ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/Phaser.java
Revision: 1.31
Committed: Wed Aug 19 15:50:04 2009 UTC (14 years, 8 months ago) by dl
Branch: MAIN
Changes since 1.30: +4 -0 lines
Log Message:
Add timeout @params

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/licenses/publicdomain
5 */
6
7 package jsr166y;
8
9 import java.util.concurrent.*;
10
11 import java.util.concurrent.atomic.AtomicReference;
12 import java.util.concurrent.locks.LockSupport;
13
14 /**
15 * A reusable synchronization barrier, similar in functionality to a
16 * {@link java.util.concurrent.CyclicBarrier CyclicBarrier} and
17 * {@link java.util.concurrent.CountDownLatch CountDownLatch}
18 * but supporting more flexible usage.
19 *
20 * <ul>
21 *
22 * <li> The number of parties synchronizing on a phaser may vary over
23 * time. A task may register to be a party at any time, and may
24 * deregister upon arriving at the barrier. As is the case with most
25 * basic synchronization constructs, registration and deregistration
26 * affect only internal counts; they do not establish any further
27 * internal bookkeeping, so tasks cannot query whether they are
28 * registered. (However, you can introduce such bookkeeping by
29 * subclassing this class.)
30 *
31 * <li> Each generation has an associated phase value, starting at
32 * zero, and advancing when all parties reach the barrier (wrapping
33 * around to zero after reaching {@code Integer.MAX_VALUE}).
34 *
35 * <li> Like a {@code CyclicBarrier}, a phaser may be repeatedly
36 * awaited. Method {@link #arriveAndAwaitAdvance} has effect
37 * analogous to {@link java.util.concurrent.CyclicBarrier#await
38 * CyclicBarrier.await}. However, phasers separate two aspects of
39 * coordination, which may also be invoked independently:
40 *
41 * <ul>
42 *
43 * <li> Arriving at a barrier. Methods {@link #arrive} and
44 * {@link #arriveAndDeregister} do not block, but return
45 * the phase value current upon entry to the method.
46 *
47 * <li> Awaiting others. Method {@link #awaitAdvance} requires an
48 * argument indicating the entry phase, and returns when the
49 * barrier advances to a new phase.
50 * </ul>
51 *
52 *
53 * <li> Barrier actions, performed by the task triggering a phase
54 * advance, are arranged by overriding method {@link #onAdvance(int,
55 * int)}, which also controls termination. Overriding this method is
56 * similar to, but more flexible than, providing a barrier action to a
57 * {@code CyclicBarrier}.
58 *
59 * <li> Phasers may enter a <em>termination</em> state in which all
60 * actions immediately return without updating phaser state or waiting
61 * for advance, and indicating (via a negative phase value) that
62 * execution is complete. Termination is triggered when an invocation
63 * of {@code onAdvance} returns {@code true}. When a phaser is
64 * controlling an action with a fixed number of iterations, it is
65 * often convenient to override this method to cause termination when
66 * the current phase number reaches a threshold. Method {@link
67 * #forceTermination} is also available to abruptly release waiting
68 * threads and allow them to terminate.
69 *
70 * <li> Phasers may be tiered to reduce contention. Phasers with large
71 * numbers of parties that would otherwise experience heavy
72 * synchronization contention costs may instead be arranged in trees.
73 * This will typically greatly increase throughput even though it
74 * incurs somewhat greater per-operation overhead.
75 *
76 * <li> By default, {@code awaitAdvance} continues to wait even if
77 * the waiting thread is interrupted. And unlike the case in
78 * {@code CyclicBarrier}, exceptions encountered while tasks wait
79 * interruptibly or with timeout do not change the state of the
80 * barrier. If necessary, you can perform any associated recovery
81 * within handlers of those exceptions, often after invoking
82 * {@code forceTermination}.
83 *
84 * <li>Phasers may be used to coordinate tasks executing in a {@link
85 * ForkJoinPool}, which will ensure sufficient parallelism to execute
86 * tasks when others are blocked waiting for a phase to advance.
