ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/Phaser.java
Revision: 1.28
Committed: Wed Aug 12 02:24:35 2009 UTC (14 years, 8 months ago) by jsr166
Branch: MAIN
Changes since 1.27: +1 -1 lines
Log Message:
cosmetic improvement

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/licenses/publicdomain
5 */
6
7 package jsr166y;
8
9 import java.util.concurrent.*;
10
11 import java.util.concurrent.atomic.AtomicReference;
12 import java.util.concurrent.locks.LockSupport;
13
14 /**
15 * A reusable synchronization barrier, similar in functionality to a
16 * {@link java.util.concurrent.CyclicBarrier CyclicBarrier} and
17 * {@link java.util.concurrent.CountDownLatch CountDownLatch}
18 * but supporting more flexible usage.
19 *
20 * <ul>
21 *
22 * <li> The number of parties synchronizing on a phaser may vary over
23 * time. A task may register to be a party at any time, and may
24 * deregister upon arriving at the barrier. As is the case with most
25 * basic synchronization constructs, registration and deregistration
26 * affect only internal counts; they do not establish any further
27 * internal bookkeeping, so tasks cannot query whether they are
28 * registered. (However, you can introduce such bookkeeping by
29 * subclassing this class.)
30 *
31 * <li> Each generation has an associated phase value, starting at
32 * zero, and advancing when all parties reach the barrier (wrapping
33 * around to zero after reaching {@code Integer.MAX_VALUE}).
34 *
35 * <li> Like a {@code CyclicBarrier}, a phaser may be repeatedly
36 * awaited. Method {@link #arriveAndAwaitAdvance} has effect
37 * analogous to {@link java.util.concurrent.CyclicBarrier#await
38 * CyclicBarrier.await}. However, phasers separate two aspects of
39 * coordination, which may also be invoked independently:
40 *
41 * <ul>
42 *
43 * <li> Arriving at a barrier. Methods {@link #arrive} and
44 * {@link #arriveAndDeregister} do not block, but return
45 * the phase value current upon entry to the method.
46 *
47 * <li> Awaiting others. Method {@link #awaitAdvance} requires an
48 * argument indicating the entry phase, and returns when the
49 * barrier advances to a new phase.
50 * </ul>
51 *
52 *
53 * <li> Barrier actions, performed by the task triggering a phase
54 * advance, are arranged by overriding method {@link #onAdvance(int,
55 * int)}, which also controls termination. Overriding this method is
56 * similar to, but more flexible than, providing a barrier action to a
57 * {@code CyclicBarrier}.
58 *
59 * <li> Phasers may enter a <em>termination</em> state in which all
60 * actions immediately return without updating phaser state or waiting
61 * for advance, and indicating (via a negative phase value) that
62 * execution is complete. Termination is triggered when an invocation
63 * of {@code onAdvance} returns {@code true}. When a phaser is
64 * controlling an action with a fixed number of iterations, it is
65 * often convenient to override this method to cause termination when
66 * the current phase number reaches a threshold. Method {@link
67 * #forceTermination} is also available to abruptly release waiting
68 * threads and allow them to terminate.
69 *
70 * <li> Phasers may be tiered to reduce contention. Phasers with large
71 * numbers of parties that would otherwise experience heavy
72 * synchronization contention costs may instead be arranged in trees.
73 * This will typically greatly increase throughput even though it
74 * incurs somewhat greater per-operation overhead.
75 *
76 * <li> By default, {@code awaitAdvance} continues to wait even if
77 * the waiting thread is interrupted. And unlike the case in
78 * {@code CyclicBarrier}, exceptions encountered while tasks wait
79 * interruptibly or with timeout do not change the state of the
80 * barrier. If necessary, you can perform any associated recovery
81 * within handlers of those exceptions, often after invoking
82 * {@code forceTermination}.
83 *
84 * <li>Phasers may be used to coordinate tasks executing in a {@link
85 * ForkJoinPool}, which will ensure sufficient parallelism to execute
86 * tasks when others are blocked waiting for a phase to advance.
