resolves state.
281 */
282 private long reconcileState() {
283 Phaser p = parent;
284 long s = state;
285 if (p != null) {
286 while (unarrivedOf(s) == 0 && phaseOf(s) != phaseOf(root.state)) {
287 long parentState = p.getReconciledState();
288 int parentPhase = phaseOf(parentState);
289 int phase = phaseOf(s = state);
290 if (phase != parentPhase) {
291 long next = trippedStateFor(parentPhase, partiesOf(s));
292 if (casState(s, next)) {
293 releaseWaiters(phase);
294 s = next;
295 }
296 }
297 }
298 }
299 return s;
300 }
301
302 /**
303 * Creates a new Phaser without any initially registered parties,
304 * initial phase number 0, and no parent. Any thread using this
305 * Phaser will need to first register for it.
306 */
307 public Phaser() {
308 this(null);
309 }
310
311 /**
312 * Creates a new Phaser with the given numbers of registered
313 * unarrived parties, initial phase number 0, and no parent.
314 *
315 * @param parties the number of parties required to trip barrier
316 * @throws IllegalArgumentException if parties less than zero
317 * or greater than the maximum number of parties supported
318 */
319 public Phaser(int parties) {
320 this(null, parties);
321 }
322
323 /**
324 * Creates a new Phaser with the given parent, without any
325 * initially registered parties. If parent is non-null this phaser
326 * is registered with the parent and its initial phase number is
327 * the same as that of parent phaser.
328 *
329 * @param parent the parent phaser
330 */
331 public Phaser(Phaser parent) {
332 int phase = 0;
333 this.parent = parent;
334 if (parent != null) {
335 this.root = parent.root;
336 phase = parent.register();
337 }
338 else
339 this.root = this;
340 this.state = trippedStateFor(phase, 0);
341 }
342
343 /**
344 * Creates a new Phaser with the given parent and numbers of
345 * registered unarrived parties. If parent is non-null, this phaser
346 * is registered with the parent and its initial phase number is
347 * the same as that of parent phaser.
348 *
349 * @param parent the parent phaser
350 * @param parties the number of parties required to trip barrier
351 * @throws IllegalArgumentException if parties less than zero
352 * or greater than the maximum number of parties supported
353 */
354 public Phaser(Phaser parent, int parties) {
355 if (parties < 0 || parties > ushortMask)
356 throw new IllegalArgumentException("Illegal number of parties");
357 int phase = 0;
358 this.parent = parent;
359 if (parent != null) {
360 this.root = parent.root;
361 phase = parent.register();
362 }
363 else
364 this.root = this;
365 this.state = trippedStateFor(phase, parties);
366 }
367
368 /**
369 * Adds a new unarrived party to this phaser.
370 *
371 * @return the current barrier phase number upon registration
372 * @throws IllegalStateException if attempting to register more
373 * than the maximum supported number of parties
374 */
375 public int register() {
376 return doRegister(1);
377 }
378
379 /**
380 * Adds the given number of new unarrived parties to this phaser.
381 *
382 * @param parties the number of parties required to trip barrier
383 * @return the current barrier phase number upon registration
384 * @throws IllegalStateException if attempting to register more
385 * than the maximum supported number of parties
386 */
387 public int bulkRegister(int parties) {
388 if (parties < 0)
389 throw new IllegalArgumentException();
390 if (parties == 0)
391 return getPhase();
392 return doRegister(parties);
393 }
394
395 /**
396 * Shared code for register, bulkRegister
397 */
398 private int doRegister(int registrations) {
399 int phase;
400 for (;;) {
401 long s = getReconciledState();
402 phase = phaseOf(s);
403 int unarrived = unarrivedOf(s) + registrations;
404 int parties = partiesOf(s) + registrations;
405 if (phase < 0)
406 break;
407 if (parties > ushortMask || unarrived > ushortMask)
408 throw new IllegalStateException(badBounds(parties, unarrived));
409 if (phase == phaseOf(root.state) &&
410 casState(s, stateFor(phase, parties, unarrived)))
411 break;
412 }
413 return phase;
414 }
415
416 /**
417 * Arrives at the barrier, but does not wait for others. (You can
418 * in turn wait for others via {@link #awaitAdvance}).