87 *
88 * </ul>
89 *
90 * <p><b>Sample usages:</b>
91 *
92 * <p>A {@code Phaser} may be used instead of a {@code CountDownLatch}
93 * to control a one-shot action serving a variable number of
94 * parties. The typical idiom is for the method setting this up to
95 * first register, then start the actions, then deregister, as in:
96 *
97 * <pre> {@code
98 * void runTasks(List<Runnable> list) {
99 * final Phaser phaser = new Phaser(1); // "1" to register self
100 * // create and start threads
101 * for (Runnable r : list) {
102 * phaser.register();
103 * new Thread() {
104 * public void run() {
105 * phaser.arriveAndAwaitAdvance(); // await all creation
106 * r.run();
107 * }
108 * }.start();
109 * }
110 *
111 * // allow threads to start and deregister self
112 * phaser.arriveAndDeregister();
113 * }}</pre>
114 *
115 * <p>One way to cause a set of threads to repeatedly perform actions
116 * for a given number of iterations is to override {@code onAdvance}:
117 *
118 * <pre> {@code
119 * void startTasks(List<Runnable> list, final int iterations) {
120 * final Phaser phaser = new Phaser() {
121 * public boolean onAdvance(int phase, int registeredParties) {
122 * return phase >= iterations || registeredParties == 0;
123 * }
124 * };
125 * phaser.register();
126 * for (Runnable r : list) {
127 * phaser.register();
128 * new Thread() {
129 * public void run() {
130 * do {
131 * r.run();
132 * phaser.arriveAndAwaitAdvance();
133 * } while(!phaser.isTerminated();
134 * }
135 * }.start();
136 * }
137 * phaser.arriveAndDeregister(); // deregister self, don't wait
138 * }}</pre>
139 *
140 * <p>To create a set of tasks using a tree of phasers,
141 * you could use code of the following form, assuming a
142 * Task class with a constructor accepting a phaser that
143 * it registers for upon construction:
144 * <pre> {@code
145 * void build(Task[] actions, int lo, int hi, Phaser b) {
146 * int step = (hi - lo) / TASKS_PER_PHASER;
147 * if (step > 1) {
148 * int i = lo;
149 * while (i < hi) {
150 * int r = Math.min(i + step, hi);
151 * build(actions, i, r, new Phaser(b));
152 * i = r;
153 * }
154 * } else {
155 * for (int i = lo; i < hi; ++i)
156 * actions[i] = new Task(b);
157 * // assumes new Task(b) performs b.register()
158 * }
159 * }
160 * // .. initially called, for n tasks via
161 * build(new Task[n], 0, n, new Phaser());}</pre>
162 *
163 * The best value of {@code TASKS_PER_PHASER} depends mainly on
164 * expected barrier synchronization rates. A value as low as four may
165 * be appropriate for extremely small per-barrier task bodies (thus
166 * high rates), or up to hundreds for extremely large ones.
167 *
168 * </pre>
169 *
170 * <p><b>Implementation notes</b>: This implementation restricts the
171 * maximum number of parties to 65535. Attempts to register additional
172 * parties result in IllegalStateExceptions. However, you can and
173 * should create tiered phasers to accommodate arbitrarily large sets
174 * of participants.
175 *
176 * @since 1.7
177 * @author Doug Lea
178 */
179 public class Phaser {
180 /*
181 * This class implements an extension of X10 "clocks". Thanks to
182 * Vijay Saraswat for the idea, and to Vivek Sarkar for
183 * enhancements to extend functionality.
184 */
185
186 /**
187 * Barrier state representation. Conceptually, a barrier contains
188 * four values:
189 *
190 * * parties -- the number of parties to wait (16 bits)
191 * * unarrived -- the number of parties yet to hit barrier (16 bits)
192 * * phase -- the generation of the barrier (31 bits)
193 * * terminated -- set if barrier is terminated (1 bit)
194 *
195 * However, to efficiently maintain atomicity, these values are
196 * packed into a single (atomic) long. Termination uses the sign
197 * bit of 32 bit representation of phase, so phase is set to -1 on
198 * termination. Good performance relies on keeping state decoding
199 * and encoding simple, and keeping race windows short.