87 *
88 * </ul>
89 *
90 * <p><b>Sample usages:</b>
91 *
92 * <p>A {@code Phaser} may be used instead of a {@code CountDownLatch}
93 * to control a one-shot action serving a variable number of
94 * parties. The typical idiom is for the method setting this up to
95 * first register, then start the actions, then deregister, as in:
96 *
97 * <pre> {@code
98 * void runTasks(List<Runnable> list) {
99 * final Phaser phaser = new Phaser(1); // "1" to register self
100 * // create and start threads
101 * for (Runnable r : list) {
102 * phaser.register();
103 * new Thread() {
104 * public void run() {
105 * phaser.arriveAndAwaitAdvance(); // await all creation
106 * r.run();
107 * }
108 * }.start();
109 * }
110 *
111 * // allow threads to start and deregister self
112 * phaser.arriveAndDeregister();
113 * }}</pre>
114 *
115 * <p>One way to cause a set of threads to repeatedly perform actions
116 * for a given number of iterations is to override {@code onAdvance}:
117 *
118 * <pre> {@code
119 * void startTasks(List<Runnable> list, final int iterations) {
120 * final Phaser phaser = new Phaser() {
121 * public boolean onAdvance(int phase, int registeredParties) {
122 * return phase >= iterations || registeredParties == 0;
123 * }
124 * };
125 * phaser.register();
126 * for (Runnable r : list) {
127 * phaser.register();
128 * new Thread() {
129 * public void run() {
130 * do {
131 * r.run();
132 * phaser.arriveAndAwaitAdvance();
133 * } while(!phaser.isTerminated();
134 * }
135 * }.start();
136 * }
137 * phaser.arriveAndDeregister(); // deregister self, don't wait
138 * }}</pre>
139 *
140 * <p>To create a set of tasks using a tree of phasers,
141 * you could use code of the following form, assuming a
142 * Task class with a constructor accepting a phaser that
143 * it registers for upon construction:
144 * <pre> {@code
145 * void build(Task[] actions, int lo, int hi, Phaser b) {
146 * int step = (hi - lo) / TASKS_PER_PHASER;
147 * if (step > 1) {
148 * int i = lo;
149 * while (i < hi) {
150 * int r = Math.min(i + step, hi);
151 * build(actions, i, r, new Phaser(b));
152 * i = r;
153 * }
154 * } else {
155 * for (int i = lo; i < hi; ++i)
156 * actions[i] = new Task(b);
157 * // assumes new Task(b) performs b.register()
158 * }
159 * }
160 * // .. initially called, for n tasks via
161 * build(new Task[n], 0, n, new Phaser());}</pre>
162 *
163 * The best value of {@code TASKS_PER_PHASER} depends mainly on
164 * expected barrier synchronization rates. A value as low as four may
165 * be appropriate for extremely small per-barrier task bodies (thus
166 * high rates), or up to hundreds for extremely large ones.
167 *
168 * </pre>
169 *
170 * <p><b>Implementation notes</b>: This implementation restricts the
171 * maximum number of parties to 65535. Attempts to register additional
172 * parties result in IllegalStateExceptions. However, you can and
173 * should create tiered phasers to accommodate arbitrarily large sets
174 * of participants.
175 *
176 * @since 1.7
177 * @author Doug Lea
178 */
179 public class Phaser {
180 /*
181 * This class implements an extension of X10 "clocks". Thanks to
182 * Vijay Saraswat for the idea, and to Vivek Sarkar for
183 * enhancements to extend functionality.
184 */
185
186 /**
187 * Barrier state representation. Conceptually, a barrier contains
188 * four values:
189 *
190 * * parties -- the number of parties to wait (16 bits)
191 * * unarrived -- the number of parties yet to hit barrier (16 bits)
192 * * phase -- the generation of the barrier (31 bits)
193 * * terminated -- set if barrier is terminated (1 bit)
194 *
195 * However, to efficiently maintain atomicity, these values are
196 * packed into a single (atomic) long. Termination uses the sign
197 * bit of 32 bit representation of phase, so phase is set to -1 on
198 * termination. Good performance relies on keeping state decoding
199 * and encoding simple, and keeping race windows short.