419 *
420 * @return the barrier phase number upon entry to this method, or a
421 * negative value if terminated
422 * @throws IllegalStateException if not terminated and the number
423 * of unarrived parties would become negative
424 */
425 public int arrive() {
426 int phase;
427 for (;;) {
428 long s = state;
429 phase = phaseOf(s);
430 if (phase < 0)
431 break;
432 int parties = partiesOf(s);
433 int unarrived = unarrivedOf(s) - 1;
434 if (unarrived > 0) { // Not the last arrival
435 if (casState(s, s - 1)) // s-1 adds one arrival
436 break;
437 }
438 else if (unarrived == 0) { // the last arrival
439 Phaser par = parent;
440 if (par == null) { // directly trip
441 if (casState
442 (s,
443 trippedStateFor(onAdvance(phase, parties) ? -1 :
444 ((phase + 1) & phaseMask), parties))) {
445 releaseWaiters(phase);
446 break;
447 }
448 }
449 else { // cascade to parent
450 if (casState(s, s - 1)) { // zeroes unarrived
451 par.arrive();
452 reconcileState();
453 break;
454 }
455 }
456 }
457 else if (phase != phaseOf(root.state)) // or if unreconciled
458 reconcileState();
459 else
460 throw new IllegalStateException(badBounds(parties, unarrived));
461 }
462 return phase;
463 }
464
465 /**
466 * Arrives at the barrier, and deregisters from it, without
467 * waiting for others. Deregistration reduces number of parties
468 * required to trip the barrier in future phases. If this phaser
469 * has a parent, and deregistration causes this phaser to have
470 * zero parties, this phaser is also deregistered from its parent.
471 *
472 * @return the current barrier phase number upon entry to
473 * this method, or a negative value if terminated
474 * @throws IllegalStateException if not terminated and the number
475 * of registered or unarrived parties would become negative
476 */
477 public int arriveAndDeregister() {
478 // similar code to arrive, but too different to merge
479 Phaser par = parent;
480 int phase;
481 for (;;) {
482 long s = state;
483 phase = phaseOf(s);
484 if (phase < 0)
485 break;
486 int parties = partiesOf(s) - 1;
487 int unarrived = unarrivedOf(s) - 1;
488 if (parties >= 0) {
489 if (unarrived > 0 || (unarrived == 0 && par != null)) {
490 if (casState
491 (s,
492 stateFor(phase, parties, unarrived))) {
493 if (unarrived == 0) {
494 par.arriveAndDeregister();
495 reconcileState();
496 }
497 break;
498 }
499 continue;
500 }
501 if (unarrived == 0) {
502 if (casState
503 (s,
504 trippedStateFor(onAdvance(phase, parties) ? -1 :
505 ((phase + 1) & phaseMask), parties))) {
506 releaseWaiters(phase);
507 break;
508 }
509 continue;
510 }
511 if (par != null && phase != phaseOf(root.state)) {
512 reconcileState();
513 continue;
514 }
515 }
516 throw new IllegalStateException(badBounds(parties, unarrived));
517 }
518 return phase;
519 }
520
521 /**
522 * Arrives at the barrier and awaits others. Equivalent in effect
523 * to {@code awaitAdvance(arrive())}. If you instead need to
524 * await with interruption of timeout, and/or deregister upon
525 * arrival, you can arrange them using analogous constructions.
526 *
527 * @return the phase on entry to this method
528 * @throws IllegalStateException if not terminated and the number
529 * of unarrived parties would become negative
530 */
531 public int arriveAndAwaitAdvance() {
532 return awaitAdvance(arrive());
533 }
534
535 /**
536 * Awaits the phase of the barrier to advance from the given
537 * value, or returns immediately if argument is negative or this
538 * barrier is terminated.
539 *
540 * @param phase the phase on entry to this method
541 * @return the phase on exit from this method
542 */
543 public int awaitAdvance(int phase) {
544 if (phase < 0)
545 return phase;
546 long s = getReconciledState();
547 int p = phaseOf(s);
548 if (p != phase)
549 return p;
550 if (unarrivedOf(s) == 0 && parent != null)
551 parent.awaitAdvance(phase);
552 // Fall here even if parent waited, to reconcile and help release
553 return untimedWait(phase);
554 }
555
556 /**
557 * Awaits the phase of the barrier to advance from the given
558 * value, or returns immediately if argument is negative or this
559 * barrier is terminated, or throws InterruptedException if
560 * interrupted while waiting.