200 *
201 * Note: there are some cheats in arrive() that rely on unarrived
202 * count being lowest 16 bits.
203 */
204 private volatile long state;
205
206 private static final int ushortBits = 16;
207 private static final int ushortMask = 0xffff;
208 private static final int phaseMask = 0x7fffffff;
209
210 private static int unarrivedOf(long s) {
211 return (int) (s & ushortMask);
212 }
213
214 private static int partiesOf(long s) {
215 return ((int) s) >>> 16;
216 }
217
218 private static int phaseOf(long s) {
219 return (int) (s >>> 32);
220 }
221
222 private static int arrivedOf(long s) {
223 return partiesOf(s) - unarrivedOf(s);
224 }
225
226 private static long stateFor(int phase, int parties, int unarrived) {
227 return ((((long) phase) << 32) | (((long) parties) << 16) |
228 (long) unarrived);
229 }
230
231 private static long trippedStateFor(int phase, int parties) {
232 long lp = (long) parties;
233 return (((long) phase) << 32) | (lp << 16) | lp;
234 }
235
236 /**
237 * Returns message string for bad bounds exceptions.
238 */
239 private static String badBounds(int parties, int unarrived) {
240 return ("Attempt to set " + unarrived +
241 " unarrived of " + parties + " parties");
242 }
243
244 /**
245 * The parent of this phaser, or null if none
246 */
247 private final Phaser parent;
248
249 /**
250 * The root of phaser tree. Equals this if not in a tree. Used to
251 * support faster state push-down.
252 */
253 private final Phaser root;
254
255 // Wait queues
256
257 /**
258 * Heads of Treiber stacks for waiting threads. To eliminate
259 * contention while releasing some threads while adding others, we
260 * use two of them, alternating across even and odd phases.
261 */
262 private final AtomicReference<QNode> evenQ = new AtomicReference<QNode>();
263 private final AtomicReference<QNode> oddQ = new AtomicReference<QNode>();
264
265 private AtomicReference<QNode> queueFor(int phase) {
266 return ((phase & 1) == 0) ? evenQ : oddQ;
267 }
268
269 /**
270 * Returns current state, first resolving lagged propagation from
271 * root if necessary.
272 */
273 private long getReconciledState() {
274 return (parent == null) ? state : reconcileState();
275 }
276
277 /**
278 * Recursively resolves state.
279 */
280 private long reconcileState() {
281 Phaser p = parent;
282 long s = state;
283 if (p != null) {
284 while (unarrivedOf(s) == 0 && phaseOf(s) != phaseOf(root.state)) {
285 long parentState = p.getReconciledState();
286 int parentPhase = phaseOf(parentState);
287 int phase = phaseOf(s = state);
288 if (phase != parentPhase) {
289 long next = trippedStateFor(parentPhase, partiesOf(s));
290 if (casState(s, next)) {
291 releaseWaiters(phase);
292 s = next;
293 }
294 }
295 }
296 }
297 return s;
298 }
299
300 /**
301 * Creates a new phaser without any initially registered parties,
302 * initial phase number 0, and no parent. Any thread using this
303 * phaser will need to first register for it.
304 */
305 public Phaser() {
306 this(null);
307 }
308
309 /**
310 * Creates a new phaser with the given numbers of registered
311 * unarrived parties, initial phase number 0, and no parent.
312 *
313 * @param parties the number of parties required to trip barrier
314 * @throws IllegalArgumentException if parties less than zero
315 * or greater than the maximum number of parties supported
316 */
317 public Phaser(int parties) {
318 this(null, parties);
319 }
320
321 /**
322 * Creates a new phaser with the given parent, without any
323 * initially registered parties. If parent is non-null this phaser
324 * is registered with the parent and its initial phase number is
325 * the same as that of parent phaser.