200 *
201 * Note: there are some cheats in arrive() that rely on unarrived
202 * count being lowest 16 bits.
203 */
204 private volatile long state;
205
206 private static final int ushortBits = 16;
207 private static final int ushortMask = 0xffff;
208 private static final int phaseMask = 0x7fffffff;
209
210 private static int unarrivedOf(long s) {
211 return (int) (s & ushortMask);
212 }
213
214 private static int partiesOf(long s) {
215 return ((int) s) >>> 16;
216 }
217
218 private static int phaseOf(long s) {
219 return (int) (s >>> 32);
220 }
221
222 private static int arrivedOf(long s) {
223 return partiesOf(s) - unarrivedOf(s);
224 }
225
226 private static long stateFor(int phase, int parties, int unarrived) {
227 return ((((long) phase) << 32) | (((long) parties) << 16) |
228 (long) unarrived);
229 }
230
231 private static long trippedStateFor(int phase, int parties) {
232 long lp = (long) parties;
233 return (((long) phase) << 32) | (lp << 16) | lp;
234 }
235
236 /**
237 * Returns message string for bad bounds exceptions.
238 */
239 private static String badBounds(int parties, int unarrived) {
240 return ("Attempt to set " + unarrived +
241 " unarrived of " + parties + " parties");
242 }
243
244 /**
245 * The parent of this phaser, or null if none
246 */
247 private final Phaser parent;
248
249 /**
250 * The root of phaser tree. Equals this if not in a tree. Used to
251 * support faster state push-down.
252 */
253 private final Phaser root;
254
255 // Wait queues
256
257 /**
258 * Heads of Treiber stacks for waiting threads. To eliminate
259 * contention while releasing some threads while adding others, we
260 * use two of them, alternating across even and odd phases.
261 */
262 private final AtomicReference<QNode> evenQ = new AtomicReference<QNode>();
263 private final AtomicReference<QNode> oddQ = new AtomicReference<QNode>();
264
265 private AtomicReference<QNode> queueFor(int phase) {
266 return ((phase & 1) == 0) ? evenQ : oddQ;
267 }
268
269 /**
270 * Returns current state, first resolving lagged propagation from
271 * root if necessary.
272 */
273 private long getReconciledState() {
274 return (parent == null) ? state : reconcileState();
275 }
276
277 /**
278 * Recursively resolves state.
279 */
280 private long reconcileState() {
281 Phaser p = parent;
282 long s = state;
283 if (p != null) {
284 while (unarrivedOf(s) == 0 && phaseOf(s) != phaseOf(root.state)) {
285 long parentState = p.getReconciledState();
286 int parentPhase = phaseOf(parentState);
287 int phase = phaseOf(s = state);
288 if (phase != parentPhase) {
289 long next = trippedStateFor(parentPhase, partiesOf(s));
290 if (casState(s, next)) {
291 releaseWaiters(phase);
292 s = next;
293 }
294 }
295 }
296 }
297 return s;
298 }
299
300 /**
301 * Creates a new phaser without any initially registered parties,
302 * initial phase number 0, and no parent. Any thread using this
303 * phaser will need to first register for it.
304 */
305 public Phaser() {
306 this(null);
307 }
308
309 /**
310 * Creates a new phaser with the given numbers of registered
311 * unarrived parties, initial phase number 0, and no parent.
312 *
313 * @param parties the number of parties required to trip barrier
314 * @throws IllegalArgumentException if parties less than zero
315 * or greater than the maximum number of parties supported
316 */
317 public Phaser(int parties) {
318 this(null, parties);
319 }
320
321 /**
322 * Creates a new phaser with the given parent, without any
323 * initially registered parties. If parent is non-null this phaser
324 * is registered with the parent and its initial phase number is
325 * the same as that of parent phaser.
