ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/Phaser.java
Revision: 1.30
Committed: Wed Aug 19 15:23:18 2009 UTC (14 years, 8 months ago) by dl
Branch: MAIN
Changes since 1.29: +13 -10 lines
Log Message:
Improve awaitAdvance* spec wording

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/licenses/publicdomain
5 */
6
7 package jsr166y;
8
9 import java.util.concurrent.*;
10
11 import java.util.concurrent.atomic.AtomicReference;
12 import java.util.concurrent.locks.LockSupport;
13
14 /**
15 * A reusable synchronization barrier, similar in functionality to a
16 * {@link java.util.concurrent.CyclicBarrier CyclicBarrier} and
17 * {@link java.util.concurrent.CountDownLatch CountDownLatch}
18 * but supporting more flexible usage.
19 *
20 * <ul>
21 *
22 * <li> The number of parties synchronizing on a phaser may vary over
23 * time. A task may register to be a party at any time, and may
24 * deregister upon arriving at the barrier. As is the case with most
25 * basic synchronization constructs, registration and deregistration
26 * affect only internal counts; they do not establish any further
27 * internal bookkeeping, so tasks cannot query whether they are
28 * registered. (However, you can introduce such bookkeeping by
29 * subclassing this class.)
30 *
31 * <li> Each generation has an associated phase value, starting at
32 * zero, and advancing when all parties reach the barrier (wrapping
33 * around to zero after reaching {@code Integer.MAX_VALUE}).
34 *
35 * <li> Like a {@code CyclicBarrier}, a phaser may be repeatedly
36 * awaited. Method {@link #arriveAndAwaitAdvance} has effect
37 * analogous to {@link java.util.concurrent.CyclicBarrier#await
38 * CyclicBarrier.await}. However, phasers separate two aspects of
39 * coordination, which may also be invoked independently:
40 *
41 * <ul>
42 *
43 * <li> Arriving at a barrier. Methods {@link #arrive} and
44 * {@link #arriveAndDeregister} do not block, but return
45 * the phase value current upon entry to the method.
46 *
47 * <li> Awaiting others. Method {@link #awaitAdvance} requires an
48 * argument indicating the entry phase, and returns when the
49 * barrier advances to a new phase.
50 * </ul>
51 *
52 *
53 * <li> Barrier actions, performed by the task triggering a phase
54 * advance, are arranged by overriding method {@link #onAdvance(int,
55 * int)}, which also controls termination. Overriding this method is
56 * similar to, but more flexible than, providing a barrier action to a
57 * {@code CyclicBarrier}.
58 *
59 * <li> Phasers may enter a <em>termination</em> state in which all
60 * actions immediately return without updating phaser state or waiting
61 * for advance, and indicating (via a negative phase value) that
62 * execution is complete. Termination is triggered when an invocation
63 * of {@code onAdvance} returns {@code true}. When a phaser is
64 * controlling an action with a fixed number of iterations, it is
65 * often convenient to override this method to cause termination when
66 * the current phase number reaches a threshold. Method {@link
67 * #forceTermination} is also available to abruptly release waiting
68 * threads and allow them to terminate.
69 *
70 * <li> Phasers may be tiered to reduce contention. Phasers with large
71 * numbers of parties that would otherwise experience heavy
72 * synchronization contention costs may instead be arranged in trees.
73 * This will typically greatly increase throughput even though it
74 * incurs somewhat greater per-operation overhead.
75 *
76 * <li> By default, {@code awaitAdvance} continues to wait even if
77 * the waiting thread is interrupted. And unlike the case in
78 * {@code CyclicBarrier}, exceptions encountered while tasks wait
79 * interruptibly or with timeout do not change the state of the
80 * barrier. If necessary, you can perform any associated recovery
81 * within handlers of those exceptions, often after invoking
82 * {@code forceTermination}.
83 *
84 * <li>Phasers may be used to coordinate tasks executing in a {@link
85 * ForkJoinPool}, which will ensure sufficient parallelism to execute
86 * tasks when others are blocked waiting for a phase to advance.