561 *
562 * @param phase the phase on entry to this method
563 * @return the phase on exit from this method
564 * @throws InterruptedException if thread interrupted while waiting
565 */
566 public int awaitAdvanceInterruptibly(int phase)
567 throws InterruptedException {
568 if (phase < 0)
569 return phase;
570 long s = getReconciledState();
571 int p = phaseOf(s);
572 if (p != phase)
573 return p;
574 if (unarrivedOf(s) == 0 && parent != null)
575 parent.awaitAdvanceInterruptibly(phase);
576 return interruptibleWait(phase);
577 }
578
579 /**
580 * Awaits the phase of the barrier to advance from the given value
581 * or the given timeout elapses, or returns immediately if
582 * argument is negative or this barrier is terminated.
583 *
584 * @param phase the phase on entry to this method
585 * @return the phase on exit from this method
586 * @throws InterruptedException if thread interrupted while waiting
587 * @throws TimeoutException if timed out while waiting
588 */
589 public int awaitAdvanceInterruptibly(int phase,
590 long timeout, TimeUnit unit)
591 throws InterruptedException, TimeoutException {
592 if (phase < 0)
593 return phase;
594 long s = getReconciledState();
595 int p = phaseOf(s);
596 if (p != phase)
597 return p;
598 if (unarrivedOf(s) == 0 && parent != null)
599 parent.awaitAdvanceInterruptibly(phase, timeout, unit);
600 return timedWait(phase, unit.toNanos(timeout));
601 }
602
603 /**
604 * Forces this barrier to enter termination state. Counts of
605 * arrived and registered parties are unaffected. If this phaser
606 * has a parent, it too is terminated. This method may be useful
607 * for coordinating recovery after one or more tasks encounter
608 * unexpected exceptions.
609 */
610 public void forceTermination() {
611 for (;;) {
612 long s = getReconciledState();
613 int phase = phaseOf(s);
614 int parties = partiesOf(s);
615 int unarrived = unarrivedOf(s);
616 if (phase < 0 ||
617 casState(s, stateFor(-1, parties, unarrived))) {
618 releaseWaiters(0);
619 releaseWaiters(1);
620 if (parent != null)
621 parent.forceTermination();
622 return;
623 }
624 }
625 }
626
627 /**
628 * Returns the current phase number. The maximum phase number is
629 * {@code Integer.MAX_VALUE}, after which it restarts at
630 * zero. Upon termination, the phase number is negative.
631 *
632 * @return the phase number, or a negative value if terminated
633 */
634 public final int getPhase() {
635 return phaseOf(getReconciledState());
636 }
637
638 /**
639 * Returns {@code true} if the current phase number equals the given phase.
640 *
641 * @param phase the phase
642 * @return {@code true} if the current phase number equals the given phase
643 */
644 public final boolean hasPhase(int phase) {
645 return phaseOf(getReconciledState()) == phase;
646 }
647
648 /**
649 * Returns the number of parties registered at this barrier.
650 *
651 * @return the number of parties
652 */
653 public int getRegisteredParties() {
654 return partiesOf(state);
655 }
656
657 /**
658 * Returns the number of parties that have arrived at the current
659 * phase of this barrier.
660 *
661 * @return the number of arrived parties
662 */
663 public int getArrivedParties() {
664 return arrivedOf(state);
665 }
666
667 /**
668 * Returns the number of registered parties that have not yet
669 * arrived at the current phase of this barrier.
670 *
671 * @return the number of unarrived parties
672 */
673 public int getUnarrivedParties() {
674 return unarrivedOf(state);
675 }
676
677 /**
678 * Returns the parent of this phaser, or null if none.
679 *
680 * @return the parent of this phaser, or null if none
681 */
682 public Phaser getParent() {
683 return parent;
684 }
685
686 /**
687 * Returns the root ancestor of this phaser, which is the same as
688 * this phaser if it has no parent.
689 *
690 * @return the root ancestor of this phaser
691 */
692 public Phaser getRoot() {
693 return root;
694 }
695
696 /**
697 * Returns {@code true} if this barrier has been terminated.