326 *
327 * @param parent the parent phaser
328 */
329 public Phaser(Phaser parent) {
330 int phase = 0;
331 this.parent = parent;
332 if (parent != null) {
333 this.root = parent.root;
334 phase = parent.register();
335 }
336 else
337 this.root = this;
338 this.state = trippedStateFor(phase, 0);
339 }
340
341 /**
342 * Creates a new phaser with the given parent and numbers of
343 * registered unarrived parties. If parent is non-null, this phaser
344 * is registered with the parent and its initial phase number is
345 * the same as that of parent phaser.
346 *
347 * @param parent the parent phaser
348 * @param parties the number of parties required to trip barrier
349 * @throws IllegalArgumentException if parties less than zero
350 * or greater than the maximum number of parties supported
351 */
352 public Phaser(Phaser parent, int parties) {
353 if (parties < 0 || parties > ushortMask)
354 throw new IllegalArgumentException("Illegal number of parties");
355 int phase = 0;
356 this.parent = parent;
357 if (parent != null) {
358 this.root = parent.root;
359 phase = parent.register();
360 }
361 else
362 this.root = this;
363 this.state = trippedStateFor(phase, parties);
364 }
365
366 /**
367 * Adds a new unarrived party to this phaser.
368 *
369 * @return the current barrier phase number upon registration
370 * @throws IllegalStateException if attempting to register more
371 * than the maximum supported number of parties
372 */
373 public int register() {
374 return doRegister(1);
375 }
376
377 /**
378 * Adds the given number of new unarrived parties to this phaser.
379 *
380 * @param parties the number of parties required to trip barrier
381 * @return the current barrier phase number upon registration
382 * @throws IllegalStateException if attempting to register more
383 * than the maximum supported number of parties
384 */
385 public int bulkRegister(int parties) {
386 if (parties < 0)
387 throw new IllegalArgumentException();
388 if (parties == 0)
389 return getPhase();
390 return doRegister(parties);
391 }
392
393 /**
394 * Shared code for register, bulkRegister
395 */
396 private int doRegister(int registrations) {
397 int phase;
398 for (;;) {
399 long s = getReconciledState();
400 phase = phaseOf(s);
401 int unarrived = unarrivedOf(s) + registrations;
402 int parties = partiesOf(s) + registrations;
403 if (phase < 0)
404 break;
405 if (parties > ushortMask || unarrived > ushortMask)
406 throw new IllegalStateException(badBounds(parties, unarrived));
407 if (phase == phaseOf(root.state) &&
408 casState(s, stateFor(phase, parties, unarrived)))
409 break;
410 }
411 return phase;
412 }
413
414 /**
415 * Arrives at the barrier, but does not wait for others. (You can
416 * in turn wait for others via {@link #awaitAdvance}).
417 *
418 * @return the barrier phase number upon entry to this method, or a
419 * negative value if terminated
420 * @throws IllegalStateException if not terminated and the number
421 * of unarrived parties would become negative
422 */
423 public int arrive() {
424 int phase;
425 for (;;) {
426 long s = state;
427 phase = phaseOf(s);
428 if (phase < 0)
429 break;
430 int parties = partiesOf(s);
431 int unarrived = unarrivedOf(s) - 1;
432 if (unarrived > 0) { // Not the last arrival
433 if (casState(s, s - 1)) // s-1 adds one arrival
434 break;
435 }
436 else if (unarrived == 0) { // the last arrival
437 Phaser par = parent;
438 if (par == null) { // directly trip
439 if (casState
440 (s,
441 trippedStateFor(onAdvance(phase, parties) ? -1 :
442 ((phase + 1) & phaseMask), parties))) {
443 releaseWaiters(phase);
444 break;
445 }
446 }
447 else { // cascade to parent
448 if (casState(s, s - 1)) { // zeroes unarrived
449 par.arrive();
450 reconcileState();
451 break;
452 }
453 }
454 }
455 else if (phase != phaseOf(root.state)) // or if unreconciled
456 reconcileState();
457 else
458 throw new IllegalStateException(badBounds(parties, unarrived));
459 }
460 return phase;
461 }
462
463 /**
464 * Arrives at the barrier and deregisters from it without waiting
465 * for others. Deregistration reduces the number of parties
466 * required to trip the barrier in future phases. If this phaser
467 * has a parent, and deregistration causes this phaser to have
468 * zero parties, this phaser also arrives at and is deregistered
469 * from its parent.