326 *
327 * @param parent the parent phaser
328 */
329 public Phaser(Phaser parent) {
330 int phase = 0;
331 this.parent = parent;
332 if (parent != null) {
333 this.root = parent.root;
334 phase = parent.register();
335 }
336 else
337 this.root = this;
338 this.state = trippedStateFor(phase, 0);
339 }
340
341 /**
342 * Creates a new phaser with the given parent and numbers of
343 * registered unarrived parties. If parent is non-null, this phaser
344 * is registered with the parent and its initial phase number is
345 * the same as that of parent phaser.
346 *
347 * @param parent the parent phaser
348 * @param parties the number of parties required to trip barrier
349 * @throws IllegalArgumentException if parties less than zero
350 * or greater than the maximum number of parties supported
351 */
352 public Phaser(Phaser parent, int parties) {
353 if (parties < 0 || parties > ushortMask)
354 throw new IllegalArgumentException("Illegal number of parties");
355 int phase = 0;
356 this.parent = parent;
357 if (parent != null) {
358 this.root = parent.root;
359 phase = parent.register();
360 }
361 else
362 this.root = this;
363 this.state = trippedStateFor(phase, parties);
364 }
365
366 /**
367 * Adds a new unarrived party to this phaser.
368 *
369 * @return the current barrier phase number upon registration
370 * @throws IllegalStateException if attempting to register more
371 * than the maximum supported number of parties
372 */
373 public int register() {
374 return doRegister(1);
375 }
376
377 /**
378 * Adds the given number of new unarrived parties to this phaser.
379 *
380 * @param parties the number of parties required to trip barrier
381 * @return the current barrier phase number upon registration
382 * @throws IllegalStateException if attempting to register more
383 * than the maximum supported number of parties
384 */
385 public int bulkRegister(int parties) {
386 if (parties < 0)
387 throw new IllegalArgumentException();
388 if (parties == 0)
389 return getPhase();
390 return doRegister(parties);
391 }
392
393 /**
394 * Shared code for register, bulkRegister
395 */
396 private int doRegister(int registrations) {
397 int phase;
398 for (;;) {
399 long s = getReconciledState();
400 phase = phaseOf(s);
401 int unarrived = unarrivedOf(s) + registrations;
402 int parties = partiesOf(s) + registrations;
403 if (phase < 0)
404 break;
405 if (parties > ushortMask || unarrived > ushortMask)
406 throw new IllegalStateException(badBounds(parties, unarrived));
407 if (phase == phaseOf(root.state) &&
408 casState(s, stateFor(phase, parties, unarrived)))
409 break;
410 }
411 return phase;
412 }
413
414 /**
415 * Arrives at the barrier, but does not wait for others. (You can
416 * in turn wait for others via {@link #awaitAdvance}).
417 *
418 * @return the barrier phase number upon entry to this method, or a
419 * negative value if terminated
420 * @throws IllegalStateException if not terminated and the number
421 * of unarrived parties would become negative
422 */
423 public int arrive() {
424 int phase;
425 for (;;) {
426 long s = state;
427 phase = phaseOf(s);
428 if (phase < 0)
429 break;
430 int parties = partiesOf(s);
431 int unarrived = unarrivedOf(s) - 1;
432 if (unarrived > 0) { // Not the last arrival
433 if (casState(s, s - 1)) // s-1 adds one arrival
434 break;
435 }
436 else if (unarrived == 0) { // the last arrival
437 Phaser par = parent;
438 if (par == null) { // directly trip
439 if (casState
440 (s,
441 trippedStateFor(onAdvance(phase, parties) ? -1 :
442 ((phase + 1) & phaseMask), parties))) {
443 releaseWaiters(phase);
444 break;
445 }
446 }
447 else { // cascade to parent
448 if (casState(s, s - 1)) { // zeroes unarrived
449 par.arrive();
450 reconcileState();
451 break;
452 }
453 }
454 }
455 else if (phase != phaseOf(root.state)) // or if unreconciled
456 reconcileState();
457 else
458 throw new IllegalStateException(badBounds(parties, unarrived));
459 }
460 return phase;
461 }
462
463 /**
464 * Arrives at the barrier and deregisters from it without waiting
465 * for others. Deregistration reduces the number of parties
466 * required to trip the barrier in future phases. If this phaser
467 * has a parent, and deregistration causes this phaser to have
468 * zero parties, this phaser also arrives at and is deregistered
469 * from its parent.