698 *
699 * @return {@code true} if this barrier has been terminated
700 */
701 public boolean isTerminated() {
702 return getPhase() < 0;
703 }
704
705 /**
706 * Overridable method to perform an action upon phase advance, and
707 * to control termination. This method is invoked whenever the
708 * barrier is tripped (and thus all other waiting parties are
709 * dormant). If it returns true, then, rather than advance the
710 * phase number, this barrier will be set to a final termination
711 * state, and subsequent calls to {@code isTerminated} will
712 * return true.
713 *
714 * <p> The default version returns true when the number of
715 * registered parties is zero. Normally, overrides that arrange
716 * termination for other reasons should also preserve this
717 * property.
718 *
719 * <p> You may override this method to perform an action with side
720 * effects visible to participating tasks, but it is in general
721 * only sensible to do so in designs where all parties register
722 * before any arrive, and all {@code awaitAdvance} at each phase.
723 * Otherwise, you cannot ensure lack of interference. In
724 * particular, this method may be invoked more than once per
725 * transition if other parties successfully register while the
726 * invocation of this method is in progress, thus postponing the
727 * transition until those parties also arrive, re-triggering this
728 * method.
729 *
730 * @param phase the phase number on entering the barrier
731 * @param registeredParties the current number of registered parties
732 * @return {@code true} if this barrier should terminate
733 */
734 protected boolean onAdvance(int phase, int registeredParties) {
735 return registeredParties <= 0;
736 }
737
738 /**
739 * Returns a string identifying this phaser, as well as its
740 * state. The state, in brackets, includes the String {@code
741 * "phase = "} followed by the phase number, {@code "parties = "}
742 * followed by the number of registered parties, and {@code
743 * "arrived = "} followed by the number of arrived parties.
744 *
745 * @return a string identifying this barrier, as well as its state
746 */
747 public String toString() {
748 long s = getReconciledState();
749 return super.toString() +
750 "[phase = " + phaseOf(s) +
751 " parties = " + partiesOf(s) +
752 " arrived = " + arrivedOf(s) + "]";
753 }
754
755 // methods for waiting
756
757 /**
758 * Wait nodes for Treiber stack representing wait queue
759 */
760 static final class QNode implements ForkJoinPool.ManagedBlocker {
761 final Phaser phaser;
762 final int phase;
763 final long startTime;
764 final long nanos;
765 final boolean timed;
766 final boolean interruptible;
767 volatile boolean wasInterrupted = false;
768 volatile Thread thread; // nulled to cancel wait
769 QNode next;
770 QNode(Phaser phaser, int phase, boolean interruptible,
771 boolean timed, long startTime, long nanos) {
772 this.phaser = phaser;
773 this.phase = phase;
774 this.timed = timed;
775 this.interruptible = interruptible;
776 this.startTime = startTime;
777 this.nanos = nanos;
778 thread = Thread.currentThread();
779 }
780 public boolean isReleasable() {
781 return (thread == null ||
782 phaser.getPhase() != phase ||
783 (interruptible && wasInterrupted) ||
784 (timed && (nanos - (System.nanoTime() - startTime)) <= 0));
785 }
786 public boolean block() {
787 if (Thread.interrupted()) {
788 wasInterrupted = true;
789 if (interruptible)
790 return true;
791 }
792 if (!timed)
793 LockSupport.park(this);
794 else {
795 long waitTime = nanos - (System.nanoTime() - startTime);
796 if (waitTime <= 0)
797 return true;
798 LockSupport.parkNanos(this, waitTime);
799 }
800 return isReleasable();
801 }
802 void signal() {
803 Thread t = thread;
804 if (t != null) {
805 thread = null;
806 LockSupport.unpark(t);
807 }
808 }
809 boolean doWait() {
810 if (thread != null) {
811 try {
812 ForkJoinPool.managedBlock(this, false);
813 } catch (InterruptedException ie) {
814 }
815 }
816 return wasInterrupted;
817 }
818
819 }
820
821 /**
822 * Removes and signals waiting threads from wait queue.
823 */
824 private void releaseWaiters(int phase) {
825 AtomicReference<QNode> head = queueFor(phase);
826 QNode q;
827 while ((q = head.get()) != null) {
828 if (head.compareAndSet(q, q.next))
829 q.signal();
830 }
831 }
832
833 /**
834 * Tries to enqueue given node in the appropriate wait queue.
835 *
836 * @return true if successful
837 */
838 private boolean tryEnqueue(QNode node) {
839 AtomicReference<QNode> head = queueFor(node.phase);
840 return head.compareAndSet(node.next = head.get(), node);
841 }
842
843 /**
844 * Enqueues node and waits unless aborted or signalled.