87 *
88 * </ul>
89 *
90 * <p><b>Sample usages:</b>
91 *
92 * <p>A {@code Phaser} may be used instead of a {@code CountDownLatch}
93 * to control a one-shot action serving a variable number of
94 * parties. The typical idiom is for the method setting this up to
95 * first register, then start the actions, then deregister, as in:
96 *
97 * <pre> {@code
98 * void runTasks(List<Runnable> list) {
99 * final Phaser phaser = new Phaser(1); // "1" to register self
100 * // create and start threads
101 * for (Runnable r : list) {
102 * phaser.register();
103 * new Thread() {
104 * public void run() {
105 * phaser.arriveAndAwaitAdvance(); // await all creation
106 * r.run();
107 * }
108 * }.start();
109 * }
110 *
111 * // allow threads to start and deregister self
112 * phaser.arriveAndDeregister();
113 * }}</pre>
114 *
115 * <p>One way to cause a set of threads to repeatedly perform actions
116 * for a given number of iterations is to override {@code onAdvance}:
117 *
118 * <pre> {@code
119 * void startTasks(List<Runnable> list, final int iterations) {
120 * final Phaser phaser = new Phaser() {
121 * public boolean onAdvance(int phase, int registeredParties) {
122 * return phase >= iterations || registeredParties == 0;
123 * }
124 * };
125 * phaser.register();
126 * for (Runnable r : list) {
127 * phaser.register();
128 * new Thread() {
129 * public void run() {
130 * do {
131 * r.run();
132 * phaser.arriveAndAwaitAdvance();
133 * } while(!phaser.isTerminated();
134 * }
135 * }.start();
136 * }
137 * phaser.arriveAndDeregister(); // deregister self, don't wait
138 * }}</pre>
139 *
140 * <p>To create a set of tasks using a tree of phasers,
141 * you could use code of the following form, assuming a
142 * Task class with a constructor accepting a phaser that
143 * it registers for upon construction:
144 * <pre> {@code
145 * void build(Task[] actions, int lo, int hi, Phaser b) {
146 * int step = (hi - lo) / TASKS_PER_PHASER;
147 * if (step > 1) {
148 * int i = lo;
149 * while (i < hi) {
150 * int r = Math.min(i + step, hi);
151 * build(actions, i, r, new Phaser(b));
152 * i = r;
153 * }
154 * } else {
155 * for (int i = lo; i < hi; ++i)
156 * actions[i] = new Task(b);
157 * // assumes new Task(b) performs b.register()
158 * }
159 * }
160 * // .. initially called, for n tasks via
161 * build(new Task[n], 0, n, new Phaser());}</pre>
162 *
163 * The best value of {@code TASKS_PER_PHASER} depends mainly on
164 * expected barrier synchronization rates. A value as low as four may
165 * be appropriate for extremely small per-barrier task bodies (thus
166 * high rates), or up to hundreds for extremely large ones.
167 *
168 * </pre>
169 *
170 * <p><b>Implementation notes</b>: This implementation restricts the
171 * maximum number of parties to 65535. Attempts to register additional
172 * parties result in IllegalStateExceptions. However, you can and
173 * should create tiered phasers to accommodate arbitrarily large sets
174 * of participants.
175 *
176 * @since 1.7
177 * @author Doug Lea
178 */
179 public class Phaser {
180 /*
181 * This class implements an extension of X10 "clocks". Thanks to
182 * Vijay Saraswat for the idea, and to Vivek Sarkar for
183 * enhancements to extend functionality.
184 */
185
186 /**
187 * Barrier state representation. Conceptually, a barrier contains
188 * four values:
189 *
190 * * parties -- the number of parties to wait (16 bits)
191 * * unarrived -- the number of parties yet to hit barrier (16 bits)
192 * * phase -- the generation of the barrier (31 bits)
193 * * terminated -- set if barrier is terminated (1 bit)
194 *
195 * However, to efficiently maintain atomicity, these values are
196 * packed into a single (atomic) long. Termination uses the sign
197 * bit of 32 bit representation of phase, so phase is set to -1 on
198 * termination. Good performance relies on keeping state decoding
199 * and encoding simple, and keeping race windows short.