470 *
471 * @return the current barrier phase number upon entry to
472 * this method, or a negative value if terminated
473 * @throws IllegalStateException if not terminated and the number
474 * of registered or unarrived parties would become negative
475 */
476 public int arriveAndDeregister() {
477 // similar code to arrive, but too different to merge
478 Phaser par = parent;
479 int phase;
480 for (;;) {
481 long s = state;
482 phase = phaseOf(s);
483 if (phase < 0)
484 break;
485 int parties = partiesOf(s) - 1;
486 int unarrived = unarrivedOf(s) - 1;
487 if (parties >= 0) {
488 if (unarrived > 0 || (unarrived == 0 && par != null)) {
489 if (casState
490 (s,
491 stateFor(phase, parties, unarrived))) {
492 if (unarrived == 0) {
493 par.arriveAndDeregister();
494 reconcileState();
495 }
496 break;
497 }
498 continue;
499 }
500 if (unarrived == 0) {
501 if (casState
502 (s,
503 trippedStateFor(onAdvance(phase, parties) ? -1 :
504 ((phase + 1) & phaseMask), parties))) {
505 releaseWaiters(phase);
506 break;
507 }
508 continue;
509 }
510 if (par != null && phase != phaseOf(root.state)) {
511 reconcileState();
512 continue;
513 }
514 }
515 throw new IllegalStateException(badBounds(parties, unarrived));
516 }
517 return phase;
518 }
519
520 /**
521 * Arrives at the barrier and awaits others. Equivalent in effect
522 * to {@code awaitAdvance(arrive())}. If you need to await with
523 * interruption or timeout, you can arrange this with an analogous
524 * construction using one of the other forms of the awaitAdvance
525 * method. If instead you need to deregister upon arrival use
526 * {@code arriveAndDeregister}.
527 *
528 * @return the phase on entry to this method
529 * @throws IllegalStateException if not terminated and the number
530 * of unarrived parties would become negative
531 */
532 public int arriveAndAwaitAdvance() {
533 return awaitAdvance(arrive());
534 }
535
536 /**
537 * Awaits the phase of the barrier to advance from the given phase
538 * value, returning immediately if the current phase of the
539 * barrier is not equal to the given phase value or this barrier
540 * is terminated.
541 *
542 * @param phase the phase on entry to this method
543 * @return the phase on exit from this method
544 */
545 public int awaitAdvance(int phase) {
546 if (phase < 0)
547 return phase;
548 long s = getReconciledState();
549 int p = phaseOf(s);
550 if (p != phase)
551 return p;
552 if (unarrivedOf(s) == 0 && parent != null)
553 parent.awaitAdvance(phase);
554 // Fall here even if parent waited, to reconcile and help release
555 return untimedWait(phase);
556 }
557
558 /**
559 * Awaits the phase of the barrier to advance from the given phase
560 * value, throwing InterruptedException if interrupted while
561 * waiting, or returning immediately if the current phase of the
562 * barrier is not equal to the given phase value or this barrier
563 * is terminated
564 *
565 * @param phase the phase on entry to this method
566 * @return the phase on exit from this method
567 * @throws InterruptedException if thread interrupted while waiting
568 */
569 public int awaitAdvanceInterruptibly(int phase)
570 throws InterruptedException {
571 if (phase < 0)
572 return phase;
573 long s = getReconciledState();
574 int p = phaseOf(s);
575 if (p != phase)
576 return p;
577 if (unarrivedOf(s) == 0 && parent != null)
578 parent.awaitAdvanceInterruptibly(phase);
579 return interruptibleWait(phase);
580 }
581
582 /**
583 * Awaits the phase of the barrier to advance from the given phase
584 * value or the given timeout elapses, throwing
585 * InterruptedException if interrupted while waiting, or returning
586 * immediately if the current phase of the barrier is not equal to
587 * the given phase value or this barrier is terminated.