470 *
471 * @return the current barrier phase number upon entry to
472 * this method, or a negative value if terminated
473 * @throws IllegalStateException if not terminated and the number
474 * of registered or unarrived parties would become negative
475 */
476 public int arriveAndDeregister() {
477 // similar code to arrive, but too different to merge
478 Phaser par = parent;
479 int phase;
480 for (;;) {
481 long s = state;
482 phase = phaseOf(s);
483 if (phase < 0)
484 break;
485 int parties = partiesOf(s) - 1;
486 int unarrived = unarrivedOf(s) - 1;
487 if (parties >= 0) {
488 if (unarrived > 0 || (unarrived == 0 && par != null)) {
489 if (casState
490 (s,
491 stateFor(phase, parties, unarrived))) {
492 if (unarrived == 0) {
493 par.arriveAndDeregister();
494 reconcileState();
495 }
496 break;
497 }
498 continue;
499 }
500 if (unarrived == 0) {
501 if (casState
502 (s,
503 trippedStateFor(onAdvance(phase, parties) ? -1 :
504 ((phase + 1) & phaseMask), parties))) {
505 releaseWaiters(phase);
506 break;
507 }
508 continue;
509 }
510 if (par != null && phase != phaseOf(root.state)) {
511 reconcileState();
512 continue;
513 }
514 }
515 throw new IllegalStateException(badBounds(parties, unarrived));
516 }
517 return phase;
518 }
519
520 /**
521 * Arrives at the barrier and awaits others. Equivalent in effect
522 * to {@code awaitAdvance(arrive())}. If you need to await with
523 * interruption or timeout, you can arrange this with an analogous
524 * construction using one of the other forms of the awaitAdvance
525 * method. If instead you need to deregister upon arrival use
526 * {@code arriveAndDeregister}.
527 *
528 * @return the phase on entry to this method
529 * @throws IllegalStateException if not terminated and the number
530 * of unarrived parties would become negative
531 */
532 public int arriveAndAwaitAdvance() {
533 return awaitAdvance(arrive());
534 }
535
536 /**
537 * Awaits the phase of the barrier to advance from the given phase
538 * value, or returns immediately if the current phase of the barrier
539 * is not equal to the given phase value or this barrier is
540 * terminated.
541 *
542 * @param phase the phase on entry to this method
543 * @return the phase on exit from this method
544 */
545 public int awaitAdvance(int phase) {
546 if (phase < 0)
547 return phase;
548 long s = getReconciledState();
549 int p = phaseOf(s);
550 if (p != phase)
551 return p;
552 if (unarrivedOf(s) == 0 && parent != null)
553 parent.awaitAdvance(phase);
554 // Fall here even if parent waited, to reconcile and help release
555 return untimedWait(phase);
556 }
557
558 /**
559 * Awaits the phase of the barrier to advance from the given
560 * value, or returns immediately if argument is negative or this
561 * barrier is terminated, or throws InterruptedException if
562 * interrupted while waiting.
563 *
564 * @param phase the phase on entry to this method
565 * @return the phase on exit from this method
566 * @throws InterruptedException if thread interrupted while waiting
567 */
568 public int awaitAdvanceInterruptibly(int phase)
569 throws InterruptedException {
570 if (phase < 0)
571 return phase;
572 long s = getReconciledState();
573 int p = phaseOf(s);
574 if (p != phase)
575 return p;
576 if (unarrivedOf(s) == 0 && parent != null)
577 parent.awaitAdvanceInterruptibly(phase);
578 return interruptibleWait(phase);
579 }
580
581 /**
582 * Awaits the phase of the barrier to advance from the given value
583 * or the given timeout elapses, or returns immediately if
584 * argument is negative or this barrier is terminated.