200 *
201 * Note: there are some cheats in arrive() that rely on unarrived
202 * count being lowest 16 bits.
203 */
204 private volatile long state;
205
206 private static final int ushortBits = 16;
207 private static final int ushortMask = 0xffff;
208 private static final int phaseMask = 0x7fffffff;
209
210 private static int unarrivedOf(long s) {
211 return (int) (s & ushortMask);
212 }
213
214 private static int partiesOf(long s) {
215 return ((int) s) >>> 16;
216 }
217
218 private static int phaseOf(long s) {
219 return (int) (s >>> 32);
220 }
221
222 private static int arrivedOf(long s) {
223 return partiesOf(s) - unarrivedOf(s);
224 }
225
226 private static long stateFor(int phase, int parties, int unarrived) {
227 return ((((long) phase) << 32) | (((long) parties) << 16) |
228 (long) unarrived);
229 }
230
231 private static long trippedStateFor(int phase, int parties) {
232 long lp = (long) parties;
233 return (((long) phase) << 32) | (lp << 16) | lp;
234 }
235
236 /**
237 * Returns message string for bad bounds exceptions.
238 */
239 private static String badBounds(int parties, int unarrived) {
240 return ("Attempt to set " + unarrived +
241 " unarrived of " + parties + " parties");
242 }
243
244 /**
245 * The parent of this phaser, or null if none
246 */
247 private final Phaser parent;
248
249 /**
250 * The root of phaser tree. Equals this if not in a tree. Used to
251 * support faster state push-down.
252 */
253 private final Phaser root;
254
255 // Wait queues
256
257 /**
258 * Heads of Treiber stacks for waiting threads. To eliminate
259 * contention while releasing some threads while adding others, we
260 * use two of them, alternating across even and odd phases.
261 */
262 private final AtomicReference<QNode> evenQ = new AtomicReference<QNode>();
263 private final AtomicReference<QNode> oddQ = new AtomicReference<QNode>();
264
265 private AtomicReference<QNode> queueFor(int phase) {
266 return ((phase & 1) == 0) ? evenQ : oddQ;
267 }
268
269 /**
270 * Returns current state, first resolving lagged propagation from
271 * root if necessary.
272 */
273 private long getReconciledState() {
274 return (parent == null) ? state : reconcileState();
275 }
276
277 /**
278 * Recursively resolves state.
279 */
280 private long reconcileState() {
281 Phaser p = parent;
282 long s = state;
283 if (p != null) {
284 while (unarrivedOf(s) == 0 && phaseOf(s) != phaseOf(root.state)) {
285 long parentState = p.getReconciledState();
286 int parentPhase = phaseOf(parentState);
287 int phase = phaseOf(s = state);
288 if (phase != parentPhase) {
289 long next = trippedStateFor(parentPhase, partiesOf(s));
290 if (casState(s, next)) {
291 releaseWaiters(phase);
292 s = next;
293 }
294 }
295 }
296 }
297 return s;
298 }
299
300 /**
301 * Creates a new phaser without any initially registered parties,
302 * initial phase number 0, and no parent. Any thread using this
303 * phaser will need to first register for it.
304 */
305 public Phaser() {
306 this(null);
307 }
308
309 /**
310 * Creates a new phaser with the given numbers of registered
311 * unarrived parties, initial phase number 0, and no parent.
312 *
313 * @param parties the number of parties required to trip barrier
314 * @throws IllegalArgumentException if parties less than zero
315 * or greater than the maximum number of parties supported
316 */
317 public Phaser(int parties) {
318 this(null, parties);
319 }
320
321 /**
322 * Creates a new phaser with the given parent, without any
323 * initially registered parties. If parent is non-null this phaser
324 * is registered with the parent and its initial phase number is
325 * the same as that of parent phaser.