588 *
589 * @param phase the phase on entry to this method
590 * @param timeout how long to wait before giving up, in units of
591 * {@code unit}
592 * @param unit a {@code TimeUnit} determining how to interpret the
593 * {@code timeout} parameter
594 * @return the phase on exit from this method
595 * @throws InterruptedException if thread interrupted while waiting
596 * @throws TimeoutException if timed out while waiting
597 */
598 public int awaitAdvanceInterruptibly(int phase,
599 long timeout, TimeUnit unit)
600 throws InterruptedException, TimeoutException {
601 if (phase < 0)
602 return phase;
603 long s = getReconciledState();
604 int p = phaseOf(s);
605 if (p != phase)
606 return p;
607 if (unarrivedOf(s) == 0 && parent != null)
608 parent.awaitAdvanceInterruptibly(phase, timeout, unit);
609 return timedWait(phase, unit.toNanos(timeout));
610 }
611
612 /**
613 * Forces this barrier to enter termination state. Counts of
614 * arrived and registered parties are unaffected. If this phaser
615 * has a parent, it too is terminated. This method may be useful
616 * for coordinating recovery after one or more tasks encounter
617 * unexpected exceptions.
618 */
619 public void forceTermination() {
620 for (;;) {
621 long s = getReconciledState();
622 int phase = phaseOf(s);
623 int parties = partiesOf(s);
624 int unarrived = unarrivedOf(s);
625 if (phase < 0 ||
626 casState(s, stateFor(-1, parties, unarrived))) {
627 releaseWaiters(0);
628 releaseWaiters(1);
629 if (parent != null)
630 parent.forceTermination();
631 return;
632 }
633 }
634 }
635
636 /**
637 * Returns the current phase number. The maximum phase number is
638 * {@code Integer.MAX_VALUE}, after which it restarts at
639 * zero. Upon termination, the phase number is negative.
640 *
641 * @return the phase number, or a negative value if terminated
642 */
643 public final int getPhase() {
644 return phaseOf(getReconciledState());
645 }
646
647 /**
648 * Returns the number of parties registered at this barrier.
649 *
650 * @return the number of parties
651 */
652 public int getRegisteredParties() {
653 return partiesOf(state);
654 }
655
656 /**
657 * Returns the number of parties that have arrived at the current
658 * phase of this barrier.
659 *
660 * @return the number of arrived parties
661 */
662 public int getArrivedParties() {
663 return arrivedOf(state);
664 }
665
666 /**
667 * Returns the number of registered parties that have not yet
668 * arrived at the current phase of this barrier.
669 *
670 * @return the number of unarrived parties
671 */
672 public int getUnarrivedParties() {
673 return unarrivedOf(state);
674 }
675
676 /**
677 * Returns the parent of this phaser, or {@code null} if none.
678 *
679 * @return the parent of this phaser, or {@code null} if none
680 */
681 public Phaser getParent() {
682 return parent;
683 }
684
685 /**
686 * Returns the root ancestor of this phaser, which is the same as
687 * this phaser if it has no parent.
688 *
689 * @return the root ancestor of this phaser
690 */
691 public Phaser getRoot() {
692 return root;
693 }
694
695 /**
696 * Returns {@code true} if this barrier has been terminated.
697 *
698 * @return {@code true} if this barrier has been terminated
699 */
700 public boolean isTerminated() {
701 return getPhase() < 0;
702 }
703
704 /**
705 * Overridable method to perform an action upon phase advance, and
706 * to control termination. This method is invoked whenever the
707 * barrier is tripped (and thus all other waiting parties are
708 * dormant). If it returns {@code true}, then, rather than advance
709 * the phase number, this barrier will be set to a final
710 * termination state, and subsequent calls to {@link #isTerminated}
711 * will return true.
712 *
713 * <p>The default version returns {@code true} when the number of
714 * registered parties is zero. Normally, overrides that arrange
715 * termination for other reasons should also preserve this
716 * property.