585 *
586 * @param phase the phase on entry to this method
587 * @return the phase on exit from this method
588 * @throws InterruptedException if thread interrupted while waiting
589 * @throws TimeoutException if timed out while waiting
590 */
591 public int awaitAdvanceInterruptibly(int phase,
592 long timeout, TimeUnit unit)
593 throws InterruptedException, TimeoutException {
594 if (phase < 0)
595 return phase;
596 long s = getReconciledState();
597 int p = phaseOf(s);
598 if (p != phase)
599 return p;
600 if (unarrivedOf(s) == 0 && parent != null)
601 parent.awaitAdvanceInterruptibly(phase, timeout, unit);
602 return timedWait(phase, unit.toNanos(timeout));
603 }
604
605 /**
606 * Forces this barrier to enter termination state. Counts of
607 * arrived and registered parties are unaffected. If this phaser
608 * has a parent, it too is terminated. This method may be useful
609 * for coordinating recovery after one or more tasks encounter
610 * unexpected exceptions.
611 */
612 public void forceTermination() {
613 for (;;) {
614 long s = getReconciledState();
615 int phase = phaseOf(s);
616 int parties = partiesOf(s);
617 int unarrived = unarrivedOf(s);
618 if (phase < 0 ||
619 casState(s, stateFor(-1, parties, unarrived))) {
620 releaseWaiters(0);
621 releaseWaiters(1);
622 if (parent != null)
623 parent.forceTermination();
624 return;
625 }
626 }
627 }
628
629 /**
630 * Returns the current phase number. The maximum phase number is
631 * {@code Integer.MAX_VALUE}, after which it restarts at
632 * zero. Upon termination, the phase number is negative.
633 *
634 * @return the phase number, or a negative value if terminated
635 */
636 public final int getPhase() {
637 return phaseOf(getReconciledState());
638 }
639
640 /**
641 * Returns the number of parties registered at this barrier.
642 *
643 * @return the number of parties
644 */
645 public int getRegisteredParties() {
646 return partiesOf(state);
647 }
648
649 /**
650 * Returns the number of parties that have arrived at the current
651 * phase of this barrier.
652 *
653 * @return the number of arrived parties
654 */
655 public int getArrivedParties() {
656 return arrivedOf(state);
657 }
658
659 /**
660 * Returns the number of registered parties that have not yet
661 * arrived at the current phase of this barrier.
662 *
663 * @return the number of unarrived parties
664 */
665 public int getUnarrivedParties() {
666 return unarrivedOf(state);
667 }
668
669 /**
670 * Returns the parent of this phaser, or {@code null} if none.
671 *
672 * @return the parent of this phaser, or {@code null} if none
673 */
674 public Phaser getParent() {
675 return parent;
676 }
677
678 /**
679 * Returns the root ancestor of this phaser, which is the same as
680 * this phaser if it has no parent.
681 *
682 * @return the root ancestor of this phaser
683 */
684 public Phaser getRoot() {
685 return root;
686 }
687
688 /**
689 * Returns {@code true} if this barrier has been terminated.
690 *
691 * @return {@code true} if this barrier has been terminated
692 */
693 public boolean isTerminated() {
694 return getPhase() < 0;
695 }
696
697 /**
698 * Overridable method to perform an action upon phase advance, and
699 * to control termination. This method is invoked whenever the
700 * barrier is tripped (and thus all other waiting parties are
701 * dormant). If it returns {@code true}, then, rather than advance
702 * the phase number, this barrier will be set to a final
703 * termination state, and subsequent calls to {@link #isTerminated}
704 * will return true.
705 *
706 * <p>The default version returns {@code true} when the number of
707 * registered parties is zero. Normally, overrides that arrange
708 * termination for other reasons should also preserve this
709 * property.