326 *
327 * @param parent the parent phaser
328 */
329 public Phaser(Phaser parent) {
330 int phase = 0;
331 this.parent = parent;
332 if (parent != null) {
333 this.root = parent.root;
334 phase = parent.register();
335 }
336 else
337 this.root = this;
338 this.state = trippedStateFor(phase, 0);
339 }
340
341 /**
342 * Creates a new phaser with the given parent and numbers of
343 * registered unarrived parties. If parent is non-null, this phaser
344 * is registered with the parent and its initial phase number is
345 * the same as that of parent phaser.
346 *
347 * @param parent the parent phaser
348 * @param parties the number of parties required to trip barrier
349 * @throws IllegalArgumentException if parties less than zero
350 * or greater than the maximum number of parties supported
351 */
352 public Phaser(Phaser parent, int parties) {
353 if (parties < 0 || parties > ushortMask)
354 throw new IllegalArgumentException("Illegal number of parties");
355 int phase = 0;
356 this.parent = parent;
357 if (parent != null) {
358 this.root = parent.root;
359 phase = parent.register();
360 }
361 else
362 this.root = this;
363 this.state = trippedStateFor(phase, parties);
364 }
365
366 /**
367 * Adds a new unarrived party to this phaser.
368 *
369 * @return the current barrier phase number upon registration
370 * @throws IllegalStateException if attempting to register more
371 * than the maximum supported number of parties
372 */
373 public int register() {
374 return doRegister(1);
375 }
376
377 /**
378 * Adds the given number of new unarrived parties to this phaser.
379 *
380 * @param parties the number of parties required to trip barrier
381 * @return the current barrier phase number upon registration
382 * @throws IllegalStateException if attempting to register more
383 * than the maximum supported number of parties
384 */
385 public int bulkRegister(int parties) {
386 if (parties < 0)
387 throw new IllegalArgumentException();
388 if (parties == 0)
389 return getPhase();
390 return doRegister(parties);
391 }
392
393 /**
394 * Shared code for register, bulkRegister
395 */
396 private int doRegister(int registrations) {
397 int phase;
398 for (;;) {
399 long s = getReconciledState();
400 phase = phaseOf(s);
401 int unarrived = unarrivedOf(s) + registrations;
402 int parties = partiesOf(s) + registrations;
403 if (phase < 0)
404 break;
405 if (parties > ushortMask || unarrived > ushortMask)
406 throw new IllegalStateException(badBounds(parties, unarrived));
407 if (phase == phaseOf(root.state) &&
408 casState(s, stateFor(phase, parties, unarrived)))
409 break;
410 }
411 return phase;
412 }
413
414 /**
415 * Arrives at the barrier, but does not wait for others. (You can
416 * in turn wait for others via {@link #awaitAdvance}).
417 *
418 * @return the barrier phase number upon entry to this method, or a
419 * negative value if terminated
420 * @throws IllegalStateException if not terminated and the number
421 * of unarrived parties would become negative
422 */
423 public int arrive() {
424 int phase;
425 for (;;) {
426 long s = state;
427 phase = phaseOf(s);
428 if (phase < 0)
429 break;
430 int parties = partiesOf(s);
431 int unarrived = unarrivedOf(s) - 1;
432 if (unarrived > 0) { // Not the last arrival
433 if (casState(s, s - 1)) // s-1 adds one arrival
434 break;
435 }
436 else if (unarrived == 0) { // the last arrival
437 Phaser par = parent;
438 if (par == null) { // directly trip
439 if (casState
440 (s,
441 trippedStateFor(onAdvance(phase, parties) ? -1 :
442 ((phase + 1) & phaseMask), parties))) {
443 releaseWaiters(phase);
444 break;
445 }
446 }
447 else { // cascade to parent
448 if (casState(s, s - 1)) { // zeroes unarrived
449 par.arrive();
450 reconcileState();
451 break;
452 }
453 }
454 }
455 else if (phase != phaseOf(root.state)) // or if unreconciled
456 reconcileState();
457 else
458 throw new IllegalStateException(badBounds(parties, unarrived));
459 }
460 return phase;
461 }
462
463 /**
464 * Arrives at the barrier and deregisters from it without waiting
465 * for others. Deregistration reduces the number of parties
466 * required to trip the barrier in future phases. If this phaser
467 * has a parent, and deregistration causes this phaser to have
468 * zero parties, this phaser also arrives at and is deregistered
469 * from its parent.