717 *
718 * <p>You may override this method to perform an action with side
719 * effects visible to participating tasks, but it is in general
720 * only sensible to do so in designs where all parties register
721 * before any arrive, and all {@link #awaitAdvance} at each phase.
722 * Otherwise, you cannot ensure lack of interference from other
723 * parties during the invocation of this method.
724 *
725 * @param phase the phase number on entering the barrier
726 * @param registeredParties the current number of registered parties
727 * @return {@code true} if this barrier should terminate
728 */
729 protected boolean onAdvance(int phase, int registeredParties) {
730 return registeredParties <= 0;
731 }
732
733 /**
734 * Returns a string identifying this phaser, as well as its
735 * state. The state, in brackets, includes the String {@code
736 * "phase = "} followed by the phase number, {@code "parties = "}
737 * followed by the number of registered parties, and {@code
738 * "arrived = "} followed by the number of arrived parties.
739 *
740 * @return a string identifying this barrier, as well as its state
741 */
742 public String toString() {
743 long s = getReconciledState();
744 return super.toString() +
745 "[phase = " + phaseOf(s) +
746 " parties = " + partiesOf(s) +
747 " arrived = " + arrivedOf(s) + "]";
748 }
749
750 // methods for waiting
751
752 /**
753 * Wait nodes for Treiber stack representing wait queue
754 */
755 static final class QNode implements ForkJoinPool.ManagedBlocker {
756 final Phaser phaser;
757 final int phase;
758 final long startTime;
759 final long nanos;
760 final boolean timed;
761 final boolean interruptible;
762 volatile boolean wasInterrupted = false;
763 volatile Thread thread; // nulled to cancel wait
764 QNode next;
765 QNode(Phaser phaser, int phase, boolean interruptible,
766 boolean timed, long startTime, long nanos) {
767 this.phaser = phaser;
768 this.phase = phase;
769 this.timed = timed;
770 this.interruptible = interruptible;
771 this.startTime = startTime;
772 this.nanos = nanos;
773 thread = Thread.currentThread();
774 }
775 public boolean isReleasable() {
776 return (thread == null ||
777 phaser.getPhase() != phase ||
778 (interruptible && wasInterrupted) ||
779 (timed && (nanos - (System.nanoTime() - startTime)) <= 0));
780 }
781 public boolean block() {
782 if (Thread.interrupted()) {
783 wasInterrupted = true;
784 if (interruptible)
785 return true;
786 }
787 if (!timed)
788 LockSupport.park(this);
789 else {
790 long waitTime = nanos - (System.nanoTime() - startTime);
791 if (waitTime <= 0)
792 return true;
793 LockSupport.parkNanos(this, waitTime);
794 }
795 return isReleasable();
796 }
797 void signal() {
798 Thread t = thread;
799 if (t != null) {
800 thread = null;
801 LockSupport.unpark(t);
802 }
803 }
804 boolean doWait() {
805 if (thread != null) {
806 try {
807 ForkJoinPool.managedBlock(this, false);
808 } catch (InterruptedException ie) {
809 }
810 }
811 return wasInterrupted;
812 }
813
814 }
815
816 /**
817 * Removes and signals waiting threads from wait queue.
818 */
819 private void releaseWaiters(int phase) {
820 AtomicReference<QNode> head = queueFor(phase);
821 QNode q;
822 while ((q = head.get()) != null) {
823 if (head.compareAndSet(q, q.next))
824 q.signal();
825 }
826 }
827
828 /**
829 * Tries to enqueue given node in the appropriate wait queue.
830 *
831 * @return true if successful
832 */
833 private boolean tryEnqueue(QNode node) {
834 AtomicReference<QNode> head = queueFor(node.phase);
835 return head.compareAndSet(node.next = head.get(), node);
836 }
837
838 /**
839 * Enqueues node and waits unless aborted or signalled.