710 *
711 * <p>You may override this method to perform an action with side
712 * effects visible to participating tasks, but it is in general
713 * only sensible to do so in designs where all parties register
714 * before any arrive, and all {@link #awaitAdvance} at each phase.
715 * Otherwise, you cannot ensure lack of interference from other
716 * parties during the the invocation of this method.
717 *
718 * @param phase the phase number on entering the barrier
719 * @param registeredParties the current number of registered parties
720 * @return {@code true} if this barrier should terminate
721 */
722 protected boolean onAdvance(int phase, int registeredParties) {
723 return registeredParties <= 0;
724 }
725
726 /**
727 * Returns a string identifying this phaser, as well as its
728 * state. The state, in brackets, includes the String {@code
729 * "phase = "} followed by the phase number, {@code "parties = "}
730 * followed by the number of registered parties, and {@code
731 * "arrived = "} followed by the number of arrived parties.
732 *
733 * @return a string identifying this barrier, as well as its state
734 */
735 public String toString() {
736 long s = getReconciledState();
737 return super.toString() +
738 "[phase = " + phaseOf(s) +
739 " parties = " + partiesOf(s) +
740 " arrived = " + arrivedOf(s) + "]";
741 }
742
743 // methods for waiting
744
745 /**
746 * Wait nodes for Treiber stack representing wait queue
747 */
748 static final class QNode implements ForkJoinPool.ManagedBlocker {
749 final Phaser phaser;
750 final int phase;
751 final long startTime;
752 final long nanos;
753 final boolean timed;
754 final boolean interruptible;
755 volatile boolean wasInterrupted = false;
756 volatile Thread thread; // nulled to cancel wait
757 QNode next;
758 QNode(Phaser phaser, int phase, boolean interruptible,
759 boolean timed, long startTime, long nanos) {
760 this.phaser = phaser;
761 this.phase = phase;
762 this.timed = timed;
763 this.interruptible = interruptible;
764 this.startTime = startTime;
765 this.nanos = nanos;
766 thread = Thread.currentThread();
767 }
768 public boolean isReleasable() {
769 return (thread == null ||
770 phaser.getPhase() != phase ||
771 (interruptible && wasInterrupted) ||
772 (timed && (nanos - (System.nanoTime() - startTime)) <= 0));
773 }
774 public boolean block() {
775 if (Thread.interrupted()) {
776 wasInterrupted = true;
777 if (interruptible)
778 return true;
779 }
780 if (!timed)
781 LockSupport.park(this);
782 else {
783 long waitTime = nanos - (System.nanoTime() - startTime);
784 if (waitTime <= 0)
785 return true;
786 LockSupport.parkNanos(this, waitTime);
787 }
788 return isReleasable();
789 }
790 void signal() {
791 Thread t = thread;
792 if (t != null) {
793 thread = null;
794 LockSupport.unpark(t);
795 }
796 }
797 boolean doWait() {
798 if (thread != null) {
799 try {
800 ForkJoinPool.managedBlock(this, false);
801 } catch (InterruptedException ie) {
802 }
803 }
804 return wasInterrupted;
805 }
806
807 }
808
809 /**
810 * Removes and signals waiting threads from wait queue.
811 */
812 private void releaseWaiters(int phase) {
813 AtomicReference<QNode> head = queueFor(phase);
814 QNode q;
815 while ((q = head.get()) != null) {
816 if (head.compareAndSet(q, q.next))
817 q.signal();
818 }
819 }
820
821 /**
822 * Tries to enqueue given node in the appropriate wait queue.
823 *
824 * @return true if successful
825 */
826 private boolean tryEnqueue(QNode node) {
827 AtomicReference<QNode> head = queueFor(node.phase);
828 return head.compareAndSet(node.next = head.get(), node);
829 }
830
831 /**
832 * Enqueues node and waits unless aborted or signalled.