470 *
471 * @return the current barrier phase number upon entry to
472 * this method, or a negative value if terminated
473 * @throws IllegalStateException if not terminated and the number
474 * of registered or unarrived parties would become negative
475 */
476 public int arriveAndDeregister() {
477 // similar code to arrive, but too different to merge
478 Phaser par = parent;
479 int phase;
480 for (;;) {
481 long s = state;
482 phase = phaseOf(s);
483 if (phase < 0)
484 break;
485 int parties = partiesOf(s) - 1;
486 int unarrived = unarrivedOf(s) - 1;
487 if (parties >= 0) {
488 if (unarrived > 0 || (unarrived == 0 && par != null)) {
489 if (casState
490 (s,
491 stateFor(phase, parties, unarrived))) {
492 if (unarrived == 0) {
493 par.arriveAndDeregister();
494 reconcileState();
495 }
496 break;
497 }
498 continue;
499 }
500 if (unarrived == 0) {
501 if (casState
502 (s,
503 trippedStateFor(onAdvance(phase, parties) ? -1 :
504 ((phase + 1) & phaseMask), parties))) {
505 releaseWaiters(phase);
506 break;
507 }
508 continue;
509 }
510 if (par != null && phase != phaseOf(root.state)) {
511 reconcileState();
512 continue;
513 }
514 }
515 throw new IllegalStateException(badBounds(parties, unarrived));
516 }
517 return phase;
518 }
519
520 /**
521 * Arrives at the barrier and awaits others. Equivalent in effect
522 * to {@code awaitAdvance(arrive())}. If you need to await with
523 * interruption or timeout, you can arrange this with an analogous
524 * construction using one of the other forms of the awaitAdvance
525 * method. If instead you need to deregister upon arrival use
526 * {@code arriveAndDeregister}.
527 *
528 * @return the phase on entry to this method
529 * @throws IllegalStateException if not terminated and the number
530 * of unarrived parties would become negative
531 */
532 public int arriveAndAwaitAdvance() {
533 return awaitAdvance(arrive());
534 }
535
536 /**
537 * Awaits the phase of the barrier to advance from the given phase
538 * value, returning immediately if the current phase of the
539 * barrier is not equal to the given phase value or this barrier
540 * is terminated.
541 *
542 * @param phase the phase on entry to this method
543 * @return the phase on exit from this method
544 */
545 public int awaitAdvance(int phase) {
546 if (phase < 0)
547 return phase;
548 long s = getReconciledState();
549 int p = phaseOf(s);
550 if (p != phase)
551 return p;
552 if (unarrivedOf(s) == 0 && parent != null)
553 parent.awaitAdvance(phase);
554 // Fall here even if parent waited, to reconcile and help release
555 return untimedWait(phase);
556 }
557
558 /**
559 * Awaits the phase of the barrier to advance from the given phase
560 * value, throwing InterruptedException if interrupted while
561 * waiting, or returning immediately if the current phase of the
562 * barrier is not equal to the given phase value or this barrier
563 * is terminated
564 *
565 * @param phase the phase on entry to this method
566 * @return the phase on exit from this method
567 * @throws InterruptedException if thread interrupted while waiting
568 */
569 public int awaitAdvanceInterruptibly(int phase)
570 throws InterruptedException {
571 if (phase < 0)
572 return phase;
573 long s = getReconciledState();
574 int p = phaseOf(s);
575 if (p != phase)
576 return p;
577 if (unarrivedOf(s) == 0 && parent != null)
578 parent.awaitAdvanceInterruptibly(phase);
579 return interruptibleWait(phase);
580 }
581
582 /**
583 * Awaits the phase of the barrier to advance from the given phase
584 * value or the given timeout elapses, throwing
585 * InterruptedException if interrupted while waiting, or returning
586 * immediately if the current phase of the barrier is not equal to
587 * the given phase value or this barrier is terminated.