840 *
841 * @return current phase
842 */
843 private int untimedWait(int phase) {
844 QNode node = null;
845 boolean queued = false;
846 boolean interrupted = false;
847 int p;
848 while ((p = getPhase()) == phase) {
849 if (Thread.interrupted())
850 interrupted = true;
851 else if (node == null)
852 node = new QNode(this, phase, false, false, 0, 0);
853 else if (!queued)
854 queued = tryEnqueue(node);
855 else
856 interrupted = node.doWait();
857 }
858 if (node != null)
859 node.thread = null;
860 releaseWaiters(phase);
861 if (interrupted)
862 Thread.currentThread().interrupt();
863 return p;
864 }
865
866 /**
867 * Interruptible version
868 * @return current phase
869 */
870 private int interruptibleWait(int phase) throws InterruptedException {
871 QNode node = null;
872 boolean queued = false;
873 boolean interrupted = false;
874 int p;
875 while ((p = getPhase()) == phase && !interrupted) {
876 if (Thread.interrupted())
877 interrupted = true;
878 else if (node == null)
879 node = new QNode(this, phase, true, false, 0, 0);
880 else if (!queued)
881 queued = tryEnqueue(node);
882 else
883 interrupted = node.doWait();
884 }
885 if (node != null)
886 node.thread = null;
887 if (p != phase || (p = getPhase()) != phase)
888 releaseWaiters(phase);
889 if (interrupted)
890 throw new InterruptedException();
891 return p;
892 }
893
894 /**
895 * Timeout version.
896 * @return current phase
897 */
898 private int timedWait(int phase, long nanos)
899 throws InterruptedException, TimeoutException {
900 long startTime = System.nanoTime();
901 QNode node = null;
902 boolean queued = false;
903 boolean interrupted = false;
904 int p;
905 while ((p = getPhase()) == phase && !interrupted) {
906 if (Thread.interrupted())
907 interrupted = true;
908 else if (nanos - (System.nanoTime() - startTime) <= 0)
909 break;
910 else if (node == null)
911 node = new QNode(this, phase, true, true, startTime, nanos);
912 else if (!queued)
913 queued = tryEnqueue(node);
914 else
915 interrupted = node.doWait();
916 }
917 if (node != null)
918 node.thread = null;
919 if (p != phase || (p = getPhase()) != phase)
920 releaseWaiters(phase);
921 if (interrupted)
922 throw new InterruptedException();
923 if (p == phase)
924 throw new TimeoutException();
925 return p;
926 }
927
928 // Unsafe mechanics
929
930 private static final sun.misc.Unsafe UNSAFE = getUnsafe();
931 private static final long stateOffset =
932 objectFieldOffset("state", Phaser.class);
933
934 private final boolean casState(long cmp, long val) {
935 return UNSAFE.compareAndSwapLong(this, stateOffset, cmp, val);
936 }
937
938 private static long objectFieldOffset(String field, Class<?> klazz) {
939 try {
940 return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
941 } catch (NoSuchFieldException e) {
942 // Convert Exception to corresponding Error
943 NoSuchFieldError error = new NoSuchFieldError(field);
944 error.initCause(e);
945 throw error;
946 }
947 }
948
949 /**
950 * Returns a sun.misc.Unsafe. Suitable for use in a 3rd party package.
951 * Replace with a simple call to Unsafe.getUnsafe when integrating
952 * into a jdk.
953 *
954 * @return a sun.misc.Unsafe
955 */
956 private static sun.misc.Unsafe getUnsafe() {
957 try {
958 return sun.misc.Unsafe.getUnsafe();
959 } catch (SecurityException se) {
960 try {
961 return java.security.AccessController.doPrivileged
962 (new java.security
963 .PrivilegedExceptionAction<sun.misc.Unsafe>() {
964 public sun.misc.Unsafe run() throws Exception {
965 java.lang.reflect.Field f = sun.misc
966 .Unsafe.class.getDeclaredField("theUnsafe");
967 f.setAccessible(true);
968 return (sun.misc.Unsafe) f.get(null);
969 }});
970 } catch (java.security.PrivilegedActionException e) {
971 throw new RuntimeException("Could not initialize intrinsics",
972 e.getCause());
973 }
974 }
975 }
976 }