833 *
834 * @return current phase
835 */
836 private int untimedWait(int phase) {
837 QNode node = null;
838 boolean queued = false;
839 boolean interrupted = false;
840 int p;
841 while ((p = getPhase()) == phase) {
842 if (Thread.interrupted())
843 interrupted = true;
844 else if (node == null)
845 node = new QNode(this, phase, false, false, 0, 0);
846 else if (!queued)
847 queued = tryEnqueue(node);
848 else
849 interrupted = node.doWait();
850 }
851 if (node != null)
852 node.thread = null;
853 releaseWaiters(phase);
854 if (interrupted)
855 Thread.currentThread().interrupt();
856 return p;
857 }
858
859 /**
860 * Interruptible version
861 * @return current phase
862 */
863 private int interruptibleWait(int phase) throws InterruptedException {
864 QNode node = null;
865 boolean queued = false;
866 boolean interrupted = false;
867 int p;
868 while ((p = getPhase()) == phase && !interrupted) {
869 if (Thread.interrupted())
870 interrupted = true;
871 else if (node == null)
872 node = new QNode(this, phase, true, false, 0, 0);
873 else if (!queued)
874 queued = tryEnqueue(node);
875 else
876 interrupted = node.doWait();
877 }
878 if (node != null)
879 node.thread = null;
880 if (p != phase || (p = getPhase()) != phase)
881 releaseWaiters(phase);
882 if (interrupted)
883 throw new InterruptedException();
884 return p;
885 }
886
887 /**
888 * Timeout version.
889 * @return current phase
890 */
891 private int timedWait(int phase, long nanos)
892 throws InterruptedException, TimeoutException {
893 long startTime = System.nanoTime();
894 QNode node = null;
895 boolean queued = false;
896 boolean interrupted = false;
897 int p;
898 while ((p = getPhase()) == phase && !interrupted) {
899 if (Thread.interrupted())
900 interrupted = true;
901 else if (nanos - (System.nanoTime() - startTime) <= 0)
902 break;
903 else if (node == null)
904 node = new QNode(this, phase, true, true, startTime, nanos);
905 else if (!queued)
906 queued = tryEnqueue(node);
907 else
908 interrupted = node.doWait();
909 }
910 if (node != null)
911 node.thread = null;
912 if (p != phase || (p = getPhase()) != phase)
913 releaseWaiters(phase);
914 if (interrupted)
915 throw new InterruptedException();
916 if (p == phase)
917 throw new TimeoutException();
918 return p;
919 }
920
921 // Unsafe mechanics
922
923 private static final sun.misc.Unsafe UNSAFE = getUnsafe();
924 private static final long stateOffset =
925 objectFieldOffset("state", Phaser.class);
926
927 private final boolean casState(long cmp, long val) {
928 return UNSAFE.compareAndSwapLong(this, stateOffset, cmp, val);
929 }
930
931 private static long objectFieldOffset(String field, Class<?> klazz) {
932 try {
933 return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
934 } catch (NoSuchFieldException e) {
935 // Convert Exception to corresponding Error
936 NoSuchFieldError error = new NoSuchFieldError(field);
937 error.initCause(e);
938 throw error;
939 }
940 }
941
942 /**
943 * Returns a sun.misc.Unsafe. Suitable for use in a 3rd party package.
944 * Replace with a simple call to Unsafe.getUnsafe when integrating
945 * into a jdk.
946 *
947 * @return a sun.misc.Unsafe
948 */
949 private static sun.misc.Unsafe getUnsafe() {
950 try {
951 return sun.misc.Unsafe.getUnsafe();
952 } catch (SecurityException se) {
953 try {
954 return java.security.AccessController.doPrivileged
955 (new java.security
956 .PrivilegedExceptionAction<sun.misc.Unsafe>() {
957 public sun.misc.Unsafe run() throws Exception {
958 java.lang.reflect.Field f = sun.misc
959 .Unsafe.class.getDeclaredField("theUnsafe");
960 f.setAccessible(true);
961 return (sun.misc.Unsafe) f.get(null);
962 }});
963 } catch (java.security.PrivilegedActionException e) {
964 throw new RuntimeException("Could not initialize intrinsics",
965 e.getCause());
966 }
967 }
968 }
969 }