588 *
589 * @param phase the phase on entry to this method
590 * @return the phase on exit from this method
591 * @throws InterruptedException if thread interrupted while waiting
592 * @throws TimeoutException if timed out while waiting
593 */
594 public int awaitAdvanceInterruptibly(int phase,
595 long timeout, TimeUnit unit)
596 throws InterruptedException, TimeoutException {
597 if (phase < 0)
598 return phase;
599 long s = getReconciledState();
600 int p = phaseOf(s);
601 if (p != phase)
602 return p;
603 if (unarrivedOf(s) == 0 && parent != null)
604 parent.awaitAdvanceInterruptibly(phase, timeout, unit);
605 return timedWait(phase, unit.toNanos(timeout));
606 }
607
608 /**
609 * Forces this barrier to enter termination state. Counts of
610 * arrived and registered parties are unaffected. If this phaser
611 * has a parent, it too is terminated. This method may be useful
612 * for coordinating recovery after one or more tasks encounter
613 * unexpected exceptions.
614 */
615 public void forceTermination() {
616 for (;;) {
617 long s = getReconciledState();
618 int phase = phaseOf(s);
619 int parties = partiesOf(s);
620 int unarrived = unarrivedOf(s);
621 if (phase < 0 ||
622 casState(s, stateFor(-1, parties, unarrived))) {
623 releaseWaiters(0);
624 releaseWaiters(1);
625 if (parent != null)
626 parent.forceTermination();
627 return;
628 }
629 }
630 }
631
632 /**
633 * Returns the current phase number. The maximum phase number is
634 * {@code Integer.MAX_VALUE}, after which it restarts at
635 * zero. Upon termination, the phase number is negative.
636 *
637 * @return the phase number, or a negative value if terminated
638 */
639 public final int getPhase() {
640 return phaseOf(getReconciledState());
641 }
642
643 /**
644 * Returns the number of parties registered at this barrier.
645 *
646 * @return the number of parties
647 */
648 public int getRegisteredParties() {
649 return partiesOf(state);
650 }
651
652 /**
653 * Returns the number of parties that have arrived at the current
654 * phase of this barrier.
655 *
656 * @return the number of arrived parties
657 */
658 public int getArrivedParties() {
659 return arrivedOf(state);
660 }
661
662 /**
663 * Returns the number of registered parties that have not yet
664 * arrived at the current phase of this barrier.
665 *
666 * @return the number of unarrived parties
667 */
668 public int getUnarrivedParties() {
669 return unarrivedOf(state);
670 }
671
672 /**
673 * Returns the parent of this phaser, or {@code null} if none.
674 *
675 * @return the parent of this phaser, or {@code null} if none
676 */
677 public Phaser getParent() {
678 return parent;
679 }
680
681 /**
682 * Returns the root ancestor of this phaser, which is the same as
683 * this phaser if it has no parent.
684 *
685 * @return the root ancestor of this phaser
686 */
687 public Phaser getRoot() {
688 return root;
689 }
690
691 /**
692 * Returns {@code true} if this barrier has been terminated.
693 *
694 * @return {@code true} if this barrier has been terminated
695 */
696 public boolean isTerminated() {
697 return getPhase() < 0;
698 }
699
700 /**
701 * Overridable method to perform an action upon phase advance, and
702 * to control termination. This method is invoked whenever the
703 * barrier is tripped (and thus all other waiting parties are
704 * dormant). If it returns {@code true}, then, rather than advance
705 * the phase number, this barrier will be set to a final
706 * termination state, and subsequent calls to {@link #isTerminated}
707 * will return true.
708 *
709 * <p>The default version returns {@code true} when the number of
710 * registered parties is zero. Normally, overrides that arrange
711 * termination for other reasons should also preserve this
712 * property.