845 *
846 * @return current phase
847 */
848 private int untimedWait(int phase) {
849 QNode node = null;
850 boolean queued = false;
851 boolean interrupted = false;
852 int p;
853 while ((p = getPhase()) == phase) {
854 if (Thread.interrupted())
855 interrupted = true;
856 else if (node == null)
857 node = new QNode(this, phase, false, false, 0, 0);
858 else if (!queued)
859 queued = tryEnqueue(node);
860 else
861 interrupted = node.doWait();
862 }
863 if (node != null)
864 node.thread = null;
865 releaseWaiters(phase);
866 if (interrupted)
867 Thread.currentThread().interrupt();
868 return p;
869 }
870
871 /**
872 * Interruptible version
873 * @return current phase
874 */
875 private int interruptibleWait(int phase) throws InterruptedException {
876 QNode node = null;
877 boolean queued = false;
878 boolean interrupted = false;
879 int p;
880 while ((p = getPhase()) == phase && !interrupted) {
881 if (Thread.interrupted())
882 interrupted = true;
883 else if (node == null)
884 node = new QNode(this, phase, true, false, 0, 0);
885 else if (!queued)
886 queued = tryEnqueue(node);
887 else
888 interrupted = node.doWait();
889 }
890 if (node != null)
891 node.thread = null;
892 if (p != phase || (p = getPhase()) != phase)
893 releaseWaiters(phase);
894 if (interrupted)
895 throw new InterruptedException();
896 return p;
897 }
898
899 /**
900 * Timeout version.
901 * @return current phase
902 */
903 private int timedWait(int phase, long nanos)
904 throws InterruptedException, TimeoutException {
905 long startTime = System.nanoTime();
906 QNode node = null;
907 boolean queued = false;
908 boolean interrupted = false;
909 int p;
910 while ((p = getPhase()) == phase && !interrupted) {
911 if (Thread.interrupted())
912 interrupted = true;
913 else if (nanos - (System.nanoTime() - startTime) <= 0)
914 break;
915 else if (node == null)
916 node = new QNode(this, phase, true, true, startTime, nanos);
917 else if (!queued)
918 queued = tryEnqueue(node);
919 else
920 interrupted = node.doWait();
921 }
922 if (node != null)
923 node.thread = null;
924 if (p != phase || (p = getPhase()) != phase)
925 releaseWaiters(phase);
926 if (interrupted)
927 throw new InterruptedException();
928 if (p == phase)
929 throw new TimeoutException();
930 return p;
931 }
932
933 // Unsafe mechanics for jsr166y 3rd party package.
934 private static sun.misc.Unsafe getUnsafe() {
935 try {
936 return sun.misc.Unsafe.getUnsafe();
937 } catch (SecurityException se) {
938 try {
939 return java.security.AccessController.doPrivileged
940 (new java.security.PrivilegedExceptionAction<sun.misc.Unsafe>() {
941 public sun.misc.Unsafe run() throws Exception {
942 return getUnsafeByReflection();
943 }});
944 } catch (java.security.PrivilegedActionException e) {
945 throw new RuntimeException("Could not initialize intrinsics",
946 e.getCause());
947 }
948 }
949 }
950
951 private static sun.misc.Unsafe getUnsafeByReflection()
952 throws NoSuchFieldException, IllegalAccessException {
953 java.lang.reflect.Field f =
954 sun.misc.Unsafe.class.getDeclaredField("theUnsafe");
955 f.setAccessible(true);
956 return (sun.misc.Unsafe) f.get(null);
957 }
958
959 private static long fieldOffset(String fieldName, Class<?> klazz) {
960 try {
961 return UNSAFE.objectFieldOffset(klazz.getDeclaredField(fieldName));
962 } catch (NoSuchFieldException e) {
963 // Convert Exception to Error
964 NoSuchFieldError error = new NoSuchFieldError(fieldName);
965 error.initCause(e);
966 throw error;
967 }
968 }
969
970 private static final sun.misc.Unsafe UNSAFE = getUnsafe();
971 static final long stateOffset =
972 fieldOffset("state", Phaser.class);
973
974 final boolean casState(long cmp, long val) {
975 return UNSAFE.compareAndSwapLong(this, stateOffset, cmp, val);
976 }
977 }