713 *
714 * <p>You may override this method to perform an action with side
715 * effects visible to participating tasks, but it is in general
716 * only sensible to do so in designs where all parties register
717 * before any arrive, and all {@link #awaitAdvance} at each phase.
718 * Otherwise, you cannot ensure lack of interference from other
719 * parties during the invocation of this method.
720 *
721 * @param phase the phase number on entering the barrier
722 * @param registeredParties the current number of registered parties
723 * @return {@code true} if this barrier should terminate
724 */
725 protected boolean onAdvance(int phase, int registeredParties) {
726 return registeredParties <= 0;
727 }
728
729 /**
730 * Returns a string identifying this phaser, as well as its
731 * state. The state, in brackets, includes the String {@code
732 * "phase = "} followed by the phase number, {@code "parties = "}
733 * followed by the number of registered parties, and {@code
734 * "arrived = "} followed by the number of arrived parties.
735 *
736 * @return a string identifying this barrier, as well as its state
737 */
738 public String toString() {
739 long s = getReconciledState();
740 return super.toString() +
741 "[phase = " + phaseOf(s) +
742 " parties = " + partiesOf(s) +
743 " arrived = " + arrivedOf(s) + "]";
744 }
745
746 // methods for waiting
747
748 /**
749 * Wait nodes for Treiber stack representing wait queue
750 */
751 static final class QNode implements ForkJoinPool.ManagedBlocker {
752 final Phaser phaser;
753 final int phase;
754 final long startTime;
755 final long nanos;
756 final boolean timed;
757 final boolean interruptible;
758 volatile boolean wasInterrupted = false;
759 volatile Thread thread; // nulled to cancel wait
760 QNode next;
761 QNode(Phaser phaser, int phase, boolean interruptible,
762 boolean timed, long startTime, long nanos) {
763 this.phaser = phaser;
764 this.phase = phase;
765 this.timed = timed;
766 this.interruptible = interruptible;
767 this.startTime = startTime;
768 this.nanos = nanos;
769 thread = Thread.currentThread();
770 }
771 public boolean isReleasable() {
772 return (thread == null ||
773 phaser.getPhase() != phase ||
774 (interruptible && wasInterrupted) ||
775 (timed && (nanos - (System.nanoTime() - startTime)) <= 0));
776 }
777 public boolean block() {
778 if (Thread.interrupted()) {
779 wasInterrupted = true;
780 if (interruptible)
781 return true;
782 }
783 if (!timed)
784 LockSupport.park(this);
785 else {
786 long waitTime = nanos - (System.nanoTime() - startTime);
787 if (waitTime <= 0)
788 return true;
789 LockSupport.parkNanos(this, waitTime);
790 }
791 return isReleasable();
792 }
793 void signal() {
794 Thread t = thread;
795 if (t != null) {
796 thread = null;
797 LockSupport.unpark(t);
798 }
799 }
800 boolean doWait() {
801 if (thread != null) {
802 try {
803 ForkJoinPool.managedBlock(this, false);
804 } catch (InterruptedException ie) {
805 }
806 }
807 return wasInterrupted;
808 }
809
810 }
811
812 /**
813 * Removes and signals waiting threads from wait queue.
814 */
815 private void releaseWaiters(int phase) {
816 AtomicReference<QNode> head = queueFor(phase);
817 QNode q;
818 while ((q = head.get()) != null) {
819 if (head.compareAndSet(q, q.next))
820 q.signal();
821 }
822 }
823
824 /**
825 * Tries to enqueue given node in the appropriate wait queue.
826 *
827 * @return true if successful
828 */
829 private boolean tryEnqueue(QNode node) {
830 AtomicReference<QNode> head = queueFor(node.phase);
831 return head.compareAndSet(node.next = head.get(), node);
832 }
833
834 /**
835 * Enqueues node and waits unless aborted or signalled.
836 *
837 * @return current phase
838 */
839 private int untimedWait(int phase) {
840 QNode node = null;
841 boolean queued = false;
842 boolean interrupted = false;
843 int p;
844 while ((p = getPhase()) == phase) {
845 if (Thread.interrupted())
846 interrupted = true;
847 else if (node == null)
848 node = new QNode(this, phase, false, false, 0, 0);
849 else if (!queued)
850 queued = tryEnqueue(node);
851 else
852 interrupted = node.doWait();
853 }
854 if (node != null)
855 node.thread = null;
856 releaseWaiters(phase);
857 if (interrupted)
858 Thread.currentThread().interrupt();
859 return p;
860 }
861
862 /**
863 * Interruptible version
864 * @return current phase
865 */
866 private int interruptibleWait(int phase) throws InterruptedException {
867 QNode node = null;
868 boolean queued = false;
869 boolean interrupted = false;
870 int p;
871 while ((p = getPhase()) == phase && !interrupted) {
872 if (Thread.interrupted())
873 interrupted = true;
874 else if (node == null)
875 node = new QNode(this, phase, true, false, 0, 0);
876 else if (!queued)
877 queued = tryEnqueue(node);
878 else
879 interrupted = node.doWait();
880 }
881 if (node != null)
882 node.thread = null;
883 if (p != phase || (p = getPhase()) != phase)
884 releaseWaiters(phase);
885 if (interrupted)
886 throw new InterruptedException();
887 return p;
888 }
889
890 /**
891 * Timeout version.
892 * @return current phase
893 */
894 private int timedWait(int phase, long nanos)
895 throws InterruptedException, TimeoutException {
896 long startTime = System.nanoTime();
897 QNode node = null;
898 boolean queued = false;
899 boolean interrupted = false;
900 int p;
901 while ((p = getPhase()) == phase && !interrupted) {
902 if (Thread.interrupted())
903 interrupted = true;
904 else if (nanos - (System.nanoTime() - startTime) <= 0)
905 break;
906 else if (node == null)
907 node = new QNode(this, phase, true, true, startTime, nanos);
908 else if (!queued)
909 queued = tryEnqueue(node);
910 else
911 interrupted = node.doWait();
912 }
913 if (node != null)
914 node.thread = null;
915 if (p != phase || (p = getPhase()) != phase)
916 releaseWaiters(phase);
917 if (interrupted)
918 throw new InterruptedException();
919 if (p == phase)
920 throw new TimeoutException();
921 return p;
922 }
923
924 // Unsafe mechanics
925
926 private static final sun.misc.Unsafe UNSAFE = getUnsafe();
927 private static final long stateOffset =
928 objectFieldOffset("state", Phaser.class);
929
930 private final boolean casState(long cmp, long val) {
931 return UNSAFE.compareAndSwapLong(this, stateOffset, cmp, val);
932 }
933
934 private static long objectFieldOffset(String field, Class<?> klazz) {
935 try {
936 return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
937 } catch (NoSuchFieldException e) {
938 // Convert Exception to corresponding Error
939 NoSuchFieldError error = new NoSuchFieldError(field);
940 error.initCause(e);
941 throw error;
942 }
943 }
944
945 /**
946 * Returns a sun.misc.Unsafe. Suitable for use in a 3rd party package.
947 * Replace with a simple call to Unsafe.getUnsafe when integrating
948 * into a jdk.
949 *
950 * @return a sun.misc.Unsafe
951 */
952 private static sun.misc.Unsafe getUnsafe() {
953 try {
954 return sun.misc.Unsafe.getUnsafe();
955 } catch (SecurityException se) {
956 try {
957 return java.security.AccessController.doPrivileged
958 (new java.security
959 .PrivilegedExceptionAction<sun.misc.Unsafe>() {
960 public sun.misc.Unsafe run() throws Exception {
961 java.lang.reflect.Field f = sun.misc
962 .Unsafe.class.getDeclaredField("theUnsafe");
963 f.setAccessible(true);
964 return (sun.misc.Unsafe) f.get(null);
965 }});
966 } catch (java.security.PrivilegedActionException e) {
967 throw new RuntimeException("Could not initialize intrinsics",
968 e.getCause());
969 }
970 }
971 }
972 }